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Ménière’s disease (MD) is characterized by an abnormal dilatation of the 
endolymphatic compartment called endolymphatic hydrops and is associated 
with fluctuating hearing losses and vertigo. Corticosteroid treatment is typically 
administered for its anti-inflammatory effects to MD patients. However, 
we recently described for the first time a direct interaction of two corticosteroids 
(dexamethasone and cortisol) with human AQP2 which strongly inhibited water 
fluxes. From these initial studies, we proposed an AQPs Corticosteroids Binding 
Site (ACBS). In the present work, we  tested the interaction of 10 molecules 
associated to the steroid family for this putative ACBS. We  observed a wide 
diversity of affinity and inhibitory potential of these molecules toward AQP2 
and discussed the implications for inner ear physiology. Among the tested 
compounds, cholecalciferol, calcitriol and oestradiol were the most efficient 
AQP2 water permeability inhibitors.
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1. Introduction

Endolymphatic hydrops (EH) is an abnormal dilatation of the endolymph compartment, 
observed on magnetic resonance imaging (MRI) of a very large majority of Ménière’s Disease 
(MD) patients [EH in 84% of MD ears (1)] and other hearing disorders such as sensorineural 
hearing losses (SNHL) [EH in 90% of low tone SNHL ears (2) and in 68% of idiopathic sudden 
SNHL ears (3)]. This phenomenon is considered as a marker of MD (4, 5), even if its direct 
contribution to the symptoms of the disease remains to be proven (6, 7). Altogether, these data 
highlight a strong correlation between rupture of water fluxes homeostasis in the inner ear and 
hearing disorders.

The inducing factors of EH are still unknown. However, it is thought to result from a massive 
influx of water from perilymph to endolymph (8, 9). Different causes have been put forward to 
explain this phenomenon, without any being particularly prioritized. One hypothesis involves 
the modulation of water fluxes between lymphatic compartments through the alteration of 
membrane water permeability. This permeability directly relies on the regulation of the 
transmembrane water channel family of aquaporins (AQPs) (10, 11). Among them, AQP2 is 
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very interesting due to its role in the control of transmembrane water 
fluxes (12–14) but also because it is expressed in areas of fluid 
exchange between perilymph and endolymph (9, 13, 15–18).

Different pharmacological approaches have been developed in an 
attempt to absorb the accumulation of water responsible for EH. The 
administration of diuretics is part of the MD patient care 
recommendations (19) to reduce hydrops and alleviate the associated 
vertigo syndrome. Trans-tympanic administration of corticosteroids 
such as dexamethasone (DXM) is also one of the therapeutic 
approaches recommended in MD, when conventional antivertigo 
treatments have failed (19). This approach has shown significant 
benefits in the treatment of MD (20–23). The main mechanism of 
action put forward to explain the effect of corticosteroids is their anti-
inflammatory effect; however for some patients no relief could 
be  obtained which questioned their efficiency in MD treatment 
(22, 24–27).

In previous studies, we highlighted a functional modulation of 
AQP2 water channeling by the direct interaction of its extra-cellular 
surface with synthetic (DXM) (28) and naturally produced (cortisol) 
(29) corticosteroids through in silico simulation approaches. These 
interactions occurred at physiological concentrations (mean KD of 
317.7 nM and of 239.17 nM for dexamethasone and cortisol 
respectively) and induced a significant reduction of the channel water 
permeability. Corticosteroids were already known for their regulatory 
action on some AQPs transcripts level (30, 31). However, with these 
studies we bring strong evidence that corticosteroids can also alter 
AQP2 function in directly impeding water fluxes through this channel 
which has never been shown so far, to our best knowledge. Based on 
the structural homology existing between mineralocorticoid receptors 
(MRs), glucocorticoid receptors (GRs), cholesterol consensus motif 
(CCM), and the extra-cellular vestibules of AQPs, we proposed a 
putative AQPs Corticosteroids Binding Site (ACBS) (29). In the 
present study, we screened ten steroids for their affinity for AQP2 
ACBS and for their impact upon the water permeability of the 
channel. We then discussed the nature of the molecular mechanism 
involved and the relevance of such regulation for the MD community.

2. Method

2.1. Molecular dynamics simulations

All simulations were performed with GROMACS (v.2018.1) (32) 
in a CHARMM36m force field (33). The systems were built with 
CHARMM-GUI interface (34, 35). The first minimization step was 
followed by six equilibration steps, during which, restraints applied on 
the protein backbone, side chains, and lipids were progressively 
removed before the production phase was performed without 
restraint. Pressure and temperature were kept constant at 1 bar and 
310.15 Kelvin, respectively, using the Berendsen method during 
equilibration and Parrinello–Rahman and Nosé–Hoover methods 
during production. The Lennard–Jones interaction threshold was set 
at 12 Angströms (Å) and the long-range electrostatic interactions were 
calculated through the particle mesh Ewald method.

The tetrameric assembly of AQP2 (pdb: 4nef) was inserted into 
the POPC bilayer, solvated with TIP3 water molecules, and 150 mM 
of KCl for the “control” condition. For the 10 other conditions, ab 

additional 4 steroid molecules were manually placed inside the extra-
cellular vestibules of AQP2 following the same procedure as in our 
previous work (28, 29) hence leading to one steroid per monomer. The 
steroids tested were: cortisol (COR), solu-medrol (SLM), 
dexamethasone (DXM), methylprednisolone (MPR), cortisone 
(CON), androsterone (AND), progesterone (PRG), oestradiol (OES), 
and vitamin D3 in the inactive form cholecalciferol (VD3I) and the 
active form calcitriol (VD3A). The 10 systems were then simulated for 
200 nanoseconds.

2.2. Analysis

2.2.1. Water permeability
To monitor water molecules displacement along the trajectories, 

the MDAnalysis library was used (36, 37). From these water 
coordinates are derived water counts and permeability coefficients 
(pf). Permeability coefficients were calculated according to the 
collective coordinate method (38).

2.2.2. Inhibitory potential coefficient
To estimate the inhibitory potential of the molecules tested, a 

coefficient that we  named the water fluxes Inhibitory potential 
coefficient (WIP) was calculated as follows:

 

( )counts
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with Δcounts: the difference between the mean number of water 
molecules crossing the whole 30 Angströms (Å) long trans-membrane 
pore section in the control condition and the condition docked with 
the molecule tested; KDmedian: the median KD computed over the 
200 nanoseconds trajectory of the tested molecule docked to AQP2; 
NA: the Avogadro constant and Vm: the water molar volume. The 
coefficient is expressed in cm3 s−1 nM−1.

2.2.3. Free energy profiles
Water-free energy profiles were extrapolated from the logarithm 

function of the water counts inside the pore with the z-axis as a 
reaction coordinate (39, 40). The pore is divided along the reaction 
coordinate (z-axis) in slices of 0.5 Angströms (Å). The average density 
of water molecules in each slice is then computed over the 
200 nanoseconds of simulation and the Gibbs free energy G(z) is 
obtained as follows:
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where K, ρbulk, and T represent the Boltzmann constant, the bulk 
density, and the absolute temperature, respectively.

2.2.4. Binding free energy and dissociation 
constant

The binding affinity of steroids to AQP2 was evaluated directly 
from the structure, extracted from the 200 nanoseconds molecular 
dynamics trajectories every nanosecond, with the PRODIGY-LIG 
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program (41). PRODIGY-LIG evaluates the contacts between ligand 
and protein and computes free binding energy from a reliable 
empirical equation (41).

Dissociation constant (KD) values were obtained from the binding 
free energies as follows:

 

s
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G

RTK
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with ΔGS, R, and T the binding free energy, the perfect gas 
constant, and the temperature, respectively.

2.2.5. Other properties
Hydrogen bonds were computed with GROMACS tools.

2.2.6. Statistical analysis
All statistical analyses were performed using the R programming 

language. Bonferroni post hoc correction after the Wilcoxon test was 
used to compare conditions together.

For all the conditions, the 200 nanoseconds trajectories were 
divided into 10 nanoseconds sub-trajectories, and the analysis was 
performed for each monomer hence yielding 80 repetitions 
per condition.

3. Results

3.1. Comparison of ten steroids for their 
affinity to the AQPs corticosteroids binding 
site

To test the relevance of the predicted ACBS, 10 molecules from 
the steroid family were docked into AQP2 ACBS: 5 corticosteroids  
(4 glucocorticoids: cortisol, dexamethasone, methylprednisolone and 
solu-medrol; and 1 mineralocorticoid: cortisone), androsterone, 
progesterone, oestradiol and vitamin D3 inactive (cholecalciferol) and 
active (calcitriol) form (Figure 1A). Predicted binding free-energy 
ranges the interaction between AQP2 extra-cellular surface and the 
steroid molecule from the least to the most stable as follows: cortisone, 
androsterone, oestradiol, cortisol, methylprednisolone, solu-medrol, 
progesterone, dexamethasone, calcitriol, and cholecalciferol. From 
these binding free energies were calculated dissociation constants (KD) 
ranging from 590 nM to 101 nM (median values calculated over the 
whole 200 nanoseconds simulation sampled every nanoseconds) for 
cortisone and cholecalciferol, respectively (Figure 1B).

3.2. Steroids impact upon AQP2 water 
permeability

Figure 2 depicteds the impact of the AQP2–steroid interaction upon 
two water permeability indicators. The permeability coefficient pf is 
traditionally used to estimate the water permeability of AQPs and is 
derived from the diffusion of water inside the conducting pore (38) 
(Figure  2A). From this first approach, three molecules significantly 
reduced water fluxes compared to the control condition: cortisone, 
oestradiol, and cholecalciferol. To complement this indicator, we also 
counted the number of water molecules crossing the whole 30 

angstroms-long trans-membrane pore section (Figure 2B). This more 
straightforward methodology revealed significant impacts of all the tested 
molecules upon water fluxes compared to the control condition but 
within different orders of magnitude: a first group is constituted by 
cortisol and solu-medrol and is associated with p values around 1 × 10−3; 
then come dexamethasone, methylprednisolone, cortisone, and 
androsterone with p values close to 1 × 10−6; progesterone follows with a 
p value of 1.0 × 10−10; then oestradiol and calcitriol are associated with a p 
value around 1 × 10−14; and finally, cholecalciferol reduces water fluxes the 
most significantly as indicated by the p value <2.0 × 10−16. These water 
permeability coefficients were calculated over the whole trajectories, 
hence integrated ACBS-bound and ACBS-unbound states. To evaluate 
the efficiency of the inhibition of each molecule when bound to the ACBS, 
an ACBS-bound state was defined by the establishment of hydrogen 
bonds between the steroid and one of the most conserved residues of the 
ACBS: the arginine 187. This arginine is located in the most stringent part 
of the conducting pore in the extra-cellular half of the AQP. It corresponds 
to high protein–water interactions and is called the aromatic/arginine 
(ar/R) constriction (40). This constriction is typically composed of one 
arginine (arginine 187  in AQP2) and at least one aromatic residue 
(histidine 172 in AQP2). This arginine is one of the most conserved 
residues in aquaporins and of the ACBS (29, 42), and constitutes a key 
component of the AQP selectivity (43). Hence, we compared the number 
of water molecules crossing the whole trans-membrane section of the 
channel of 50 nanoseconds long portions of trajectory during which the 
tested molecule establishes the highest frequency of hydrogen bonds with 
the arginine of the ar/R constriction (Figure 2C). We can observe that all 
steroids did not inhibit water fluxes with the same efficiency when bound 
to the ACBS. Interestingly, three of the tested molecules did not display 
the highest inhibition of water fluxes when forming hydrogen bonds with 
this arginine (Figure 2C conditions MPR, CON, and PRG) but rather 
with residues of extra-cellular loop A and C (Figure 2C conditions MPR2, 
CON2, and PRG2). To better evaluate the impact of each molecule upon 
AQP2 water permeability, water count differences with the “control” 
condition were pondered by the corresponding median KD hence giving 
the estimated AQP2 water fluxes reduction as a function of the steroid 
concentration (see methods, Figure 2D). For an arbitrary concentration 
of 100 nM of the tested molecule in solution, the predicted AQP2 water 
fluxes inhibition coefficients (Water fluxes Inhibitory Potential coefficient: 
WIP) clearly indicate both calcitriol and cholecalciferol as the most 
significantly relevant putative inhibitors of AQP2 (Figure 2D).

3.3. Molecular mechanism of AQP2 water 
permeability reduction by vitamin D3

As both active and inactive forms of vitamin D3 stand out from 
the other molecules tested by both their affinity for AQP2 ACBS and 
their inhibition of water fluxes, we focused our analysis on these two 
molecules (Figure 3).

To better understand molecular mechanisms underlying such 
modulation of AQP2 water permeability by vitamin D3, we compared 
the water free-energy profiles of the conditions corresponding to four 
cholecalciferol or four calcitriol molecules docked in AQP2 ACBS 
(Figure 3A) with the “control” condition (without steroids docked into 
AQP2) (Figure 3).

Contrary to cholecalciferol which stayed in an ACBS-bound state 
in each of the four sub-units of AQP2 during the whole simulation, 
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one molecule of calcitriol left the ACBS. This is illustrated by the 
schematic representation of the AQP2 tetramer and the steroids at the 
end of the simulations (Figure 3A). This difference could be explained 
by the more hydrophobic nature of cholecalciferol, better 
accommodated by the AQP2 ACBS. The higher stability conferred 
could be  accountable for the difference in WIP between the two 

molecules, even though calcitriol still inhibits AQP2 water 
permeability very significantly.

The water profiles show the characteristic alternation of water 
interaction sites constituted by backbone carbonyl oxygens or polar side 
chains (for instance, the central asparagines of the NPA – asparagine, 
proline, alanine – motifs are well known for their interaction with water 

FIGURE 1

Comparison of nine steroids for their affinity to the AQPs corticosteroids binding site (ACBS). (A) Representation of the nine steroids docked into AQP2 
ACBS. For each of them, 200 nanoseconds of trajectory were simulated and sampled every nanosecond for binding free energy and KD calculation. 
(B) Graphical representation of the binding free energies and KD for cortisone (CON), androsterone (AND), oestradiol (OES), cortisol (COR), 
methylprednisolone (MPR), solu-medrol (SLM), progesterone (PRG), dexamethasone (DXM), active form of vitamin D3 calcitriol (VD3A), and inactive form of 
vitamin D3 cholecalciferol (VD3I). Means are indicated by a red point and medians by the horizontal bars. All conditions were compared to one another with 
a non-parametric Wilcoxon test. p-values are indicated in red when a significant difference appeared between one condition and the “CON” condition.
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molecules (44) and clearly correspond to local minima on free energy 
profiles) with energetic barriers corresponding to hydrophobic parts of 
the channel. The most stringent part of the conducting pore corresponds 
to the aromatic/arginine (ar/R) constriction (40). In previous work, 
we showed that cortisol was reducing water fluxes mainly through the 
increase of hydrophobicity of the channel rather than by steric constraints 
(29). This effect was located at the interaction site but also spread 
throughout the whole conducting pore because of the attenuation of the 
positive charge of the arginine of the ar/R constriction. We can find this 
tendency characterized by a high energetic barrier at the ar/R constriction 
conjugated with smaller increases of the other energetic barriers for 
cholecalciferol and calcitriol (Figure 3B).

4. Discussion

Recently, we highlighted the possible functional interaction 
existing between corticosteroids and AQPs through molecular 
dynamics approaches (28, 29). To our best knowledge, this was 
the first time evidence was brought in favor of such a direct 
modulation of AQP2 water permeability by a corticosteroid. 
From these initial works led on dexamethasone and cortisol and 
based on the structural similarity existing between GR, MR, the 
consensus cholesterol motif (CCM), and the extra-cellular 
vestibules of AQPs, we  proposed an AQPs Corticosteroids 
Binding Site (ACBS) (29). The aim of the present study was to 

FIGURE 2

Steroids impact upon AQP2 water permeability. (A) Permeability coefficient pf is calculated for each condition. (B) Number of water molecules crossing the 
whole 30 angstrom-long trans-membrane conducting pore section. Each family of steroids is colored differently: from left to right: in red, naturally 
produced glucocorticoid; in orange, synthetic glucocorticoid; in yellow, naturally produced mineralocorticoid; in blue androgen; in purple, progestogen; in 
pink, estrogen, and in green vitamin D3. (C) Number of water crossing the whole transmembrane section for all the simulation time in the control condition 
or when the steroid is forming hydrogen bonds with arginine 187 of AQP2 ACBS. (D) Water fluxes inhibitory potential coefficient of the tested molecules. 
The estimated KD is integrated into the water permeability reduction (see methods) in order to give the estimated water fluxes inhibition for an arbitrarily 
chosen 100 nM concentration of the steroid tested. For both indicators, all conditions were compared to one another with non-parametric Wilcoxon test. 
p-values are indicated in red when a significant difference appeared between one condition and the “control” [or with the “CON” condition for WIPs in (D)].
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FIGURE 3

Molecular mechanism of AQP2 water permeability reduction by vitamin D3. (A) Schematic representation of vitamin D3 inactive form (cholecalciferol) 
and active form (calcitriol) in interaction with AQP2 extra-cellular vestibule. Vitamin D3 is colored in cyan. Each AQP2 monomer is represented in a 
different color. The arginine of the ar/R constriction in AQP2 is colored magenta. The two representations correspond to snapshots of the end of the 
molecular dynamics simulations at time t  =  200  nanoseconds. (B) The channel water-free energy profiles for “control,” “cholecalciferol,” and “calcitriol” 
conditions were calculated over 50  nanoseconds parts of the trajectories. These 50  nanoseconds parts of trajectories correspond to simulation 
portions where the frequency of ar/R arginine 187 – vitamin D3 hydrogen bonding is maximized. For “control” where no steroids were docked the first 

(Continued)

https://doi.org/10.3389/fneur.2023.1270092
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mom et al. 10.3389/fneur.2023.1270092

Frontiers in Neurology 07 frontiersin.org

further investigate the relevance of the ACBS by confronting it to 
a larger sample of the steroid family through the same in 
silico methodology.

4.1. Additional evidence in favor of 
physiological relevance for the AQPs 
corticosteroids binding site

First of all, we observed a wide diversity in terms of affinity for the 
AQP2 extra-cellular surface between the steroids tested (Figure 1). 
This is in good accordance with the physiological regulation of AQPs 
by steroids as one would expect AQPs to be  regulated differently 
depending on their type and hence on their function and tissular 
localization. Regarding AQP2, while cortisone, androsterone, 
oestradiol and cortisol have a very low affinity for its ACBS (median 
KD of 590 nM, 544 nM, 562 nM, and 498 nM respectively), 
methylprednisolone, solu-medrol, and progesterone have a higher 
affinity (median KD of 291 nM, 267 nM, and 289 nM respectively) and 
finally dexamethasone, calcitriol, and cholecalfciferol displayed the 
strongest affinity for AQP2 ACBS or the smallest KD (median KD of 
193 nM, 114 nM, and 101 nM respectively). Moreover, all these KD fall 
into the range of physiologically relevant drug–receptor interaction 
(45). The differences with our previous work mean KD for 
dexamethasone [317.7 nM (28)] and cortisol [239.17 nM (29)] come 
from the methodology. In fact, we  previously used portions of 
trajectories where the steroid was continuously bonded to the ar/R 
arginine to calculate KD while in the present work, all the trajectory 
was taken into account to better discriminate the tested molecules. 
Finally, if we compare the median KD for the two drugs with the best 
affinity for ACBS to the literature, similar values are found: 
Dexamethasone has a median KD of 193 nM, and experimental KD for 
glucocorticoid membrane receptors ligands was estimated at 180 nM 
(46); vitamin D3 has a KD for its receptor equal to 32 nM (47) which 
is close to our estimated median KD of 101 nM or 114 nM.

Second, this diversity was also observed in the functional impact 
of the interaction upon AQP2 water permeability (Figure 2). The 
traditionally used pf falls into the range of experimentally obtained 
AQP2 water permeabilities (3.3 ± 0.2 × 10−14 cm3 s−1 (12) compared to 
~2 × 10−14 cm3 s-1, Figure 2). However, in a previous work, we noticed 
that the methodology used to derive pf from molecular dynamics 
simulations could be  biased by the thermal agitation of water 
molecules (48). Thereafter we used another indicator for AQP2 water 
permeability consisting of the counts of water molecules crossing the 
whole trans-membrane pore section of the channel. With this 
alternative indicator, all tested steroids significantly reduced the 
permeability of AQP2. Moreover, the molecules were segregated 
between groups of different orders of magnitude of intensity of the 
impact. Coherently with a physiological modulation of AQPs by 
steroids, these groups correlated with the different steroid families 
represented: corticosteroids and androgens impacted the water 

permeability the less, followed by progestogens, estrogens, and finally 
vitamin D3 (Figure 2).

4.2. Physiological relevance for inner ear 
pathophysiologies: AQP2 is a good 
therapeutic target

AQP2 has been shown to be located in several inner ear tissues 
bordering the endolymph such as Reissner’s membrane, the organ 
of Corti, inner and outer sulcus cells, and the spiral limbus within 
the cochlea (49); or in the luminal epithelium of the endolymphatic 
sac (17, 18, 50). Initially discovered in the kidney and associated 
with the regulation of water re-absorption in the distal collecting 
duct (51–53), its localization in ES epithelium coincides with the 
hypothesis suggesting ES as the endolymph resorption site (54–58). 
In good agreement with similar roles of AQP2 in the kidney and the 
inner ear, similarities are found between the collecting duct and the 
ES epithelium. Both are composed of two epithelial cell types (59–
63) and express many other ion transporters and channels (64–70). 
In the kidneys, AQP2 density at the plasma membrane of collecting 
duct principal cells is regulated through the action of the arginine 
vasopressin hormone (AVP, also known as antidiuretic hormone). 
Under binding to the vasopressin receptor (V2), the hormone 
induces the translocation of AQP2 from internal vesicles toward the 
plasma membrane (52, 71). Several yet published observations point 
toward a similar regulation of ES water permeability by AVP through 
the translocation and transcript level regulation of AQP2. Indeed, 
the V2 receptor as well as proteins known to mediate the 
translocation of intracytoplasmic vesicles into the plasma membrane 
are expressed in the ES (15, 18, 50, 72). Moreover, specific binding 
of AVP to the ES epithelium has been demonstrated by 
autoradiography (72). Finally, through AVP and protein kinase 
antagonists, this translocation of AQP2 has been shown in human 
ES (50). However, contrarily to the regulation taking place in the 
kidney, plasma AVP increase and subsequent V2R-cAMP-
PKA-AQP2 activation induces endosomal trapping of AQP2 in the 
ES (50). This endosomal trapping of AQP2 is susceptible to 
decreasing ES luminal epithelium water permeability. As a 
consequence, this would negatively interfere with the re-absorption 
of endolymph AQP2 insures (in part) when needed, which could 
ultimately lead to endolymphatic hydrops (50). In Menière’s disease 
(MD), EH is usually observed (1), so much so that it is considered 
as a biomarker of the pathology (4, 5). Interestingly, in MD patients, 
elevated concentrations of AVP are found (68, 73). Coupled with the 
significant up-regulation of V2R and AQP2 genes in MD patients 
(50, 74, 75), these data point to AQP2 as a very interesting 
therapeutic target for inner ear pathophysiologies. However, in other 
studies, no significant increase in AVP plasma level was found for 
MD patients (76–78) making the role of AVP in MD and other inner 
ear endolymph fluxes regulation controversial.

50  nanoseconds were used. On the right side of the figure, a schematic representation of AQP2 pore-lining residues in interaction with water 
molecules and calcitriol (colored in cyan) are aligned with the water free-energy profiles. Arginine 187 of the ar/R constriction is colored in magenta. 
The representation was made from a snapshot of the trajectory portion used for water-free energy profile calculation at time t  =  200  nanoseconds.

FIGURE 3  (Continued)
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4.3. Physiological relevance for inner ear 
pathophysiologies: functional hypothesis

Endolymph is a unique extra-cellular hyperosmotic fluid with 
unusual characteristics such as a very high potassium concentration 
and low tightly controlled calcium concentration (9, 79). Because hair 
cells have their apical membrane protruding within one of the 
endolymphatic compartments called the cochlear canal, endolymph 
volume, and K+ and Ca2+ concentrations must be kept constant for the 
endocochlear potential to be generated and hence normal auditory 
functions to be maintained (9, 79–81). Perilymph is on the other hand 
isotonic and possesses ionic concentrations similar to what is found 
in the cytosol of cells (79). To maintain these ionic concentrations, 
active transport is made by cells of tissues surrounding the cochlear 
canal (58, 79). According to direct measurements of the dispersal of 
markers in endolymph, these ion fluxes are not accompanied by water 
fluxes, and in normal conditions, endolymph is maintained without 
significant changes in volume (58). Thereafter, according to this 
hypothesis, water permeability of the inner tissues surrounding the 
cochlear canal should stay very low. Moreover, because of the calcium 
level regulation taking place in these same inner ear tissues, vitamin 
D3 is also expected to be concentrated. Indeed, vitamin D3-carrier 
protein complexes such as calbindin 28 kDa as well as endocytotic 
receptors involved in these vitamin-D-carrier protein complexes 
intakes, such as cubilin and megalin, are found in many cochlear cells 
(82–86). To summarize, much evidence indicates that both AQP2 and 
vitamin-D3 co-localize into the inner ear cells surrounding the 
cochlear endolymphatic compartment. In the present study, our 
results suggest vitamin-D3 active and inactive forms as strong 
inhibitors of AQP2 water channeling activity. Indeed, both 
cholecalciferol and calcitriol directly interacted with the predicted 
AQP2 ACBS; presented the strongest inhibition of AQP2 water 
permeability through both pf (for cholecalciferol only) and water 
counts (Figure 2), and presented the highest affinity for the ACBS 
(Figure 1) which was very close to the affinity for its known receptor. 
This was clearly highlighted by our new water fluxes inhibitory 
potential indicator (WIP, Figure  2). The second most significant 
inhibition of AQP2 function was observed with oestradiol. 
Interestingly, the fluctuation of these two steroid hormones has been 
correlated to MD symptoms (87–91). Coherently, in both cases, the 
steroid hormone deficiency was associated with hearing impairment 
(92–95) and vertigo (96, 97). Moreover, a recent study reported no 
significant difference in the allelic frequency of estrogen receptor ERα 
polymorphisms between patients with MD and controls (98) 
suggesting these effects being mediated through another pathway. In 
another recent study, vitamin D deficiency in the elderly but not total 
calcium concentration was significantly associated with hearing losses 
(95) thereafter re-enforcing the likeliness of a direct effect of this 
hormone on inner ear homeostasis. Hence, we  formulate the 
hypothesis that steroids and in particular vitamin D3 and/or oestradiol 
have a physiologically relevant inhibitory action upon AQP2 water 
channeling and that this regulation is directly linked to endolymphatic 
hydrops, MD symptoms, and other related inner ear pathophysiologies 
(Figure 4): in normal conditions, endolymphatic volume is stable (58) 
and because the cochlear canal endolymph is hyperosmotic compared 
to perilymph (9, 58, 79), membrane water permeability of the 
surrounding cells must be very low. In these cells AQP2 is expressed 
(49) and many ionic canals and transporters are needed to maintain 
the endocochlear membrane potential (79). Because of the Ca2+ 

regulation taking place in these cells, vitamin D3 is also present and 
actively concentrated by dedicated endocytosis (86). On top of its role 
in calcium cycling, vitamin D3 directly interacts with AQP2 ACBS 
(Figure  1) which inhibits water fluxes (Figure  2) through the 
modification of the conducting pore electrostatic profile and diameter 
(Figure  3) (28, 29). This inhibition of AQP2 water permeability 
hinders trans-cellular water fluxes between perilymph and endolymph. 
In pathological conditions, however, when the patient displays vitamin 
D and/or oestradiol deficiency, calcium cycling is impaired and water 
fluxes between perilymph and endolymph can occur through the 
AQP2-mediated trans-cellular route. Following the osmotic gradient, 
water would flow from the perilymph toward the endolymph hence 
resulting in endolymphatic hydrops. In turn, both volume and ionic 
concentrations of the endolymphatic compartment would have been 
severely impaired leading to hearing loss and vertigo symptoms (87–
90, 92–94, 96, 97).

4.4. Physiological relevance for inner ear 
pathophysiologies: limits and remaining 
interrogations

In the current paper, we  formulated a functional hypothesis 
relevant to inner ear pathophysiology based on molecular dynamics 
simulation experiments. However many more investigations are 
needed to validate this hypothesis. Firstly, the modulation of AQP2 by 
steroids needs to be tested through other approaches in vitro and in 
vivo. Secondly, even though AQP2 and vitamin D3 are very likely to 
co-localize in tissues bordering the endolymph of the cochlear canal, 
other AQPs (AQP1, AQP3, AQP4, AQP5, AQP6, AQP7, and AQP9) 
are also expressed in these same tissues (99, 100). Moreover, knowing 
precisely how much each subtype of AQP contributes to the global 
water exchanges between the two compartments is still very 
challenging. Furthermore, additional information about the exact 
cellular localization of each AQP and of vitamin D3 will eventually 
be  needed to corroborate our hypothesis. On top of tissular and 
cellular localization, the way vitamin D3 and other steroids could 
modulate other AQPs’ water permeability is still unknown. Some of 
them could display a ubiquitous inhibition upon AQP function while 
others could impact different subtypes in an opposite way. We should 
also remember that recent data indicate that steroids could directly 
modulate the function of other ionic channels as well, such as 
members of the Transient Receptor Potential (TRP) channels (101, 
102). Interestingly, these mechanosensitive calcium channels have 
been shown to form functional complexes with AQPs (103) and are 
known to co-localize with AQP2 in human endolymphatic sacs (18). 
Thirdly, other factors could interfere with AQP function in 
physiological conditions, such as ion concentrations (48, 104) and pH 
(105, 106). In the inner ear, the endolymphatic compartment is 
characterized by a very high potassium ions concentration tightly 
maintained at nearly 150 mM from which originates the 
endolymphatic potential (9, 79–81). Additionally, the endolymphatic 
pH is kept at 7.4 (107). In the present study, the AQP2 tetramer was 
inserted into a POPC bilayer, solubilized with 150 mM of KCl ions and 
the histidine residues (protein pH sensors) were simulated with an 
unprotonated imidazole side-chain. Our atomic systems hence 
constitute non-exhaustive models of inner ear physiological conditions 
with some limits such as the choice of potassium as the only 
representative cation; the bilayer lipidic composition; and the absence 
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of other interacting partners such as calcium or other proteins. These 
choices stem from the necessary trade-off between the accuracy of the 
systems simulated and the associated computational costs.

Finally, we should keep in mind the strong anti-inflammatory 
effect of steroids, which remains to this day the main molecular 
mechanism put forward to explain the efficiency of MD corticosteroid 
treatments. The significant role of inflammation in the disease is 
supported by many evidence (108, 109). However, contrary to the 
non-genomic effects described in the present study, this inflammation 
involves the modulation of gene expression (110). It is however worth 
noting that a growing body of evidence is questioning the efficacy of 
dexamethasone and other corticosteroids effect in MD treatment and 
EH resorption (27, 111, 112). Even more puzzling is the fact that 
these studies represent the largest high-quality trials of a 
nondestructive drug treatment for patients with MD and that the 
protocols were designed in order to maximize the efficiency of 
dexamethasone delivery at the site of EH formation (111). To explain 
these discrepancies, the authors put forward two hypotheses: either 
the highly associated placebo effect masked the effect of corticosteroid 
treatment, or the recording time frame was not appropriate (111). 
Our hypothesis could also bring an explanation regarding this failure 
to alleviate EH with dexamethasone: if the corticosteroid indeed 
significantly modulates AQP water permeability, then the precise 
tissular application site, concentration of the molecule, moment of 
application relatively to EH formation and the nature of the 
corticosteroid itself could all significantly impact treatment efficiency. 
Following this idea, high and sustained delivery of dexamethasone in 
the middle ear could also strongly inhibit AQP2-mediated water 
fluxes in both the cochlea and the ES. If the EH was already 

established within the treated ears, then high dexamethasone 
concentrations could have prevented EH resorption because of lymph 
fluxes inhibition. This hypothesis is supported by a very recent study 
that followed EH evolution through MRI after intratympanic 
injection of dexamethasone in patients with probable or definite MD 
(112). The authors reported no effect of dexamethasone on EH 
resorption (112). It is however still a matter of debate whether EH is 
at the basis of MD symptoms or if it can only be considered as a side 
effect of the disease.

4.5. Conclusive remarks

Altogether these data support the physiological relevance of 
AQP2–steroids interactions as a non-genomic regulation of lymphatic 
fluxes between perylymphatic and endolymphatic compartments at 
the origin of EH. Further investigations and trans-disciplinary 
approaches are needed to confirm this functional hypothesis. Among 
the ten molecules tested, vitamin D3 displayed the most significant 
functional inhibition of AQP2 water fluxes. During the previous years, 
more and more data linked vitamin D3 deficiency with hearing losses 
(93–95), vertigo (88, 97), and MD (87, 91, 113). Most of them however 
are cross-sectional studies and the demonstration of a direct causal 
relationship between vitamin D3 deficiency and EH formation is still 
missing. However, we hope that by highlighting the plausible direct 
regulation of water and ions homeostasis by steroid interaction with 
transmembrane channels, a re-investigation of inner ear physiology 
will be  conducted to eventually bring significant treatment  
improvements.

FIGURE 4

Schematic illustration of our functional hypothesis for vitamin D3 – deficiency mediated endolymphatic hydrops. In normal conditions, vitamin D3 
inhibits AQP2-mediated trans-cellular water flux hence maintaining cochlear canal (in green) volume. In the case of a vitamin D3 deficiency, however, 
water fluxes follow the osmotic gradient and flow from the surrounding perilymphatic compartments (in blue) toward the cochlear canal leading to 
endolymphatic hydrops.
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