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Introduction: Increased mortality after acute and chronic spinal cord injury 
(SCI) remains a challenge and mandates a better understanding of the factors 
contributing to survival in these patients. This study investigated whether body 
mass index (BMI) measured after acute traumatic SCI is associated with a change 
in mortality.

Methods: A prospective longitudinal cohort study was conducted with 742 
patients who were admitted to the Acute Spine Unit of the Vancouver General 
Hospital between 2004 and 2016 with a traumatic SCI. An investigation of the 
association between BMI on admission and long-term mortality was conducted 
using classification and regression tree (CART) and generalized additive models 
(spline curves) from acute care up to 7.7  years after SCI (chronic phase). 
Multivariable models were adjusted for (i) demographic factors (e.g., age, sex, 
and Charlson Comorbidity Index) and (ii) injury characteristics (e.g., neurological 
level and severity and Injury Severity Score).

Results: After the exclusion of incomplete datasets (n  =  602), 643 patients 
were analyzed, of whom 102 (18.5%) died during a period up to 7.7  years after 
SCI. CART identified three distinct mortality risk groups: (i) BMI: > 30.5  kg/m2, 
(ii) 17.5–30.5  kg/m2, and (iii)  <  17.5  kg/m2. Mortality was lowest in the high BMI 
group (BMI  >  30.5  kg/m2), followed by the middle-weight group (17.5–30.5  kg/
m2), and was highest in the underweight group (BMI  <  17.5  kg/m2). High BMI had 
a mild protective effect against mortality after SCI (hazard ratio 0.28, 95% CI: 
0.09–0.88, p  =  0.029), concordant with a modest “obesity paradox”. Moreover, 
being underweight at admission was a significant risk factor for mortality up to 
7.7  years after SCI (hazard ratio 5.5, 95% CI: 2.34–13.17, p  <  0.001).

Discussion: Mortality risk (1  month to 7.7  years after SCI) was associated with 
differences in BMI at admission. Further research is needed to better understand 
the underlying mechanisms. Given an established association of BMI with 
metabolic determinants, these results may suggest unknown neuro-metabolic 
pathways that are crucial for patient survival.
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Introduction

Mortality after spinal cord injury (SCI) remains a substantial 
challenge (1). While infections and septic conversions remain the 
main causes, so far unknown reasons may drive mortality risk. 
Obesity is a well-characterized modifiable risk factor for vascular 
disease, which warrants control for primary and secondary prevention 
of stroke (2, 3) and represents a substantial challenge. Obesity and 
cardiometabolic risk markers are frequently pre-existent in patients 
with acute SCI (4).

In contrast to the deleterious chronic effects of obesity, ischemic 
brain injury studies have demonstrated that obese patients may have 
a lower acute mortality rate compared to their underweight 
counterparts (5, 6). This has been confirmed by post-hoc analysis of 
large trials (7), including the randomized, multicenter Field 
Administration of Stroke Therapy–Magnesium Study (8). The 
paradoxical phenomenon of lower mortality despite a higher risk of 
recurrent vascular insults in patients with obesity is referred to as the 
“obesity paradox” (9, 10). One explanatory reason is a catabolic state 
early after CNS injury being aggravated further by additional energy 
resources that are required for mounting a stress response and 
temperature rise in case of prevalent fever. The impaired ability to 
respond to these challenges due to a dysregulated, decentralized 
autonomic nervous system suggests the presence of non-homeostatic 
compensation strategies. In addition to cancer (11) and stroke, an 
obesity paradox has also been described in amyotrophic lateral 
sclerosis, where a lowered risk for disease progression or death has 
been observed in individuals with a high body mass index (BMI) 
(12, 13).

Acute SCI represents a life-threatening event triggering a 
profound stress response mirrored by hypercortisolism (14–16). 
Hypercortisolism indicates a stress response capable of mobilizing the 
body’s energy, which can decrease lean body and muscle mass. 
Applying a bed-to-benchside approach to understand causality, a 
recent study verified lesion-level-dependent hypercortisolism as a 
catabolic and systemic driver of muscle wasting/sarcopenia, 
contributing to early weight loss after SCI affecting the entire body, 
including non-denervated muscles above the lesion site (17). It 
appears that the acute time window after SCI is different from the 
chronic SCI phase. During the first 6–10 weeks post-injury, early 
weight loss and body fat reduction have been reported (18), verifying 
a prevailing catabolic state. Recent studies have determined the 
association of body mass with mortality occurring after this first 
catabolic phase. This includes data from the US-National SCI Model 
System Database examining mortality from 3 months to 1 year after 
SCI (19). A putative obesity-related protective effect, however, would 
be  expected during the first 3 months after SCI, with concurrent 
weight loss and body fat reduction (18). In addition to this putative 
“protective” effect of high BMI, an entirely different pathophysiological 

response may be in effect in cases of low BMI or being “underweight,” 
which may also impact mortality.

To provide an integrative and comprehensive assessment of the 
role of nutritional status/body mass index ‘on admission’ after a 
traumatic SCI, we analyzed mortality over time from acute to chronic 
phases of SCI. Specifically, to test the hypothesis regarding the 
influence of BMI on mortality at different time points following SCI, 
we examined the association between admission BMI and mortality 
data at 1 month, 3 months, 1 year, and a long-term endpoint extending 
up to 7.7 years after SCI to analyze the dynamic association of 
admission BMI with mortality.

Materials and methods

Study and ethical approval

The study was approved by both the Vancouver Coastal Health 
Research Institute and the University of British Columbia Clinical 
Research Ethics Board. Data were collected from interviews and 
medical chart abstraction for individuals who consented to participate 
in the Rick Hansen Spinal Cord Injury Registry (expanded dataset) 
(20). In addition, data were collected via additional medical chart 
abstraction for individuals enrolled in RHSCIR under a consent 
waiver (minimal dataset).

Study population, design, setting, and data 
variables

This is a prospective longitudinal cohort study consisting of 1,245 
acute SCI patients admitted to the Acute Spine Unit of the Vancouver 
General Hospital between 2004 and 2016 who were enrolled in the 
Rick Hansen Spinal Cord Injury Registry (RHSCIR) (20). Individuals 
with missing weight and/or height data at admission and mortality 
data were not included in this study (n = 503). Cases without complete 
data for model adjustment were excluded (n = 99) from the analysis. 
The sample used for the analysis was 643 (Figure 1A).

Age, sex, American Spinal Injury Association Impairment Scale 
(AIS), neurological level, Charlson Comorbidity Index (CCI), Injury 
Severity Score (ISS), body weight, and height were collected at 
admission to the Acute Spine Unit (21, 22). Pre-injury/admission 
body weight and height data were gathered by questioning the 
patients or their relatives. The BMI was calculated by dividing a 
person’s weight in kilograms by the square of a person’s height in 
meters (BMI = weightkg/height2

m). The conventional BMI categories 
are underweight BMI < 18.5 kg/m2; normal weight BMI 18.5–24.9 kg/
m2; overweight BMI 25.0–29.9 kg/m2; and obese, BMI ≥30.0 kg/m2 
(2, 3). The outcome (mortality) was collected up to 7.7 years 
post-injury.

Statistical modeling

Demographic and injury data were compared for the outcome 
(survival vs. mortality). Continuous variables including age, BMI, ISS, 
and CCI were analyzed using t-tests, and categorical variables such as 
sex, AIS, and neurological level groupings (i.e., Cl 1 to T1 vs. T2 to S5) 

Abbreviations: AIS, American Spinal Injury Association Impairment Scale; ASIA, 

American Spinal Injury Association; BMI, Body mass index; CART, Classification 

and regression tree; CCI, Charlson Comorbidity Index; CNS, Central nervous 

system; GAM, Generalized additive model; ISNCSCI, International Standards for 

the Neurological Classification of Spinal Cord Injury; ISS, Injury Severity Scale; ML, 

Machine learning; RHSCIR, Rick Hansen Spinal Cord Injury Registry; SCI, Spinal 

cord injury; WHO, World Health Organization.
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were analyzed using chi-square tests. In a missing data analysis, 
demographic and injury characteristics were compared between 
groups that were defined based on the availability of BMI data.

To determine if BMI at admission was associated with mortality 
from acute care up to 7 years after SCI, predictive models were created 
using classification and regression tree (CART) analysis. This 
approach was chosen because the World Health Organization (WHO) 
obesity criteria (3) may be non-informative in patients with SCI (23, 
24). CART accounted for the binomial distributions in the response 
variable and identified ‘nodes’, or subgroups that were most 
homogeneous with regards to the probability of mortality. These BMI 
subgroups were then applied to Kaplan–Meier curves and Cox 
regression. For comparability with other studies, we  used BMI 
categories based on the WHO obesity criteria. In addition, Cox 
regression was conducted, categorizing BMI by the 10th, 11th–89th, 
and 90th percentiles in a sensitivity analysis. To determine the survival 
for each BMI category relative to the WHO normal or medium range 
for BMI, unadjusted and adjusted Kaplan–Meier curves and log-rank 
tests were calculated. All variables and stratified BMI categories were 
tested for proportionality assumptions (Schoenfeld residuals) before 
applying them to the Cox regression data in order to calculate 
mortality hazard ratios (MHRs). In this analysis, there was no 
evidence of time-varying effects. The model was adjusted for age, sex, 
AIS, neurological level (C1 to T1 vs. T2 to S5), and ISS (25–27). In 
total, two models were calculated [(i) using all variables and (ii) 
applying BMI only] for the analyses using the WHO BMI categories 
and the CART BMI categories.

To further elucidate the association between BMI and survival, 
we applied the generalized additive model (GAM) with cubic splines 
using the BMI continuous data instead of the BMI categories in a 
sensitivity analysis. Assessments were made over time at 1 month, 
3 months, 1 year, and the long-term endpoint (7.7 years). A value of p 
of <0.05 was considered statistically significant, along with the 95% 
CI. All statistical analyses were performed using SPSS (version 26) and 
R × 64 (version 3.1).

Results

We investigated mortality in patients admitted to the Acute Spine 
Unit of the Vancouver General Hospital (Figure 1A) with traumatic 
spinal cord injuries. An analysis comparing the cohort that was 
included vs. those excluded due to missing data revealed no relevant 
differences in sex or age. The included patients comprised slightly 
fewer cervical injuries and more individuals with AIS A injuries. Both 
groups had similar mortality rates (Supplementary Table S1).

The mean ± SD value of BMI for the patients during their acute 
admission was 24.96 ± 4.25 kg/m2 (Figure 1B). The distribution of (i) 
demographic factors (age, sex) and (ii) SCI characteristics [injury 
severity (AIS), neurological level (C1 to T1 vs. T2 to T12 vs. L1 to S5)], 
accompanying severity of ISS, and premorbid comorbidities using the 
CCI is described in Table 1.

There were 446 individuals (69.3%) who were admitted directly to 
the center, while 197 (30%) were admitted indirectly. The time to 
admission was less than 24 h for 366 individuals (82%) in the direct 
admission group and 175 individuals (88.8%) in the indirect group. 
Rates of surgery were similar (88.8 and 91.4%) for the direct and 
indirect admitted patients, respectively.

During the follow-up period, 102 patients (15.8%) were deceased 
as of 2016, and the mean time to death post-injury was 
25.85 ± 26.04 months. Mortality rates were 2.2% at 1 month, 5% at 
6 months, 6.5% at 1 year, 12.1% at 3 years, and 15.9% at 7.7 years 
following SCI. The mortality group was characterized by being older, 
comprising more men, having more injuries to the cervical cord, and 
having a higher CCI and ISS.

CART identified three distinct 
mortality-hazard (“risk”) groups

Comparing the survival of the 10th with the 90th BMI percentile of 
the study population, the mortality rate was higher. The survival time was 

FIGURE 1

Dataset selection and enrolment. (A) Flowchart of patients admitted with traumatic SCI from 2004 to 2016 at the Acute Spine Unit. Among the 1,245 
SCI participant datasets, 602 were excluded due to being incomplete. Of the remaining 643 participants, 102 died and 541 individuals survived up to 
7.7  years after SCI. (B) Mean BMI at admission of the entire study population was 24.92  kg/m2  +  4.25 (SD).
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shorter in the 10th percentile, where 15 of 64 patients died (24.4%) at a 
mean time of 81.4 (95% CI: 72.8–90.0) months after injury. In contrast, in 
the 90th percentile, 6 deaths occurred in 65 patients (9.2%) after 94.5 
(95% CI: 89.9–99.1) months. In the 11th–89th percentile, 81 of 514 
patients (15.8%) died at 88.3 (95% CI: 85.8–90.8) months after injury.

To classify BMI categories based on the survival/mortality outcome, 
we  applied CART to identify cohorts with different survival rates 
according to BMI. CART analysis identified three distinct subgroups 
(Figure  2A). Individuals with a BMI > 30.5 kg/m2 (blue, n = 53) 
demonstrated the lowest mortality, followed by patients with a BMI of 
17.5–30.5 kg/m2 (green, n = 578), and the highest mortality was in patients 
with a BMI < 17.5 kg/m2 (red, n = 12) (Figure 2B). Survival analysis over 
time illustrated that the protective effects of higher BMI against mortality: 
(i) occurred in a dose-dependent manner, (ii) started early, and (iii) were 
long-lasting (Figure 2B). BMI groups are illustrated as Kaplan–Meyer 
curves after the Cox regression in Figure 2B. Comparison with WHO 
BMI categories confirmed the dose-dependent effect of BMI at admission 
on mortality (Supplementary Figure S2).

The two effects on mortality: obesity and 
underweight

For the most accurate interpretation of the association between 
BMI and mortality (mortality hazard ratios) and to distinguish 

obesity/overweight from underweight-associated effects, Cox 
regression models were conducted, examining: (i) BMI bins as 
identified by recursive partitioning (Table 2) and (ii) BMI groups 
defined according to the WHO obesity criteria 
(Supplementary Table S2). Next, we examined whether the hazard 
ratios were different compared to the middle CART group (BMI 17.5–
30.5 kg/m2, n = 578) or the WHO normal weight definition group 
(BMI 18.5–24.9 kg/m2, n = 325), respectively. The middle CART group 
(BMI 17.5–30.5 kg/m2, n = 578) and the WHO normal weight group 
(BMI 18.5–24.9 kg/m2, n = 325) were defined as the reference categories.

Compared to the reference category (middle weight), the high-
range BMI group identified by CART (BMI > 30.5 kg/m2, n = 53) 
displayed a significant decrease in mortality risk by 28% (HR 0.28, 
95% CI 0.09–0.88, p = 0.029). In the obese WHO group (BMI ≥ 30.0 kg/
m2, n = 67), the mortality risk was also significantly reduced to 32% 
(HR 0.32, 95% CI 0.14–0.76, p = 0.009) compared to the normal 
weight WHO group. In the overweight WHO group (BMI 25.0–
29.9 kg/m2, n = 227), the effect on mortality was much weaker (HR 
0.65, 95% CI 0.42–1.01, p = 0.053) compared to the medium/normal 
range BMI group.

By contrast, the low-range BMI group identified by the CART 
(BMI < 17.5 kg/m2, n = 12) likewise demonstrated a significantly 
elevated risk of mortality (HR 5.55, 95% CI 2.34–13.17, p < 0.001) 
compared to the CART-based mid-range BMI group (BMI 17.5–
30.5 kg/m2). The underweight group, defined by the WHO criteria 
(BMI < 18.5 kg/m2, n = 24) was characterized by a significantly 
increased risk of mortality (HR 2.43, 95% CI 1.17–5.03, p = 0.017) 
compared to the WHO medium/normal weight group.

The three CART-defined BMI groups revealed a differing distribution 
based on the neurological impairment on admission (baseline), where 
there were more incomplete patients with SCI in the low-range BMI group 
and more cases with cervical SCI present in the middle BMI group. Other 
baseline characteristics that were slightly different between the groups were 
the CCI and ISS (Table 3). However, the differences in the neurological 
level distribution across the BMI groups had no effect on BMI-associated 
mortality (Supplementary Table S3).

Dynamics of BMI association with mortality 
spanning from subacute to chronic SCI

Next, we applied an additional non-linear model (generalized 
additive model [GAM]) to investigate the association between BMI 
at admission and long-term mortality. In order to explore if there was 
a shift over time, we assessed the association between linear BMI and 
mortality at various time points after SCI in an unadjusted and 
adjusted GAM. For the outcome of mortality, a restricted cubic spline 
curve analysis demonstrated a non-linear association of BMI with 
mortality. This association was visible throughout the time points in 
the adjusted models (Supplementary Figure S1), whereas, in the 
unadjusted models, a similar pattern was also detected at 1 and 
3 months after SCI. For BMI values less than 17.5 kg/m2, the slope was 
inclined, indicating a higher mortality (Supplementary Figure S1). 
With a higher BMI >30.5 kg/m2, a declined slope at all time points 
indicates a progressively reduced risk (Supplementary Figure S1).

Further spline curve analysis revealed a non-linear association 
between mortality and age, where there was increased mortality with 
higher age and an inclined slope indicating a progressively increased 
risk (Supplementary Figure S1J).

TABLE 1 Demographic and injury data for the survival and mortality 
groups.

Survival
n  =  541

Mortality
n  =  102

p-value

Age, mean ± SD 42.5 ± 17.9 63.0 ± 17.9 < 0.001

Sex, % male (n) 72.5% (407) 83.3% (85) 0.047

BMI kg/m2 at 

admission, 

mean ± SD

25.1 ± 4.2 24.2 ± 4.3 0.055

AIS at admission, 

% (n)
0.412

  A 46% (251) 53% (54)

  B 13% (68) 15% (15)

  C 21% (112) 18% (18)

  D 20% (110) 15% (15)

Neurological level 

of injury, % (n)
< 0.001

C1-T1 59% (318) 89% (91)

T2-T12 28.5% (154) 8.8% (9)

L1-S5 12.8% (69) 2% (2)

CCI, mean ± SD 0.35 ± 0.83 0.83 ± 1.14 < 0.001

ISS, mean ± SD 27.1 ± 11.5 30.7 ± 16.9 0.044

Of the 643 patients, 102 (15.9%) died, and 541 survived up to 7.7 years post-SCI. The two 
groups were statistically different with regard to age, sex, neurological level, Charlson 
Comorbidity Index (CCI), and Injury Severity Score (ISS). The mortality group had a higher 
age, a higher number of men, a higher number of cervical injuries, and a higher CCI and ISS. 
A predictive model was used to adjust for: (i) demographic factors (age and sex) and (ii) SCI 
characteristics [level and completeness of injury (AIS; ASIA Impairment Scale)] as well as for 
comorbidities (CCI) and severity of polytrauma (ISS) associated with SCI. AIS, American 
Spinal Injury Association Impairment Scale; CCI, Charlson Comorbidity Index; ISS, Injury 
Severity Score; BMI, body mass index.
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Discussion

Mortality risk during acute and chronic phases following SCI 
(ranging from 1 month to 94 months or 7.7 years) was associated with 
BMI at admission. Data-driven CART analysis was applied to 
determine which BMI categories were associated with mortality. 
Multivariable Cox regression models adjusting for effects of 
confounders such as age, sex, CCI, ISS, AIS, and neurological level 
were applied. Finally, spline curve analyses were calculated, depicting 
the association of BMI at admission with mortality over time 
after SCI.

The results based on the CART analysis indicated two different 
effects. There was an overarching strong effect of being underweight 
(BMI < 17.5 kg/m2), which was positively associated with mortality 
(HR 5.5), and a milder effect of an inverse association of being 
overweight (BMI > 30.5 kg/m2) with mortality (HR 0.28). While being 
underweight (BMI <17.5 kg/m2) was associated with an increased 
mortality risk, a higher BMI (>30.5 kg/m2) may be  considered 
protective. This study suggests a putative ‘obesity paradox’ pronounced 
during the first months after SCI and diminishing thereafter. 
Deciphering the mechanisms underlying these protective effects may 
provide new leads for improving the survival of normal and 
underweight SCI patients.

Adjusted Cox regression and spline curve analysis confirmed the 
robustness of the survival analysis. Additionally, the comparison of 
baseline characteristics among the BMI groups defined by CART did 
not provide evidence of obvious differences in the composition of the 
BMI groups that might otherwise explain the differential mortality 

risk. For example, despite having a slightly higher ISS, which is a 
predictor of mortality during acute care, the low-range BMI group 
comprised fewer cases of complete (AIS A) and cervical SCI compared 
with the mid-range group, both of which are associated with long-
term mortality (1). Together, the observed BMI effects were observed 
independently of either applying predefined BMI or CART categories 
and emphasized their relevance.

Other recent evidence analyzing multi-center data confirmed that 
mortality risk is altered in individuals with deviations from “normal” 
weight, both for patients being overweight and underweight (19). 
However, the studies have a fundamentally different design and thus 
are not directly comparable. While Wen et  al. focused on a time 
window ranging from 3 months to 1 year after SCI, this analysis also 
included an early time window (before 3 months) as well as a long-
term endpoint (up to 7.7 years). In addition, Wen et al. measured body 
weight and height during initial rehabilitation in patients up to 90 days 
post-injury, and our study used pre-injury or admission body weight 
and height. Thus, post-injury changes in body weight in the Wen et al. 
study could explain these divergent results. Furthermore, the 
analytical strategy was considerably different. Our study did not rely 
on the WHO criteria developed for able-bodied individuals as it may 
not be appropriate for individuals with SCI (23), but instead, we used 
a data-driven, unsupervised approach to identify BMI ranges 
associated with mortality risk. Notably, the BMI effects were stronger 
for the recursive partitioning-based categories compared with those 
based on the WHO definitions, both for underweight (HR 5.5 vs. 2.4) 
as well as for obese (HR 0.28 vs. 0.32) BMI categories. Moreover, the 
effects observed in the CART BMI categories were confirmed by the 

FIGURE 2

Analysis identified three distinct BMI groups using unbiased recursive partitioning (CART BMI categories). (A) A predictive model was developed by 
applying a classification and regression tree (CART) analysis. Survival was analyzed as an event following a binominal distribution [1  =  mortality/event 
(red), vs. 0  =  survival (green)]. Decision trees identified three cohorts that were most homogenous with regard to the probability of mortality. Survival 
was significantly lower in patients with a BMI  <  17.5  kg/m2 (red) compared with patients with a BMI  =  17.5  kg/m2 (Node 1 and 2). In the BMI cohort 
>17.5  kg/m2, patients with a BMI  >  30.5  kg/m2 demonstrated lower mortality compared with patients with a BMI  >  17.5–30.5  kg/m2 (Nodes 2 and 3). The 
overall number and percentage of deaths per group are listed and graphically illustrated in red vs. green (survival). (B) Linearized cumulative survival 
over time illustrated a protective effect of a higher BMI in a class (dose) dependent manner which occurs early and is long-lasting. Whereas, elevated 
mortality was observed in patients who were severely underweight (< 17.5  kg/m2, red, n  =  12), patients with a BMI of 17.5–30.5  kg/m2 (green, n  =  578) 
or  >  30.5  kg/m2 (blue, n  =  53); where there is a less negative slope that nearly plateaus after 3  years.
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cubic splines within the GAMs. In the unadjusted models, a significant 
association developed after 1 year to the final data point (7.7 years). In 
the adjusted models, the association between being underweight and 
having a greater risk for mortality as well as the protective effects of 
obesity were visible early on, from 1 month throughout the follow-up 
period of 7.7. years. Together, these results suggest that being 
underweight at admission is an extra risk factor compared to what 
would be expected by a later reduction of BMI only.

Aligned with the subtle protective effect of a higher BMI, its 
detection may be  more difficult and dependent on the array of 
biostatistical methods being applied. This is supported by ongoing 
debates in other acute central nervous system (CNS) injury areas such 
as stroke (28) while more recent high-quality multi-center studies 
identified an obesity paradox (8). After traumatic brain injury, an 
obesity-associated decrease in overall complications was observed; 
however, this did not result in reduced mortality (29). In chronic 
neurodegenerative disease, a high BMI demonstrated a protective 

effect regarding disease prevalence (12) and mortality (13). Patients 
who are malnourished have been considered at higher risk given their 
lowered metabolic reserve necessary to survive the complications they 
encounter after injuries such as SCI. For example, even mounting a 
fever to combat infection poses profound metabolic needs. Future 
studies using novel techniques are needed to link mortality with better 
measures of energy expenditure (30). In addition to energy 
expenditure in underweight individuals, skewed neuroendocrine 
profiles can trigger muscle wasting and sarcopenia after acute CNS 
injury (31) pointing to a multifaceted and so far poorly understood 
area regarding which elements are contributing to systemic 
pathophysiology that emerges following SCI.

In considering these results, it is important to acknowledge the 
limitations. This study is not population-based, and as a result, there 
is a potential bias with regard to the catchment area and the 
representation of different ethnic minorities or rural populations. 
We acknowledge that the missing data and use of self-reported data 
(e.g., height and weight) inherent to using registries may also 
introduce bias. Nevertheless, relevant differences between included 
and excluded patients were only observed for AIS. As the included 
patients comprised more AIS A patients, we do not expect a bias 
toward an underrepresentation of seriously injured patients in the 
analysis. Moreover, assessing BMI at admission only is a possible 

TABLE 2 Differential mortality risk for BMI groups identified by unbiased 
recursive partitioning (CART BMI groups).

Model Variables Hazard ratio
(95% CI)

p-value

Univariable BMI kg/m2 

17.5–30.5 (ref)

BMI kg/

m2 < 17.5

4.18 

(1.83–9.57)
< 0.001

BMI kg/

m2 > 30.5

0.33 

(0.10–1.03)
0.056

Multivariable Age (per 1 year 

increase)

1.07 

(1.06–1.08)
< 0.001

Sex (male) 3.12

(1.82–5.36)
< 0.001

Neurological 

level (C1 to T1)

4.84 

(2.52–9.28)
< 0.001

AIS A 3.496 

(1.83–6.68)
< 0.001

AIS B 2.30 

(1.11–4.77)
0.024

AIS C 1.68 

(0.84–3.35)
0.145

AIS D Ref

ISS (per 1 unit 

increase)

1.02 

(1.01–1.03)
0.003

BMI 17.5–

30.5 kg/m2 (ref)
Ref

BMI <17.5 kg/m2 5.55 

(2.34–13.17)
< 0.001

BMI >30.5 kg/m2 0.28 

(0.09–0.88)
0.029

Three groups of different body composition (BMI) were associated with a distinct mortality 
risk: (1) BMI 17.5–30.5 kg/m2 (reference), (2) BMI < 17.5 kg/m2, (3) BMI > 30.5 kg/m2. BMI 
group 2 had a 5.5-fold mortality risk compared to BMI group 1. By contrast, BMI group 3 
had a 28% lower mortality risk compared to BMI group 1. AIS, American Spinal Injury 
Association Impairment Scale; ISS, Injury Severity Score; BMI, Body Mass Index. CART 
Categories: BMI < 17.5 (N = 12); BMI 17.5–30.5 (N = 578); BMI > 30.5 (N = 53).

TABLE 3 Baseline characteristics stratified for the CART BMI groups.

BMI  <  17.5  kg/
m2

n  =  12

BMI 17.5–
30.5  kg/

m2

n  =  578

BMI  >  30.5  kg/
m2

n  =  53

Age (years), 

mean ± SD
47.25 ± 21.97 45.58 ± 19.68 47.11 ± 15.38

Sex, % male 

(n)
75% (9) 76.5% (442) 77.4% (41)

BMI kg/m2at 

admission, 

mean ± SD

14.47 ± 2.21 24.34 ± 2.91 34.1 ± 3.59

AIS at 

admission, % 

(n)

  A 33.3% (4) 47.8% (276) 47.2% (25)

  B 25% (3) 11.4% (66) 26.4% (14)

  C 25% (3) 20.4% (118) 17% (9)

  D 16.7% (2) 20.4% (118) 9.4% (5)

Cervical 

injury (C1 to 

T1), % (n)

50% (6) 64.9% (375) 52.8% (28)

CCI, 

mean ± SD
0.67 ± 1.23 0.41 ± 0.86 0.60 ± 1.17

ISS, 

mean ± SD
31.67 ± 17.7 27.67 ± 12.61 27.13 ± 10.72

Three body composition (BMI) groups were calculated based on CART: (1) BMI < 17.5 kg/
m2; (2) BMI 17.5–30.5 kg/m2, and (3) BMI > 30.5 kg/m2. The three groups differed by ASIA 
Impairment Scale (AIS), neurological level (C1-T1), Charlson Comorbidity Index (CCI), 
and Injury Severity Score (ISS). AIS, American Spinal Injury Association Impairment Scale; 
BMI, body mass index; CCI, Charlson Comorbidity Index; ISS, Injury Severity Score.
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limitation, as BMI is likely to change over time (32). BMI may 
underestimate the amount of body fat, especially in populations 
experiencing changes in their body composition, and future studies 
should explore changes in fat, lean tissue, and bone mineral content. 
It is also important to acknowledge the small sample size (n = 12) for 
the BMI < 17.5 kg/m2 group, and the reported effect estimates should 
be  interpreted cautiously. Future studies are needed with larger 
samples to validate our results.

While the limitations are inherent, studies investigating acute or 
neurodegenerative diseases had similar limitations, and the presented 
data represent the ‘best evidence available’ to substantiate the need for 
prospective multi-center studies to validate these findings. Systematic 
studies on changes in body composition after SCI and on treatment 
options are warranted to establish the pathophysiology and evidence-
driven management of nutritional status in these patients, particularly 
to determine what specific nutritional support might mitigate the risk 
of mortality in those who are ‘underweight’ when injured. While our 
article primarily addresses survival during the acute phase and the 
potentially protective effects of a high BMI, it is important to 
acknowledge the challenges with weight management and the serious 
health impacts of chronic SCI.

In conclusion, high BMI imposes a mild protective factor 
associated with lower mortality in individuals sustaining SCI, 
concordant with a modest “obesity paradox.” Moreover, being 
underweight is a highly significant risk factor for death during acute 
care and up to 7.7 years after SCI. The results suggest unknown 
neuro-metabolic pathways crucial for survival that are impaired in 
patients who are underweight. Identifying protective mechanisms 
and factors underlying the protective effectiveness of adiposity may 
lead to increased survival in low- to normal-weight patients early 
after SCI.
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