
TYPE Mini Review
PUBLISHED 02 November 2023
DOI 10.3389/fneur.2023.1269014

OPEN ACCESS

EDITED BY

Emanuele La Corte,
IRCCS Carlo Besta Neurological Institute
Foundation, Italy

REVIEWED BY

Nicola Montemurro,
Azienda Ospedaliera Universitaria Pisana, Italy
Elisa Colombo,
University Hospital Zürich, Switzerland

*CORRESPONDENCE

Fernando Hakim
f.hakimd@gmail.com

RECEIVED 28 July 2023
ACCEPTED 11 October 2023
PUBLISHED 02 November 2023

CITATION
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Augmented reality (AR) integrates computer-generated content and real-world
scenarios. Artificial intelligence’s continuous development has allowed AR
to be integrated into medicine. Neurosurgery has progressively introduced
image-guided technologies. Integration of AR into the operating room has
permitted a new perception of neurosurgical diseases, not only for neurosurgical
planning, patient positioning, and incision design but also for intraoperative
maneuvering and identification of critical neurovascular structures and tumor
boundaries. Implementing AR, virtual reality, and mixed reality has introduced
neurosurgeons into a new era of artificial interfaces. Meningiomas are the most
frequent primary benign tumors commonly related to paramount neurovascular
structures and bone landmarks. Integration of preoperative 3D reconstructions
used for surgical planning into AR can now be inserted into the microsurgical
field, injecting information into head-up displays andmicroscopes with integrated
head-up displays, aiming to guide neurosurgeons intraoperatively to prevent
potential injuries. This manuscript aims to provide a mini-review of the usage of
AR for intracranial meningioma resection.
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1. Introduction

Augmented reality (AR) has been defined as adding virtual components within the real

world (1). An AR system may provide virtual augmentation of vision, hearing, olfaction,

or gustation (2). The most remarkable aspect of AR is influencing mental mapping to

generate higher knowledge and improve decision-making processes (2). It is paramount

to differentiate AR from virtual reality (VR) and mixed reality (MR). VR is defined as a

technology or tool that allows exploration andmanipulation of computer-generated artificial

or real 3D multimedia sensory environments in real-time (3), while MR merges VR and

AR, merging real and virtual worlds (4). Meningioma surgery relies on achieving maximal

resection while improving neurological deficits and quality of life whenever possible. Many

efforts have been made to improve surgical outcomes to accomplish these goals. In the

last three decades, advancements in different technologies, including image-guided systems

and other intraoperative monitoring tools, have allowed safer procedures (5, 6). The rapid
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evolution of neuronavigation systems has also demonstrated the

capacity of computer-assisted technology to provide neurosurgeons

with a wide range of information, including neurovascular

relationships, tumor boundaries, and many others that, combined,

may help to improve intraoperative decisions. Some selected

cases may be more favored, like reoperations or those cases with

anatomical variations (7), where the identification of arteries and

nerves becomes more challenging. The implementation of AR has

been gaining place given the rising availability of microscopes with

integrated head-up displays (HUDs) as well as the current research

on head-mounted displays (HMDs).

In the past few years, AR has been demonstrated to be

helpful for resecting both brain (8) and skull base tumors (7).

The most important feature that makes AR advantageous is its

capacity to provide an excellent anatomical understanding of the

pathology and surrounding structures (8). AR has been proposed

for meningioma surgery, aiming to facilitate surgical orientation,

especially for skull basemeningiomas (9). The following indications

have been used for AR in intracranial meningiomas: invasive

tumors with encasement of the internal carotid artery and the

middle cerebral artery, tumors in close relationship to the optic

chiasm, giant tumors (>10 cc), or recurrent tumors (9). Even

though a few case series (9, 10) and case reports (11, 12),

have shown the benefits of this technology for meningioma

resection. This mini-review briefly enhances the most relevant

information in the usage of AR for meningioma resection.

Highlighting how the integration of AR into the operating room

has permitted a new perception of neurosurgical diseases, not

only for neurosurgical planning, patient positioning, and incision

design but also for intraoperative maneuvering and identification

of critical neurovascular structures and tumor boundaries. It also

resumes current limitations and research gaps given the rapid

advances in this topic and the constant new information of

AR applied for meningioma surgery. Also, potential remarkable

developments in the field are discussed.

2. Review

2.1. Microscope-base AR setup

All steps for setting up AR for meningioma resection do not

change compared to other brain lesions. The information injected

depends on the capacity of the surgical planning software to

integrate not only vessels but also diffusion tensor imaging or other

remarkable neuroimaging data. The HUDs of the microscope are

used for AR support. Injection of information for AR interface

requires advanced processing from 3D reconstruction software.

Checking the calibration of AR is performed by centering the

microscope above the divot of the registration array. Thus, the

optical outline and the AR visualization of the reference array can

be adjusted, and the 3D reconstructed objects can also be visualized

(preferably semitransparent to avoid obstruction of visual field

visualization) (9). All operating room setup is demonstrated in

Figure 1.

Abbreviations: AR, augmented reality; HUD, head-up display; HMD, head-

mounted display; AI, artificial intelligence.

2.2. Reports of AR for meningioma
resection

The integration of AR for tumor resection, including

meningiomas resection, and mainly skull-base located

meningiomas, has been pivotal for developing the technique

(13). In 2010, Low et al. (14) presented the first cohort evaluating

AR for the planning and navigating parasagittal, falcine, and

convexity meningiomas. In this cohort, which included five

patients, gross-total resection was achieved in 80% of the cases, and

all patients returned to normal activities without complications.

In this work, the authors highlight the use of technology to gain

a better spatial appreciation, particularly around the venous

anatomy. In addition, some concerns regarding the accuracy of the

technique were also addressed (14). Later, in 2020, Lave et al. (11)

published the first systematic review involving AR in intracranial

meningiomas. The authors discussed eight studies, accounting

for 20 parasagittal, falcine, and skull base meningiomas cases.

The results showed that AR is beneficial for treating skull-base

pathologies due to its visuospatial advantage, avoiding vascular

injuries due to the rich anatomy landmarks in the skull-base, and

enhancing the accuracy of the technique (11). Later, Pojskic et al.

(9) presented a more extensive cross-sectional study including 39

patients, evaluating specifically skull-base meningioma resection.

In this cohort, GTR was achieved in 67%, which is compatible

with previous reports for meningioma resection in this location

(without using AR) with rates of 63% for GTR (15). The authors

also highlight the importance of including anatomical landmarks

to increase the accuracy of the AR reconstruction (9).

The field also advanced toward minimally invasive surgeries.

Jean et al. reported a video article using AR templates for a

minimally invasive transorbital approach for intradural tumors,

including meningiomas (16). This publication explored new

utilities of the technique for more complex approaches with

positive results; here, the authors highlighted the utility of

anatomical landmarks (particularly bony landmarks) and an

appropriate template to guide the drill toward the target (16).

2.3. Evolution of AR applied to meningioma
resection

Oncologic neurosurgery is a highly complex field that has

evolved by integrating various technologies to provide better

patient outcomes. The first prototype of AR was designed in the

1960s, but only in the 1990s and 2000’s that the interest in this

technology increased, particularly in the medical field (17, 18). In

the beginning, the use of AR was based on studies in other areas,

such as the use of HUDs in maxillofacial surgery or pointer devices

in stereotactic neurosurgery. It was not until 1999 that the first

records of the use of AR in microscope-assisted interventions were

published (19). AR has been extensively utilized across various

neurosurgical subspecialties, particularly in enhancing the safety

and precision of tumor resections (20). In 2010, the Dextroscope,

an AR device, was described for the rapid and accurate resection

of meningiomas (14). Since then, it has sought to update its

applications with the integration of other devices such as tablets

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1269014
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
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FIGURE 1

Microscope-based AR setup.

(21), HUDs/HMDs (22, 23), smartphones (24), and the integration

of HUDs into the microscope (12). Finally, in 2021, Montemurro

et al. (25) tested the precision of a wearable augmented reality

platform (Video and Optical See-Through Augmented Reality

Surgical System-VOSTAR) for parasagittal and convexity in plaque

meningiomas bone-flap performance using a patient-specific 3D-

printed model simulating a case. The researchers found that

with AR, the simulation of the bone flap, presented an error of

less than ±1 mm, also improving the depth-perception of the

scene. These findings suggest the potential of AR to increase

precision (25). All these technological advances have demonstrated

considerable utility in different domains, such as preoperative

planning, intraoperative navigation through real-time feedback,

and education (20).

2.4. Current limitations and learned lessons

Intraoperative AR in micro neurosurgery depends on

integrating the neuroimaging processing software into the
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FIGURE 2

Resection of tuberculum sellae meningioma aided by intraoperative microscope integrated augmented reality. (A, D) Pre- and (B, E) postoperative
enhanced MRI demonstrating a gross-total resection of a tuberculum sellae meningioma. (C) 3D reconstruction of the tumor, optic nerves, and
arteries. (F) Intraoperative microsurgical picture using the microscope with integrated head-up displays. Volumetric 3D reconstruction of the tumor
as well as of the optic apparatus are observed and displayed over the stereoscopic view of the microscope.

hardware of both the microscope and the neuronavigation

system. Currently, few systems with integrated HUDs allow

this integration and adequate projection of images. The cost

of these devices is considerably high, which undoubtedly poses

a clear access limitation, even more so without demonstrating

their actual usefulness. Regarding the operating room setup,

the times can initially be increased up to ∼30min in the

first cases, and progressively reduced to ∼12min. In order to

improve workflow, the same surgical team must be trained in its

implementation. The quality of the projected images will depend

on the quality of their acquisition. To maximize the benefits

of AR, we always suggest supplementing with other imaging

modalities. We have always performed image fusion with CT

and time-of-fly (TOF) magnetic resonance imaging for skull base

lesions, achieving adequate vascular reconstructions. During the

AR projection, the surgeon must adapt to the image overlay.

However, the system allows easy removal of the projection. Thus,

the surgeon can determine when the projected image will be

most helpful.

The position of the microscope is one of the most relevant

references for proper navigation, and the microscope optics

determines the depth of the focus point (focal distance). This

is a pivotal aspect, given the adjustments required during

surgery that may modify the projected image. The images of

AR are projected from the neuronavigation system and have

the same limitations as this technology. We also recommend

looking for submillimeter precision during neuronavigation

registration as much as possible to improve AR accuracy, as

the information of regular volumetric CT/MR images and 3D

segmentation reconstructions will be integrated into one single

microscopical surgical view (Figure 2). It is important to remark

that brain shift may be present, especially for intraparenchymal

tumors and, to a lesser degree, for extra-axial skull base

lesions. AR and its intraoperative use have become a tool that

optimizes all available intraoperative imaging systems. It has

allowed us to know the most precise location of structures

not visible in the surgical field and the safe boundaries for

surgical resection.

2.5. Learning curve and beginning process

Neurosurgeons face the challenge of learning, planning, and

performing increasingly complex surgical procedures with a

narrow window for error (26). AR has demonstrated the potential

to increase accuracy in procedures like external ventricular

drain (EVD) positioning (27, 28), percutaneous rhizotomy for

trigeminal neuralgia (29, 30), and white matter tract dissection

(31, 32). Starting with EVD placement, Van Gestel et al. used

a cohort of sixteen medical students. After receiving a short

introduction, the participants were randomly allocated to either

the freehand or AR group. Each student had to perform at
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least four drains in a phantom-based head before receiving a

standardized training session and four drains after the training.

Results showed that, compared to the freehand technique, AR

guidance for EVD placement yielded a higher outcome accuracy

and quality in untrained individuals (27). A finding reinforced by

Rossito et al. (33) in a cohort of 21 students and eight residents.

Later, Bounajem et al. (28) showed in cadaveric models with

individuals with different levels of training (medical students,

residents, and attendings) that accuracy was improved with AR

use at various levels depending on the training experience. AR

has also been used in complex skull base cases. One example

is the management of trigeminal neuralgia, demonstrated by

Berger et al. (29), who showed that AR might enhance the

learning curve, decreasing the time and radiation exposure

in a percutaneous rhizotomy. These findings show different

levels of complexity, where accuracy increased, regardless of the

level of training, still with room for improvement in various

interventions. The information for meningioma resection is

scarce, further investigation on training with 3D non-biological

models with the reconstruction of vessels and nerves may lead

us to a better understanding of the curve before using it in

the OR.

3. Discussion

Despite being a benign tumor in most cases, meningiomas

remain a neurosurgical challenge, given their close relationships

to crucial neurovascular structures, especially for those in the

cranial base (34). Multiple efforts in designing strategies to

prevent intraoperative injuries and obtain successful outcomes

have been performed. The continuous development of tools

like the intraoperative electrophysiological (35) and vascular

monitoring (36) as well as image-guided systems (5, 9) have

dramatically changed surgical approaches for safer resection.

The introduction of virtual reality (37, 38) and AR (9, 39)

has facilitated the 3D understanding of neurovascular anatomy

and tumor boundaries. AR provides an excellent anatomical

understanding of the pathology and surrounding structures (8),

a feature that may help surgeons to facilitate tumor dissection

and awareness of the location of vessels like the internal carotid

arteries for tuberculum sellae meningiomas (16), superior sagittal

sinus for parasagittal meningiomas (14), or vertebral and basilar

arteries for petroclival, and foramen magnum meningiomas (39).

A special emphasis must be done for the previously mentioned

petroclival meningiomas, that due to their location are in closer

relationship with multiple neurovascular structures (including

the Internal Carotid Artery). In this case, AR is valuable

alternative (39).

The literature and evidence remain scarce,

and intraoperative AR indications remain

in research.

Depuration of indications and real pros and cons are necessary

to understand the benefits of its use. For now, it is mandatory

to understand the basic principles of AR, introduce technology

cautiously, given the progressive learning curve, and be aware of the

limitations and possible errors associated with new technologies.

At some point, the advancements in artificial intelligence may

focus on AR into real benefits for a safer procedure. In the

meantime, research is necessary, and a comparison of this

technology with other image-guided tools is also necessary. AR and

other technologies will never replace knowledge of microsurgical

anatomy, nor the surgical skills required for adequate resection

(de-vascularization, detachment, de-bulking, dissection) (34). Still,

they may guide the surgeon into the anatomy of each patient

in an individual case-by-case manner. Apparent benefits are

focused on awareness of neurovascular structures (especially

for cases with impaired anatomy like reoperations), improving

magnification and awareness of tumor boundaries to prevent

brain retraction, and a constant visualization of the surgical

planning in the surgical field. For residents and trainees, AR

provides an important approach to difficult cases. As suggested

by Montemurro et al. (25), using AR for training, and surgical

planning, in cadaveric or 3D printed models is a potential skill

that can improve the performance, and have a positive impact

in the learning curves. Other possible benefits would be the

capacity to provide intraoperative information on the tumoral

texture and consistency, and including vital signs and important

data in real time (18); however, this remains an exciting research

gap. The next step may be based on mixed reality, integrating

different scenarios during the procedure, e.g., simulating brain

retraction to predict adequate tumor exposure during surgery, like

those proposed for intelligent vehicles (40). Integrating robotic

minimally invasive surgery and constant intraoperative updates

of the neuronavigation while using high-resolution cameras (40)

and ultrasound (41) will provide real-time information without

using intraoperative MRI scanners or other robust and more

expensive systems.

4. Conclusions

Augmented reality (AR) integration in neurosurgery has shown

promise in enhancing surgeons’ awareness of critical neurovascular

structures, facilitating tumor dissection, and improving overall

surgical outcomes. While the literature on intraoperative AR

remains limited, ongoing research has shown, along with

other emerging technologies, that it can serve as a valuable

tool to guide surgeons on an individual, case-by-case basis.

There will always be a need to improve meningioma surgical

results, and as advancements in artificial intelligence continue,

integrating AR and mixed reality scenarios into neurosurgical

procedures holds the promise of safer and more effective

meningioma resections.
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