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Introduction: Vestibular schwannoma (VS) is an intracranial tumor that arises on 
the vestibular branch of cranial nerve VIII and typically presents with sensorineural 
hearing loss (SNHL). The mechanisms of this SNHL are postulated to involve 
alterations in the inner ear’s microenvironment mediated by the genetic cargo 
of VS-secreted extracellular vesicles (EVs). We  aimed to identify the EV cargo 
associated with poor hearing and determine whether its delivery caused hearing 
loss and cochlear damage in a mouse model in vivo.

Methods: VS tissue was collected from routinely resected tumors of patients 
with good (VS-GH) or poor (VS-PH) pre-surgical hearing measured via pure-
tone average and word recognition scores. Next-generation sequencing was 
performed on RNA isolated from cultured primary human VS cells and EVs from 
VS-conditioned media, stratified by patients’ hearing ability. microRNA expression 
levels were compared between VS-PH and VS-GH samples to identify differentially 
expressed candidates for packaging into a synthetic adeno-associated viral 
vector (Anc80L65). Viral vectors containing candidate microRNA were infused to 
the semicircular canals of mice to evaluate the effects on hearing, including after 
noise exposure.

Results: Differentially expressed microRNAs included hsa-miR-431-5p (enriched 
in VS-PH) and hsa-miR-192-5p (enriched in VS-GH). Newborn mice receiving 
intracochlear injection of viral vectors over-expressing hsa-miR-431-GFP, hsa-
miR-192-GFP, or GFP only (control) had similar hearing 6  weeks post-injection. 
However, after acoustic trauma, the miR-431 group displayed significantly worse 
hearing, and greater loss of synaptic ribbons per inner hair cell in the acoustically 
traumatized cochlear region than the control group.

Conclusion: Our results suggest that miR-431 contributes to VS-associated 
hearing loss following cochlear stress. Further investigation is needed to 
determine whether miR-431 is a potential therapeutic target for SNHL.
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1. Introduction

Vestibular schwannoma (VS), the fourth most common 
intracranial tumor, typically arises from the vestibular portion of 
cranial nerve VIII and presents with sensorineural hearing loss in 95% 
of affected patients (1). Although VS is not malignant, it is associated 
with substantial morbidity because it can also cause tinnitus, dizziness, 
facial paralysis, and other cranial neuropathies (1). VS’s unchecked 
expansion into the cerebellopontine angle and associated brainstem 
compression may become life-threatening (2).

The etiology of VS-induced SNHL was long believed to 
be compression of the adjacent auditory nerve by the VS tumor, but 
multiple studies including diverse cohorts have failed to find a 
correlation between sporadic VS tumor size and the degree of a 
patient’s SNHL (3–8), and have observed that progressive SNHL may 
occur without VS growth (4). Post-mortem examinations of untreated 
VS patients have revealed cochlear damage ipsilateral to the tumor, 
including loss of sensory inner hair cells (IHC), outer hair cells 
(OHC), and innervating spiral ganglion neurons (SGNs) in 75, 88, and 
85% of patients, respectively (6, 7), suggesting that cochlear damage 
contributes to VS-induced hearing loss. Intriguingly, patients with VS 
also often experience declines in hearing ability and cochlear 
innervation contralateral to the tumor where auditory nerve 
compression cannot occur (9, 10).

There is emerging evidence of differential gene expression and 
protein production in VS tumors from patients with preserved 
auditory function [good hearing (GH)] and those with severe-to-
profound SNHL [poor hearing (PH)] (11). For example, mouse 
cochlear explants exposed to human VS-PH tumor secretions 
displayed hair cell loss and neuronal fiber disorganization that were 
positively associated with the VS donors’ degree of SNHL, while 
explants exposed to VS-GH tumor secretions displayed no damage or 
solely neuronal fiber disorganization (11). Similarly, a transcriptomic 
analysis of human VS tumors and secretions identified differential 
expression and proteolytic activity of matrixmetalloprotease 14 
(MMP-14) in tumors associated with SNHL (12). The application of 
MMP-14 to mouse cochlear explants led to damage to SGNs, including 
their ribbon synapses with hair cells. Additionally, proteins related to 
the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) 
inflammasome (i.e., NLRP3 and interleukin [IL]-1β) are preferentially 
present in the tumor specimens of VS-PH patients (13), while 
fibroblast growth factor 2 (FGF-2) is secreted at higher levels by VSs 
from patients with GH than PH (14). Thus, the contributions of VS to 
SNHL are currently presumed to be multi-factorial and to involve 
tumor-induced changes to the inner ear’s microenvironment, cellular 
viability, and gene expression.

A potential mechanism facilitating VSs’ negative impact to 
hearing is the secretion of exosomes, such as extracellular vesicles 
(EVs), which contain ototoxic cargo. EVs are lipid-membrane vesicles 
measuring ~30–200 nm and are released into the extracellular space 
by most cell types, including normal and neoplastic cells (15). They 
are involved in a diverse range of biological processes but primarily 
function to facilitate cell–cell communication by transferring their 
cargo of DNA, RNA, and proteins from one cell to another, locally or 
systemically (16). The RNA within EVs can be functional and the 
delivered micro RNA (miRNA) can regulate protein translation in 
target cells, including in the inner ear during development, response 
to acoustic trauma and inflammation, and aging (17, 18). Importantly, 

EVs have been implicated in immune signaling, tumorigenesis, and 
metastasis in cancer, whereby the uptake of tumor-derived EVs can 
alter a cell’s phenotype to cancerous by prompting or inhibiting gene 
transcription (16, 19–23).

Using a dual culture system, we have previously reported that EVs 
are produced by VSs and can be internalized by cochlear cells in vitro, 
with varying effects depending on the hearing status of the VS donor 
(24). Specifically, when isolated and fluorescently labeled secreted EVs 
from primary human VS cells from VS-GH or VS-PH tumors were 
applied to mouse cochlear explants, neuronal disorganization and 
neuronal apoptosis was only observed in explants exposed to EVs 
from VS-PH patients (24). These findings motivated the present series 
of experiments aimed at identifying the VS-derived EV cargo 
prompting cochlear damage and determining whether its delivery 
would cause hearing loss and cochlear damage in vivo. To this end, 
we collected media from cultured primary human VS cells, stratified 
by the donor patients’ preoperative hearing ability, and isolated EVs 
from the media to conduct miRNA sequencing of their contents. 
Following the identification of differentially expressed miRNA in the 
EVs from VS-GH and VS-PH patients, we designed novel miRNA 
viral constructs using Anc80L65, an ancestral adeno-associated virus 
(AAV), for candidate testing in mice to determine their effects on 
hearing sensitivity and cochlear cell integrity in vivo, including 
following noise exposure.

2. Materials and methods

2.1. Human VS sample collection

Patients presenting at Massachusetts Eye and Ear (MEE) in 
Boston, MA for VS resection between April 25, 2014 and October 10, 
2014 were included in the study (N = 13). Patients’ age at resection, 
sex, tumor volume, and pre-surgical bilateral audiometric thresholds 
at six standard frequencies (0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 kHz), and 
bilateral word recognition (WR) scores were recorded from patients’ 
medical files. Once the VS was removed, the specimen was transported 
from the operating room to the laboratory on ice. Primary culture was 
then performed as we have previously described (24).

2.2. Isolation of EVs

The primary human VS cells were cultured for 7 days. The culture 
medium was then replaced with a culture medium supplemented with 
5% EV-depleted fetal bovine serum (FBS; Gibco #16140–071, Thermo 
Fisher, Waltham, MA, United  States), purified by high-speed 
centrifugation to deplete EVs from the FBS. After 48 h, conditioned 
media were collected and centrifuged for 10 min at 300 g, then 10 min 
at 2000 g at 4°C. The supernatant was filtered through a 0.8 μm filter 
(Millipore; Burlington, MA, United  States). EVs were pelleted by 
centrifugation at 100,000 g for 80 min at 4°C in a Type 70 Ti Rotor 
(Beckman Coulter, Brea, CA, United States).

The particle distributions (EVs) from the cells were measured 
using a Nanosight LM20 machine (Malvern Panalytical, Malvern, 
United  Kingdom). A human NF2 VS-derived cell line (HEI-193) 
immortalized with human papilloma virus E6-7 genes was acquired 
from House Ear Institute (Los Angeles, CA, United States) (25) and 
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used as a control in the particle distribution measurement 
(Supplementary Figure S1).

2.3. Extraction of RNA from EVs and cells

After centrifugation, the EV pellet was submerged in 4 μL of 
rDNAase 1 (Life Technologies AM2235; Thermo Fisher) for 1 min and 
then incubated in 8 μL of Superasin (an Rnase inhibitor; Life 
Technologies AM2694; Thermo Fisher) for 4 min at room temperature 
(RT) covered in paraffin. The pellet was resuspended in 700 μL of lysis 
buffer (QIAzol Lysis Reagent; Qiagen, Germantown, MD, 
United  States) by pipetting. After the Eppendorf tubes were left 
3–5 min at RT, 140 μL chloroform was added and mixed by shaking 
for 15 s, and the phases were allowed to separate for 2–3 min at 
RT. This process was repeated twice. The tubes were centrifuged for 
15 min at 12,000 g at 4°C. The upper aqueous phase was transferred to 
a new tube and the volume recorded; 1.5x volumes of 100% ethanol 
were added and mixed thoroughly by pipetting and vortexing. 
Approximately 500 μL of the sample was immediately transferred to 
Rneasy Mini spin columns (miRNeasy Kit; Qiagen) and centrifuged 
with serial applications of washing buffers according to the 
manufacturer’s instructions. The spin column was transferred to a new 
1.5 mL collection tube and rinsed with 32 μL 95°C Rnase-free water 
for a final elution volume of 30 μL (minus the column volume). The 
sample was centrifuged for 1 min at 100 g to slowly allow the elution 
solvent to penetrate the column and then again at 8500 g for 1 min to 
elute the RNA. This process was repeated with an additional 32 μL 
95°C Rnase-free water added to the spin column membrane, in the 
same collection tube.

For the extraction of RNA from VS cells, after the medium was 
aspirated and the wells were washed with 1 mL of PBS, 200 μL of 0.25% 
Trypsin–EDTA (Gibco # 25200–056; Thermo Fisher) was added and 
allowed to sit for 5 min at 37°C. New media (800 μL/well) was added 
and mixed by pipetting, then transferred to 1.5 mL sterile Eppendorf 
tubes. The tubes were centrifuged at 300 g for 2 min at RT, the 
supernatant was aspirated, and 1 mL PBS was mixed with the pellet. 
Samples were centrifuged again at 300 g for 5 min at RT and 
supernatant removed. At this point, the procedures are the same as 
those described above, beginning with the application of QIAzol 
Lysis Reagent.

2.4. Verification of RNA quality

The quantitative and qualitative analyses of the extracted RNA 
were performed using the NanoDrop spectrophotometer 2000 
(Thermo-Scientific) and Agilent Bioanalyzer 2,100, using the RNA 
6000 Pico kit (Agilent; Santa Clara, CA, United States) for RNA from 
EVs and the RNA 6000 Nano kit (Agilent) for cellular RNA.

2.5. sRNAseq by next-generation 
sequencing and examination of differential 
expression

All samples were processed using the sRNAseq pipeline developed 
by the bcbio-nextgen project (26). Raw reads were examined for 

quality issues using Fast QC to ensure library generation and 
sequencing were suitable for analysis (27). The 3′ end adapters were 
trimmed from reads using cutadapt (28), and trimmed reads were 
aligned to miRbase (29) using SeqBuster (30). miRNA counting was 
performed with the isomiRs package (31), eliminating any sequence 
with only 1 count. In a second round of filtering to remove low 
expressors, a minimum of 2 replicates per condition in every case were 
required to have ≥3 counts for a given miRNA. Normalization and 
evaluation of differential expression at the miRNA level were 
performed with DESeq2 (32).

2.6. Construction of viral vectors

Viral vectors were synthesized by the Gene Transfer Vector Core 
at MEE or the Boston Children’s Hospital Viral Core, as previously 
published (33). Vectors were sterilized with a 0.22 μm filter and 
buffered in Dulbecco’s phosphate-buffered saline with 0.001% 
Pluronic F68 (Gibco #24040032; Thermo Fisher). Aliquots were 
diluted to an equal concentration (2.84×1012 GC/mL) and stored 
at −80° C.

2.7. Posterior semicircular canal injection 
of viral vectors in vivo (mice)

CBA/CaJ (strain #000654) breeding pairs were purchased from 
Jackson Laboratories (Bar Harbor, ME, United States) and bred at 
MEE. Neonatal pups were anesthetized by hypothermia and then kept 
on an ice pack during the procedure. A small incision was made in the 
left post-auricular region, and the sternocleidomastoid muscle 
identified. Muscle and soft tissue covering the posterior semicircular 
canal were gently removed with fine forceps. The semicircular canal 
wall was punctured with a beveled 35G Hamilton syringe (Hamilton; 
Reno, NV, United States), the tip was visualized in the canal, and 
1.5 μL vector solution was slowly injected over 3 min. The syringe was 
removed, and the surgical incision closed with 7–0 Ethilon surgical 
suture (Eticon Inc.; Raritan, NJ, United States). Animals were marked 
by paw tattoos, allowed to recover on a heating pad, and returned to 
their litter.

2.8. Audiological testing

Cochlear function was evaluated in the mice by measuring 
auditory brainstem responses (ABRs) and distortion product 
otoacoustic emissions (DPOAEs) 2–4 days before noise exposure at 
6 weeks of age. Two weeks after noise exposure, cochlear function was 
re-assessed by ABR and DPOAE, the animals were sacrificed, and 
their cochleae were collected for histological analysis. ABR and 
DPOAE were recorded as previously described (34); mice were 
anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) 
administered intraperitoneally during testing. Cochlear function 
testing and data quantification were performed by the researcher 
blinded to the treatment group.

ABR responses to 5 ms tone pips were measured between 
subdermal electrodes (positive behind the ipsilateral pinna, negative 
at the vertex, and ground at the tail), amplified 10,000 times, and 
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filtered (0.3–3.0 kHz). For each frequency and sound level, 512 
responses were recorded and averaged using custom LabVIEW data-
acquisition software run on a PXI chassis (National Instruments 
Corp., Austin, TX, United States). The ABR waveforms were stacked 
from lowest to highest SPL and visually inspected to define threshold 
as the first level at which a repeatable wave I was detected. ABR data 
were acquired in 5-dB intensity increments below threshold and at 
5- to 10-dB increments above threshold.

For DPOAE measurement, a custom acoustic system was used 
consisting of two miniature earphones serving as sound sources 
(CDMG150 008-03A, CUI) and a microphone (FG-23329-PO7; 
Knowles, Itasca, IL, United  States) coupled to a probe tube to 
measure sound pressure near the eardrum. DPOAEs were 
measured as ear canal pressure in response to two tones presented 
into the ear canal (f1 and f2, with f2/f1 = 1.2) at half octave steps, 
from f2 = 5.66–45.25 kHz, and in 5-dB intensity increments from 
15 to 80 dB SPL.

2.9. Noise exposure

Mice were exposed to octave-band noise (8–16 kHz) for 2 h at 
100 dB SPL in a reverberant, acoustically transparent wire box on a 
rotating platform. Animals were awake and unrestrained during noise 
exposure. The noise was created digitally using a fifth-order 
Butterworth filter, amplified through a power amplifier (Crown D75A; 
Crown Audio, Los Angeles, CA, United States), and delivered by a 
loudspeaker (JBL2446H; JBL, Los Angeles, CA, United States) coupled 
to an exponential horn in the roof of the box. Exposure levels were 
measured in each cage with a 0.25-inch Brüel and Kjaer (Nærum, 
Denmark) condenser microphone.

2.10. Preparation of cochlear whole 
mounts

Two weeks after noise exposure, the mice were deeply 
anesthetized, intracardially perfused with 4% paraformaldehyde (PFA, 
#P6148; Sigma-Aldrich, St. Louis, MO, United  States), and both 
cochleae were extracted. The round and oval window membranes 
were punctured and gently perfused with PFA. Cochleae were post-
fixed for 2 h in 4% PFA and decalcified in 0.12 M EDTA (#17892, 
Thermo Fisher) for 48–72 h. The cochleae were microdissected into 4 
to 6 separate pieces to prepare whole mounts of the organ of Corti. 
Pieces were incubated in 30% sucrose for 15 min at room temperature 
and then frozen at −80° C to permeabilize the tissue. The pieces were 
blocked with 5% normal horse serum (NHS; #16050130, Thermo 
Fisher) and 1% Triton X-100 (#NC9903183; Integra Chemical, Kent, 
WA, United  States) in PBS (#10010023, Thermo Fisher) for 
30 min at RT.

2.11. Immunohistochemistry and 
quantitative confocal immunofluorescence 
microscopy

Cochlear samples were immunostained overnight at RT with 
rabbit anti-myosin 7A (1:200, #25–6,790, Proteus Biosciences, 

Ramona, CA, United States) to label hair cells and mouse (IgG1) 
anti-CtBP2 (C-terminal binding protein) at 1:500 (#612044, BD 
Transduction Labs, CA, United  States) to label pre-synaptic 
ribbons, diluted in 1% NHS (#16050130, Thermo Fisher) and 
0.3% Triton X-100. After washing in PBS three times, cochlear 
pieces were incubated in Alexa Fluor 647-conjugated goat anti-
rabbit antibody at 1:1000 (#A-21245, Thermo Fisher) and Alexa 
Fluor 568-conjugated goat anti-mouse (IgG1) at 1:1000 (#21124, 
Thermo Fisher) twice for 1 hour. Nuclei were stained with 
Hoechst 33342 at 1:10000 (#62249, Thermo Fisher) and the 
specimen washed three times in PBS and mounted with 
VECTASHIELD mounting medium (Vector Labs, Newark, CA, 
United States). A cochlear frequency map was created by imaging 
specimens at low magnification (10X objective) and then applying 
a custom ImageJ plug-in developed at MEE.1 Cochlear whole 
mounts were subsequently imaged with a confocal microscope 
(Zeiss, Jena, Germany; LSM 880 confocal microscope) and a 
glycerol-immersion 63X objective and 2X digital zoom at 
log-spaced cochlear frequency regions corresponding to 8, 16, 
and 32 kHz.

2.12. Ethics statements

Clinical data and samples were collected and used according to a 
protocol approved by the institutional review boards of MEE 
(#196424, approved December 10, 2013) and all procedures were in 
accordance with the Helsinki Declaration of 1975. All patients 
provided informed consent prior to study inclusion. Patients did not 
receive compensation for their participation in the study. The 
experimental procedures in mice were approved by the Institutional 
Animal Care and Use Committee of MEE (ACC# 15–003) and 
conducted in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals.

3. Results

3.1. VS specimens stratified by donors’ 
pre-surgical hearing

VS tumor samples from 13 people with sporadic VS were 
collected during indicated tumor resection surgeries (Figure 1). 
Patients’ age at resection, sex, tumor volume and dimensions, and 
pre-surgical bilateral audiometric thresholds [pure tone average 
(PTA)] and WR scores were recorded (Table  1). Patients were 
categorized as having PH or GH based on their pre-surgical PTA 
threshold and WR score, where PH was defined as PTA >30 dB 
and a WR score of <70% according to the American Academy of 
Otolaryngology’s classification system (35). Among the 13 
included patients, 6 were categorized as VS-GH and 7 were 
categorized as VS-PH.

1 https://www.masseyeandear.org/research/otolaryngology/eaton-peabody-

laboratories/histology-core
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3.2. Isolation of EVs from VS 
cell-conditioned media

The VS-GH and VS-PH specimens were separately cultured in 
EV-depleted culture media for 48 h to generate conditioned media 
as previously described (24). Primary VS cell cultures are 
representative of their parent tumors, and this method provided the 
ability to study purified tumor cells and their EVs (24). EVs were 
isolated from VS cell-conditioned media using ultracentrifugation, 
which was verified by transmission electron microscopy 
(Figure 2A). The relative concentrations and size distributions of 
EVs were similar across primary VS cell cultures and a NF2 
VS-derived immortalized cell line (HEI-193) used as a control, with 
most cell-derived EVs measuring ~100–200 nm (Figure  2B; 
Supplementary Figure S1).

3.3. Extraction of small RNA (sRNA) from EVs

Total RNA (including sRNA) was extracted from EVs isolated 
from VS cell-conditioned media and parent cells and the quality 
assessed with a Bioanalyzer (see example in Figure 2C). Exosomal 
sRNA was identified as measuring 200–300 nucleotides (nt) with the 
Bioanalyzer, as described in the Methods. The Bioanalyzer provides 
an RNA integrity number (RIN), an objective metric of total RNA 
quality ranging from 10 (highly intact) to 1 (completely degraded). 
The concentrations and RINs of the individual RNA samples are listed 
in Table 1; samples below the quality threshold of RIN ≥ 8.0 were 

excluded from the analyses. EV sRNA was isolated from all samples 
while VS cell-derived sRNA was obtained from 4 VS-PH samples and 
5 VS-GH samples (Figure 2D; Table 1).

3.4. Next-generation sequencing of sRNA 
and candidate miRNA

sRNA meeting the RIN quality threshold was sequenced using 
next-generation sequencing (NGS) (Illumina HiSeq2500 platform), 
and the miRNA dispersion plotted by the mean of the normalized 
counts and analyzed as described in the Methods (Figure 2E). A total 
of 395 miRNAs were detected in EVs and 564 miRNAs were detected 
in VS cells (Supplementary Tables S1, S2). To identify EV-delivered 
cargo that may be  mediating VS-induced SNHL, we  sequenced 
miRNA from EVs and VS cells classified according to the donor 
patients’ levels of hearing loss (GH or PH). The expression levels of 
EV- and VS cell-derived miRNA were then compared between 
VS-GH and VS-PH samples to categorize miRNA as being prevalent 
in VS-GH or VS-PH and identify significant differences across 
samples (Figure 2F). We identified three miRNAs with significantly 
different expression in VS-PH vs. VS-GH tumor cells: hsa-miR-
6798-3p (log2 fold change [FC]: 2.39), hsa-miR-192-5p (log2 FC: 
−0.66), and hsa-miR-431-5p (log2 FC: 1.12; all adjusted p < 0.01) 
(Figures  3A,B and table inset). hsa-miR-6798-3p and hsa-miR-
431-5p were enriched in VS-PH cells while hsa-miR-192-5p was 
enriched in VS-GH cells (Figure 3C). No miRNAs were differentially 
expressed in EVs.

FIGURE 1

Experimental overview. ABR, auditory brainstem response; dB, decibels; DPOAE, distortion product otoacoustic emissions; EV, extracellular vesicles; 
GFP, green fluorescent protein; GH, good hearing; h, hour; IHC, inner hair cell; kHz, kilohertz; miRNA, micro RNA; PH, poor hearing; PTA, pure tone 
average; RNAseq, RNA sequencing; qcIHC, quantitative confocal immunohistochemistry; SC, schwannoma cells; sRNA, short RNA; VS, vestibular 
schwannoma; WRS, word recognition score. Figure made using Biorender (www.biorender.com).
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3.5. Characterization of miRNA candidates 
in vivo

To test the effect of the candidate miRNA on the mammalian 
inner ear in vivo, two AAV vectors associated with PH and GH, 
respectively, were constructed: hsa-miR-431-overexpressing AAV2/
Anc80L65.AAP.U6.mir413.CMV.EGFP.SVPA and hsa-miR-192-
overexpressing AAV2/Anc80L65.AAP.U6.mir192.CMV.EGFP.
SVPA. An additional vector (AAV2/Anc80L65.CAG.GFP.WRPE) was 
constructed as a GFP-only control. Postnatal day (P) 1–2 CBA/CaJ 
mouse pups from four litters were randomly assigned to an AAV 
injection group: GFP-only control (n = 7), hsa-miR-192 (n = 6), or 
hsa-miR-431 (n = 6). The mice were injected intracochlearly via the 
semicircular canal with 1.5 μL vector solution over 3 min. At ~6 weeks 
of age (post-injection), baseline hearing was evaluated in the mice by 
measuring ABRs and DPOAEs, which reflect auditory evoked 
potentials and OHC function, respectively. Hearing was normal and 
there were no significant differences in hearing between the groups 
(Figure 4A; Supplementary Figure S2A).

VS-mediated SNHL may be prompted by ototoxic stress such as 
from noise or other insults to the inner ear. Thus, to determine 
whether candidate miRNA expression in the cochlea sensitizes the ear 
to noise trauma, all mice underwent noise exposure (100 dB SPL at 
8–16 kHz for 2 h) 2 to 4 days after assessment of their hearing function. 
At 2 weeks post-noise exposure, hearing was again assessed with ABR 
and DPOAE. Mice injected with the AAV overexpressing miR-431 

had a 20 dB ABR threshold shift from baseline at 16 kHz that was 
significantly higher compared to the GFP-only control group (p < 0.01) 
(Figure 4B). Mice injected with the AAV overexpressing miR-192 did 
not have a significant ABR threshold shift from baseline in comparison 
with the GFP-only control group. There were no significant differences 
in the post-noise exposure DPOAE threshold shifts between the 
GFP-only control group and either of the experimental groups 
(Supplementary Figure S2B).

The mice were then sacrificed, and the extracted cochleae 
underwent immunohistochemistry to enable counting of IHC 
(myosin 7A-positive) and pre-synaptic ribbons (CtBP2-positive) 
(16 kHz region displayed in Figure 4C). Following noise exposure, the 
number of synaptic ribbons per IHC were significantly lower among 
miR-431 overexpressing mice compared to the GFP-only control 
group in the region corresponding to 16 kHz (p < 0.01) (Figure 4D). 
There were no significant differences in the number of synaptic 
ribbons per IHC between the miR-192 overexpressing mice compared 
to the GFP-only control group.

4. Discussion

In this study, miR-431-5p was found to be significantly more 
abundant in VS tumor cells from patients with poor hearing than 
those with good hearing, pointing to a potential miRNA candidate 
contributing to VS-associated hearing loss. Although viral 

TABLE 1 Characteristics of the VS tumor tissue donors and quantification of RNA extracted from VS tumor cells and EVs.

Tumor 
characteristics

Hearing tests Bioanalyzer

Hearing 
categorya Sex

Age 
(y)

Location 
(side)

Size, all 3 linear 
dimensions 

(mm)b

PTA 
(dB)

WR 
(%)

Cells 
RINc

[RNA], μg/μl

Sample # Cells EVs

Used in the analyses of VS cell and EV RNA

1 GH F 46 Right 18 TV × 17 AP × 24 SI 12 94 9.9 761.00 1.89

2 GH F 34 Right 22 TV × 19 AP × 20.5 SI 5 100 8.7 124.00 4.44

3 GH F 43 Left 14 TV × 8 AP × 8 SI 10 100 10 296.00 2.96

4 GH F 55 Right 22 TV × 20 AP × 21 SI 12 98 9.1 171.00 4.30

5 GH F 51 Left 27 TV × 21 AP × 22 SI 12 92 8.8 82.00 15.35

6 PH M 58 Right 25 TV × 31.8 AP × 34 SI 50 48 8.4 92.00 2.06

7 PH F 54 Right 29 TV × 22 AP × 29 SI 35 94 9.9 206.00 10.80

8 PH F 45 Right 13 TV × 5 AP × 5 SI 95 0 10 344.00 3.80

9 PH F 45 Left 24 TV × 12 AP × 10 SI 58 0 8.1 52.00 2.00

Used in the analysis of EV RNA only

10 PH F 55 Right 25 TV × 13 AP × 12 SI 40 20 – – 7.10

11 PH M 56 Left 27 TV × 15 AP × 13 SI 37 58 – – 5.00

12 PH M 43 Left 27 TV × 36 AP × 26.6 SI 50 92 – – 8.60

13 GH F 22 Right 30 TV × 28 AP × 29 SI 12 96 – – 12.07

Sufficient quality and concentration of RNA were derived from both VS cells and EVs for 9 VS tissue samples and from only EVs for 4 samples. AP, anterior–posterior; dB, decibel; EVs, 
extracellular vesicles; F, female; GH, good hearing; M, male; PH, poor hearing; PTA, pure tone average; RIN, RNA integrity number; SI, superior–inferior; TV, transverse; VS, vestibular 
schwannoma; WR, word recognition; y, years.
aPH was defined as WR score < 70% or PTA > 30 dB; otherwise, patients were categorized as GH.
bThe longest linear dimensions are in bold.
cThe bioanalyzer provides a RIN, an objective metric of total RNA quality ranging from 10 (highly intact) to 1 (completely degraded). Samples with a “–” had a RIN below the quality threshold 
of 8.0 and were not included in the analysis of cell RNA.
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overexpression of miR-431  in the inner ear of mice produced no 
initial negative effects on hearing, following noise exposure, these 
mice exhibited significantly greater hearing loss, as well as greater loss 
of IHC synapses in the cochlear region most affected by the noise 
trauma. These results suggest that miR-431, enriched in the VS 
tumors of patients with poor hearing, may sensitize the cochlea to 
stress-induced trauma, including from noise, and the development 
of subsequent hearing loss. Our findings provide mechanistic insight 
into the clinical observation that patients with VS demonstrate 
increased susceptibility to acoustic trauma (36), and that 
mid-frequency trough-shaped audiograms, which are characteristic 
of acoustic trauma, are common in VS patients (37). It is also 
interesting to note that case–control and population-level studies 
have observed increased risk of VS with loud noise exposure (38–40), 
thus the etiological link between noise trauma, the VS tumor, and 
VS-mediated SNHL merits further study.

While there are two prior reports identifying a role for 
miR-431 in hearing function and dysfunction (41, 42), there are no 
reports on its role in VS-induced hearing loss or acoustic trauma. 
miR-431 has been localized in both the mammalian cochlea and 
vestibular organs (41), and is highly expressed in the SGNs of 
newborn mice, with its expression decreasing into adulthood (42). 
Although transgenic mice overexpressing miR-431 appear to have 

structurally normal cochleae, they have significantly higher (worse) 
ABR thresholds than wildtype mice due to lower density and less 
branching of SGNs (42). Moreover, cochlear cultures from miR-431-
overexpressing mice displayed fewer mature SGNs and shorter axons 
than controls (42). In contrast to the transgenic mice in Fan et al. 
which overexpressed miR-431 during cochlear development, the 
mice in our study were injected with a vector to overexpress miR-431 
at 6 weeks of age, when SGNs and their synaptic connections with 
IHC would be mature. Thus, we hypothesize that synaptic function 
is impaired in our miR-431-injected mice, but the phenotype of 
worse ABRs only emerges post-noise trauma that stresses synapses 
between the SGNs and IHCs. This would explain why our miR-431-
overexpressing mice did not demonstrate an ABR shift shortly after 
injection, while the transgenic mice in Fan et al. demonstrated an 
ABR shift at 13 weeks post-natal. Notably, a microarray study 
comparing miRNA levels between VS and control cranial nerve 
tissue reported that miR-431 was the top differentially upregulated 
miRNA in VS, although no association with hearing was investigated 
(43). In that study, around 40 miRNA located in the chromosomal 
14q32 region were upregulated in VS (miR-431 is located at 14q32.2 
specifically) (43). Deletions or alterations of this area have been 
implicated in rare cases of syndromic hearing loss in humans (44, 
45), and in the formation of tumors like gliomas (46).

FIGURE 2

Isolation and purification of EVs from conditioned media and VS cells. EVs (red arrowheads) were isolated from VS cell-conditioned media via 
ultracentrifugation, verified by NanoSight (A). The relative concentrations and sizes of EVs were similar across samples (B). The quality of total RNA 
extracted from EVs was assessed via a Bioanalyzer. An example (VS sample #3) of the Bioanalyzer results is presented in (C) and the results for all 
samples are listed in Table 1. The distribution of the preoperative hearing test scores of VS-PH and VS-GH patients from which cell and/or EV miRNA 
were derived is shown in (D). EV sRNA was derived from all samples while VS cell-derived sRNA was obtained from 4 VS-PH samples and 5 VS-GH 
samples. PH was defined as word recognition score  <  70% and PTA >30  dB; otherwise, patients were categorized as GH. sRNA with RNA integrity 
number (RIN) ≥8.0 was sequenced using the Illumina HiSeq2500 platform and the miRNA dispersion plotted by the mean of the normalized counts (E). 
miRNA expression levels were compared between VS-GH and VS-PH groups to identify differential expression of individual miRNAs (F). dB, decibel; EV, 
extracellular vesicle; gene-est, gene expressed sequence tag; GH, good hearing; miRNA, micro RNA; nt, nucleotides; PH, poor hearing; PTA, pure tone 
average; rRNA, ribosomal RNA; sRNA, small RNA; VS, vestibular schwannoma.
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An mRNA target of miR-431, as suggested by bioinformatic and 
molecular assays, is Eya4, with higher expression of miR-431 resulting 
in decreased production of the protein EYA4 (41, 42). Eya4−/− mice 
exhibit profound hearing loss (47) and EYA4 mutations in humans 
are linked to autosomal-dominant non-syndromic hearing loss, 
among other defects (48–50). Interestingly, EYA4 appears to remain 
important in adulthood for the maintenance of cochlear function in 
mammals. In rats, Eya4 expression persists in the organ of Corti and 
spiral prominence into the postnatal period (50), and people with 
certain EYA4 mutations exhibit late-onset hearing loss (50, 51). 
Further, EYA4 mutations have been associated with increased 
vulnerability to noise-induced hearing loss in occupational settings 
(52, 53). Thus, in addition to its role in cochlear development and 
maturation, EYA4 may have a role in the maintenance of mature SGN 
survival following a cochlear insult. In this study, the hearing deficits 
and loss of ribbon synapses in the miR-431-overexpressing mice 
following noise exposure may be partially explained by the depletion 
or suppression of EYA4.

miR-431 also interacts with Smad4 RNA, which is required for 
canonical signaling by TGF-β, a potent cytokine and growth factor 
(54, 55). Specifically, elevation of miR-431 decreases SMAD4 levels 
and thereby reduces inhibition of TGF-β, while decreasing miR-431 
has the opposite effect (54, 56–58). The TGF-β/SMAD4 signaling 
pathway controls signal transduction from the cell membrane to the 
nucleus and is involved in many cellular processes such as cell 
proliferation, migration/motility, differentiation, apoptosis, 
inflammatory/immune response, and tumor formation and 
progression (55). Both type I and II receptors of TGFβ-1 (regulated by 
SMAD4) have been identified in the modiolus, organ of Corti, and 

lateral wall of the mammalian cochlea (59). TGF-β isoforms are 
expressed in the developing mammalian cochlea in distinct patterns 
and are involved in SGN and ribbon synapse formation and survival 
(60, 61). Similarly, conditional knockouts of Smad4 display disruption 
of ribbon synapses and auditory neuropathy (62, 63). In humans, the 
rare autosomal disorder Myhre syndrome is caused by a gain-of-
function mutation in SMAD4, which is associated with hearing loss 
among other musculoskeletal anomalies (64, 65), as well as reports of 
unilateral VS (66). In animal models, TGF-β1 rapidly increases in the 
cochlea following noise exposure, suggesting that it participates in the 
immunological response to noise trauma, before declining over the 
next 7 days (61). However, sustained high levels of TGF-β1 were 
associated with greater noise-induced cochlear trauma, which could 
be reversed with inhibitors (61). Interestingly, intracochlear injection 
of Ad.GDNF plus Ad.TGFβ-1 in guinea pigs resulted in greater 
preserved hearing, IHCs, and OHCs after ototoxic drug administration 
compared with animals injected with Ad.GDNF alone, but this was 
accompanied by proliferative fibrosis (59). Thus, the role of TGFβ-1/
SMAD4 signaling in the cochlea may depend on the presence of other 
molecules like GDNF or miR-431.

Additionally, increased miR-431 could prompt ototoxicity via 
altering the role of TGF-β/SMAD4 in acid extrusion from the VS 
tumor. Dysregulated pH homeostasis due to elevated metabolic acid 
production and extrusion is a notable feature of the 
microenvironment of solid tumors (67–69), and can lead to an acidic 
extracellular pH in the tumor while cytoplasmic intracellular pH 
remains normal or even slightly alkaline (67, 68). Ion transporters 
involved in acid extrusion are regulated by TGF-β in a SMAD4-
dependent fashion and have been implicated in other solid tumors 

FIGURE 3

Next-generation sequencing of miRNA from individual VSs from patients with good (n  =  5) and poor (n  =  4) preoperative hearing. The expression levels 
of hsa-miR-6798-3p, hsa-miR-431-5p, and hsa-miR-192-5p significantly differed between VS-GH and VS-PH cells (table inset). The total and log2 
normalized counts of these miRNA are plotted by hearing category in (A) and (B), respectively. In (B), red dots represent samples from VS cells and blue 
dots represent samples from EVs (exosomes). The heat map (C) displays enrichment of the miRNA in the groups, with higher levels of hsa-miR-6798-
3p and hsa-miR-431-5p in VS-PH samples, and higher levels of hsa-miR-192-5p in VS-GH samples. There were no differentially expressed miRNA in 
EVs from VS-GH vs. VS-PH samples. EV, extracellular vesicle; GH, good hearing; miRNA, micro RNA; NGS, next-generation sequencing; PH, poor 
hearing; SE, standard error.
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(70). Furthermore, Merlin—the gene product disrupted in VS—has 
also been shown to regulate ion transporters in cancer (70, 71), 
which may further increase the acidification of the tumor and 
negative impacts to the cochlear microenvironment. Considering 
these findings along with our own data, an overabundance of 
miR-431 may enhance noise-induced cochlear injury in myriad 
ways, including miR-431 depletion of EYA4 as well as dysregulation 
of the TGF-β/SMAD4 signaling pathway. These two mechanisms are 
involved in the maintenance of mature SGNs, ribbon synapses, and 
other cochlear cells, and may be a novel mechanism for VS-associated 
hearing loss.

A limitation of our study is that it focused on acoustic trauma as 
a sensitizer of the inner ear to postnatal miR-431 overexpression. 
Future experiments should define whether aging or insults other than 
noise, such as exposure to ototoxic drugs or tumor-secreted factors, 
also sensitize the cochlea to damage during miR-431 overexpression. 
Additionally, future prospective studies examining the levels of 
miR-431 in the blood, cerebrospinal fluid, and inner ear fluids (i.e., 
perilymph) of patients with VS and/or hearing loss are recommended 
to understand how it may circulate within the body to potentially 

impact hearing. Moreover, future large-scale epidemiologic studies 
should determine whether noise trauma is a modifiable risk factor for 
VS-induced hearing loss. The results of these studies, combined with 
the current results, may motivate future development of molecular 
therapeutics that inhibit miR-431 in order to prevent VS-induced 
hearing loss.
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FIGURE 4

Mice overexpressing hsa-miR-431, associated with poor hearing in human VS, exhibit greater loss of hearing and cochlear synapses after noise 
exposure. Inner ears of postnatal day 1–2 wildtype mice were transduced with Anc80L65 AAV overexpressing hsa-miR-431-GFP, hsa-miR-192-GFP, or 
GFP only (control). Approximately 6  weeks later, ABR (A) measurements 2–4  days before noise exposure (100  dB at 8–16  kHz for 2  h) confirmed there 
were no significant differences in hearing between the groups. Two weeks after noise exposure, hsa-miR-431 overexpressing mice showed a 20  dB 
ABR threshold shift at 16  kHz (B) that was significantly higher compared to that of the control group (p  <  0.01). Using quantitative confocal 
immunohistochemistry, we observed that the numbers of synaptic ribbons and IHCs were significantly lower among hsa-miR-431 overexpressing mice 
compared to the GFP-only control group in the region corresponding to 16  kHz (C,D) following noise exposure. Hair cell transduction was observed to 
be similar across the three vectors. In (A,B,D), green (circles) indicate control group, blue (squares) indicates hsa-miR-192, and red (triangles) indicates 
hsa-miR-431. AAV, adeno-associated virus; ABR, auditory brainstem response; CtBP2, C-terminal binding protein 2; db, decibel; DPOAE, distortion 
product otoacoustic emissions; GFP, green fluorescent protein; GH, good hearing; IHC, inner hair cell; kHz, kilohertz; Myo7a, myosin 7a; PH, poor 
hearing; SE, standard error; SPL, sound pressure level; VS, vestibular schwannoma. *p  <  0.05, **p  <  0.01. Scale bar, 20  μm (C).
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