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Case report: A novel CACNA1S 
mutation associated with 
hypokalemic periodic paralysis
Evgenii P. Nuzhnyi , Alina S. Arestova *, Alexey V. Rossokhin , 
Anna O. Protopopova , Nataliya Yu Abramycheva , 
Natalia A. Suponeva  and Sergey N. Illarioshkin 

Research Center of Neurology, Moscow, Russia

Background: Hypokalemic periodic paralysis (HypoKPP) is a rare neuromuscular 
genetic disorder causing recurrent episodes of flaccid paralysis. Most cases 
are associated with CACNA1S mutation, causing defect of calcium channel 
and subsequent impairment of muscle functions. Due to defined management 
approaches early diagnosis is crucial for promptly treatment and prevention new 
attacks.

Materials and methods: We report a case of HypoKPP associated with previously 
unreported mutation in CACNA1S gene (p.R900M). Molecular modeling of CaV1.1 
was applied to evaluate its pathogenicity.

Results: As a patient referred between attacks neurological status, laboratory 
and neurophysiological examination were unremarkable. Molecular modeling 
predicted that the p.R900M mutation affects the process of calcium channels 
activation.

Conclusion: Novel CACNA1S mutation, associated with HypoKPP was identified. 
Monte-Carlo energy minimization of the CaV1.1 model supported the association 
of this mutation with this disease.
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Introduction

Hypokalemic periodic paralysis (HypoKPP) is a rare neuromuscular disorder 
(channelopathy), characterized by the recurrent episodic attacks of muscle weakness lasting 
from minutes to several days accompanied by low serum potassium (1). The majority of 
HypoKPP cases are inherited and caused by mutations in skeletal muscle calcium (CACNA1S, 
up to 70%) and sodium (SCN4A, up to 20%) channels genes, while a small proportion remains 
genetically undefined (2). Acquired cases of HypoKPP are associated with thyrotoxicosis and 
other endocrine disorders, some may result from gastrointestinal and renal potassium loss (3).

Pathological variants in many ion channel diseases are widely distributed throughout the 
channel proteins, whereas those in HypoKPP are almost exclusively concentrated in the voltage 
sensor. Most such mutations affect arginine residues in S4 segments that contribute to voltage 
sensing, leading to abnormal channel functioning. However, the full spectrum of HypoPP 
mutations has not been defined (4).
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We report a case of HypoKPP with a novel de novo pathogenic 
variant in the CACNA1S gene, supported by using molecular modeling 
approach. Currently, the generally accepted mechanism for the 
development of HypoKPP is the occurrence of a leak current through 
the voltage sensor domain (VSD) of CaV1.1 and NaV1.4 channels with 
mutated arginines in the S4 helix (4–6). In this work, based on the 
structural analysis of the CaV1.1 channels, we predicted that the newly 
discovered p.R900M mutation affects the mobility of the IIIS4 helix, 
which leads to disruption of the channel activation process. 
We  hypothesize that this mechanism also contributes to the 
development of HypoKPP.

Case description

A 19-years old man, originated from Tajikistan, presented with 
severe reversible episodes of muscle weakness for 3 years. The episode 
starts abruptly with progressive weakness in extremities and 
paraspinal muscles up to complete immobility by the third day with 
further spontaneous recovery. The episodes reoccur 3 times a year 
without any noticeable triggers. Breathing, swallowing, speech, 
urination is always intact. Between attacks the patient feels absolutely 
normal and has no complaints. The medical history was 
unremarkable for chronic conditions, constant medication use, 
substance abuse. There was no family history on similar symptoms 
or any neurological disorders (parents, two sibs are clinically 
unaffected) (Figure 1A).

During interictal period on neurological examination deep 
tendon reflexes were diminished and slight muscle hypotonia was 
observed in the extremities with no signs of muscle hypotrophy, 
paresis or percussion myotonia.

The laboratory testing revealed normal complete blood count and 
comprehensive metabolic panel, including sodium and potassium 
levels. It should be mentioned that during the attack the potassium 
level has never been investigated.

Brain MRI revealed pituitary microadenoma 0.5 × 0.5 × 0.8 cm 
and blood test showed normal levels of pituitary hormones. The 
patient was consulted by an endocrinologist, so an underlying 
endocrine pathology was excluded.

Neurophysiological examination included repetitive nerve 
stimulation test, short exercise test according to standardized protocol 
and needle EMG (7). No decrement was observed on repetitive nerve 
stimulation test, short exercise test was also unremarkable. Prolonged 
exercise test was not performed. Needle EMG of m. extensor 
digitorum communis and m. vastus lateralis did not demonstrated any 
myopathic changes.

Diagnosis of primary periodic paralysis was suspected. Next-
generation sequencing with a related commercial gene panel 
(“Neuromuscular disorders,” Illumina MiSeq) was performed. A 
c.2699G > T (p.Arg900Met, p.R900M, NM_000069.3, exon 21) variant 
in the CACNA1S gene was identified, satisfying the ACMG criteria of 
“likely pathogenic” (PS2, PM6, PM1), however according to InterVar 
the variant is interpreted as “uncertain significance” (8). Despite 
pathological variants in R900 substituting for another amino acid, like 
R900G and R900S, associated with HypoKPP, have already been 
reported (4, 9, 10), the identified variant was absent in the ExAc, 
gnomAD, GENOMED Databases.

The substitution was further confirmed by Sanger sequencing 
(Figure 1B). The mutation was not found in parents and two sibs, 
suggesting that it had arisen de novo.

In order to confirm either the novel identified variant is 
pathogenic and to evaluate its effect on calcium channel functioning, 
the molecular modeling was applied.

To build a homology model of the α1S subunit of the human 
calcium voltage-gated channel, a cryo-EM (EM - electron microscopic) 
structure of the inactivated CaV1.1 channel (5GJW, code in the Protein 
Data Bank) of the rabbit, in which the voltage sensors are in the 
activated position, was used as a template (11). A schematic 
representation and structural model of the α1S subunit of CaV1.1 are 
shown in Figures 2A,C. Model building was preceded by alignment of 
the amino acid sequences (UniProt entries Q13698 CAC1S_HUMAN 
and P07293 CAC1S_RABIT). Aligned sequences of S4 segments are 
shown in Figure 2B.

We used the Monte-Carlo energy minimization (MCM) method 
(12) to optimize the model geometry. Non-bonded interactions were 
calculated using the AMBER force field (13). Electrostatic interactions 
were calculated using the solvent exposure- and distance-dependent 
dielectric function (14). Energy was minimized in the space of internal 

FIGURE 1

(A) The pedigree chart. The arrow indicates the proband with HypoKPP (Wt—wild type allele). (B) Sanger sequencing chromatograms (revers variant) 
shows wild type allele (a) and c.2699G  >  T mutation (b).
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model coordinates, which are the lengths of valence bonds, valence 
and torsion angles, Cartesian coordinates and Euler angles that 
determine the position of individual molecules, using the ZMM 
program (14).

The MC minimization was carried out in two stages. At the first 
stage, the energy was minimized with constraints imposed on Cα 
atoms. Minimizing the energy of the model with a system of 
constraints allows to avoid the deformation of the structure given by 
the template due to steric conflicts, which are inevitable in the starting 
geometry of the model. After a constrained MCM trajectory 
converged, all constraints were removed and the model was finally 
refined. Each MCM trajectory was terminated if 5,000 successive 
changes in the model coordinates did not lead to a decrease in the 

model energy. A detailed description of the MCM method is given in 
our previously published papers (15, 16).

The α1 subunit of CaV includes four domains I-IV, each of which 
contains six transmembrane helices S1-S6 (Figure 2A). The S5, S6 
helices form a pore with a selective filter and an activation gate (17). 
The S1–S4 helices form the VSD of the channel (Figure 2C). Each 
S4 helix contains positively charged Arg and Lys residues 
(Figure 2B).

At the resting state, a negative membrane potential pulls the 
positively charged S4 helices toward the cytoplasmic side of the 
membrane, keeping the channel gate closed. Membrane depolarization 
is accompanied by a change in the electric field, which leads to a shift 
of S4 across the membrane plane, which initiates a conformational 

FIGURE 2

Architecture of the hetero-tetrameric voltage-gated human calcium channel CaV1.1. (A) Schematic representation of four domains (I–IV) of the α1S 
subunit. S1–S6 transmembrane helices and four positive charges of S4 helix are shown in each domain. (B) Alignment of S4 segments of domains I-IV 
of CaV1.1. Positively charged Arg residues (R1-R4) are highlighted in color. The Arg900Met mutation is highlighted in the IIIS4M (mutated) segment. 
(C) Structural model of the α1S subunit of CaV1.1. View from the extracellular space is presented. The color coding of domains corresponds to (A). 
Transmembrane helices S1–S4 forming a voltage sensor (VS) are denoted in domain III. Yellow sphere in the center represents Ca2+ ion in the selective 
filter of the channel. (D,E) Structural models of VS-III in the activated state in the native and mutated forms, respectively. Residues R1-R4 of the S4 helix 
are shown, as well as residues E819, D836, E846, and F843 of the S2 helix interacting with them. The side chain of R900 is highlighted in yellow (D). 
Ionic contacts formed by R900 with residues E819 and D836 are shown as red dashed lines.
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TABLE 1 Clinical features of the cases due to R900 mutations in the CACNA1S gene.

Cases (references) Family 1 (9) Family 2 (10) Present 
study

Nationality Chinese Japanese Tajik

Age/Sex 25/M

(sib)

27/M

(sib)

46/M

(father)

41/M

(sib)

35/M

(sib)

69/M

(father)

19/M

Onset age 16 17 17 21 13 13 16

Frequency of attacks (times 

per year)

12–100 10–12 10–40 5 10 5 3

Duration of attack (hours) 24–48 12–24 <24 12–48 No data No data 72–84

Attack triggers High carbohydrate meal, 

exhaustion, staying up late, 

prolonged immobility

High 

carbohydrate 

meal, exhaustion

Exhaustion, high 

carbohydrate meal, 

alcohol, coldness

Hard physical 

exercises

Hard physical exercises, 

overeating

Not identified

Mutation c.2700G > C

(p.R900S)

c.2698A > G

(p.R900G)

c.2699G > T

(p.R900M)

transition of the channel from the resting (closed) state to the open 
state (18, 19).

According to this mechanism, the R1–R4 charges of the S4 helix 
of domain III (Arg897, Arg900, Arg903, and Arg906) alternately 
form ion pairs with countercharges of the S2 helix (Asp836 and 
Glu846) when the helix moves in an electric field (20). In our 
CaV1.1 model, VS is in an activated state, and Arg900 (R2) forms 
salt bridges with Asp836 and Glu819 residues (Figure 2D). MC 
minimization showed that these contacts are lost when positively 
charged Arg900 is replaced by nonpolar Met (Figure 2E). Thus, salt 
bridges between Met900 (S4) and Asp836/Glu819 (S2) in domain 
III cannot be formed in the mutated channel, which obviously leads 
to a decrease in the probability of domain III transition to an 
activated state. Therefore, disruption of domain III activation 
should decrease the probability of the entire channel transition to 
the open state.

Thus, our calculations predict the association of the p.R900M 
mutation in CACNA1S gene with the disease.

Since hypokalemia has not been identified in the patient, there is 
a chance of normokalemic periodic paralysis (NormoKPP). However, 
the type of mutation increases our suspicion in favor of HypoKPP and 
the patient was prescribed with potassium supplementation and 
spironolactone (25 mg per day) ex juvantibus and educated to notice 
and avoid possible triggers. For 10-months follow-up the patient has 
not experienced new attacks and the potassium level has 
remained normal.

Discussion

Primary hypokalemic periodic paralysis is a rare condition, yet 
with established approaches to management for prevention severe 
attacks and life-threatening consequences (1). The majority of primary 
HypoKPP cases is associated with mutations in CACNA1S gene, 
which encodes the α1S subunit of the calcium voltage-gated channel 
CaV1.1 (4). The first identified mutation in the CACNA1S gene was 
reported in 1994 (21). Up to date it has been shown that most 
mutations occur at positively charged arginine in the VSD (S4 helix) 
of the α1S subunit (4).

Activation of nicotinic acetylcholine receptors at the 
neuromuscular junctions leads to the entry of sodium ions and 
depolarization of muscle cells. Depolarization causes an influx of 
calcium ions through the voltage-gated CaV1.1 channels and through 
CaV1.1-bound ryanodine receptors (RYR1) in the sarcoplasmic 
reticulum (SR), which triggers muscle contraction. Mutation in 
CACNA1S gene (p.R900M) identified in this study impairs the 
functioning of the voltage sensor in domain III of the CaV1.1 channels. 
Therefore, this mutation affects the channel opening process and 
results in the loss of function of these channels.

RYR1 are intracellular receptors and have no voltage-sensing 
structures. The CaV1.1 channels associated with RYR1 act as a 
voltage sensor of calcium release from SR (22). Savalli et al. (23) 
showed that VSD III in the CaV1.1 channels bound to RyR1 exhibits 
fast activation compatible with Ca2+-release kinetics form 
SR. Therefore, the R900M mutation may also impair calcium release 
from the SR through RyR1.

It was previously shown that mutations of S4 Arg residues are also 
accompanied by a leak current carried by protons or other monovalent 
cations through a gating pore (5, 6). The gating pore is a tunnel formed 
between S1 and S4 helices in which the S4 helix moves across the 
membrane in response to changes in membrane potential (24). 
Sokolov et al. (6) showed that mutations of the two outermost Arg669 
and Arg672 to Gly in domain II of Nav1.4 result in generation of a 
cation leak through the gating pore at hyperpolarized potentials. In 
the Shaker potassium channel, mutations of the more intracellular S4 
Arg to His resides resulted in a leak current carried by protons already 
at depolarized potentials (25). It has been suggested that such leak 
currents mainly contribute to the pathophysiology of HypoKPP (5, 
26), supported by the fact that the muscles of HypoKPP patients are 
usually depolarized (27).

Here we demonstrate a HypoKPP case associated with CACNA1S 
gene mutation p.R900M, previously unreported. Matthews et al. (4) 
have reported a HypoKPP patient with p.R900S mutation; however, 
clinical characteristics were not described. Pathological variants in 
R900 substituting for another amino acid, p.Arg900Ser and 
p.Arg900Gly, have also been reported in two Chinese and Japanese 
families (9, 10). The clinical features of these cases and our patient are 
presented in Table 1.
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All patients had a typical HypoPP phenotype with attacks 
onset in the second decade. Also all patients were male, which 
may confirm the hypothesis of different gender penetrance and 
disease severity in males and females (28). In our patient, the 
frequency of attacks was less, but the attacks were more severe 
(up to 84 h). We did not identify any attack triggers; however,  
this fact does not contradict the diagnosis. It can be assumed  
that the R900 mutations in the CACNA1S gene are  
associated with the classical phenotype of HypoKPP with 
varying severity.

In rare cases, mutations in the CACNA1S gene can cause 
CaV1.1-related myopathy (congenital and late-onset limb-girdle 
forms) with both autosomal dominant and recessive inheritance 
with at least one nonsense mutation (29). The clinical features of 
congenital CaV1.1-related myopathy includes severe generalized 
muscle weakness and atrophy; in case with a late disease onset 
– proximal leg weakness with signs of vacuolar myopathy on the 
muscle biopsy (29, 30). Our patient had not any clinical signs of 
myopathy, also creatine kinase level was normal and needle EMG 
did not show myogenic changes.

Another disease caused by CACNA1S gene mutations is 
NormoKPP. We  were unable to exclude the diagnosis of 
NormoKPP because the blood potassium level was never 
examined during the attack; however, in all previously published 
cases with mutations in the R900 position the diagnosis of 
HypoKPP was laboratory confirmed (9, 10). Also the positive 
effect of the potassium supplementation and spironolactone 
indirectly confirms the diagnosis of HypoKPP.

The amplitude of the gating pore current contributing to the 
development of HypoKPP depends on the number of mutated 
Arg residues and the size of the side chains of the newly included 
residues (4, 26). Thor et al. (31) showed the appearance of such 
current through the NaV1.4 channels when R2  in S4 VSD I  is 
mutated to Trp. However, the amplitude of this current was 
approximately two times less compared to the mutation of the 
same residue on Gly. In our case, only one of the two outermost 
arginine residues in S4 VSD III is mutated to Met, which has a 
rather bulky side chain. Obviously, this mutation will contribute 
less to the flow of gating pore current compared to the R900G 
and R900S mutations (see Table 1).

We suppose that multiple pathophysiological mechanisms are 
involved in the development of HypoKPP in our patient, 
including depolarization of muscle cells due to leak current 
through the VSD III, disruption the gating of the main pore of 
the CaV1.1 channels, and, possibly impaired calcium release from 
the SR through RYR1. We  hypothesize that these 
pathophysiological mechanisms may be  involved to varying 
degrees in the development of the disease in different  
patients (see Table  1). In patients with more gentle attacks, 
depolarization of muscle cells due to leak current may 
predominate, and in our patient (severe attacks), the latter two 
causes may contribute more significantly to the development of 
HypoKPP. Further studies, including molecular dynamics 
simulations, are needed to provide a better understanding  
of the extent to which different pathophysiological  
mechanisms are involved in HypoKPP caused by the IIIS4 
R900M mutation.
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