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Objective: To investigate the clinical utility of multi-parameter MRI-based 
radiomics nomogram for predicting telomerase reverse transcriptase (TERT) 
promoter mutation status and prognosis in adult glioblastoma (GBM).

Methods: We retrospectively analyzed MRI and pathological data of 152 GBM 
patients. A total of 2,832 radiomics features were extracted and filtered from 
preoperative MRI images. A radiomics nomogram was created on the basis 
of radiomics signature (rad-score) and clinical traits. The performance of the 
nomogram in TERT mutation identification was assessed using receiver operating 
characteristic (ROC) curve, calibration curves, and clinical decision curves. 
Pathologically confirmed TERT mutations and risk score-based TERT mutations 
were employed to assess patient prognosis, respectively.

Results: The random forest (RF) algorithm outperformed the other two algorithms, 
yielding the best diagnostic efficacy in differentiating TERT mutations, with area 
under the curve (AUC) values of 0.892 (95% CI: 0.828–0.956) and 0.824 (95% CI: 
0.677–0.971) in the training set and validation sets, respectively. Furthermore, the 
predictive power of the radiomics nomogram constructed with the rad-score and 
clinical variables reached 0.916 (95%CI: 0.864, 0.968) in the training set and 0.880 
(95%CI: 0.743, 1) in the validation set. Calibration curve and decision curve analysis 
findings further uphold the clinical application value of the radiomics nomogram. 
The overall survival of the high-risk subgroup was significantly shorter than that of 
the low-risk subgroup, which was consistent with the results of the pathologically 
confirmed TERT mutation group.

Conclusion: The radiomics nomogram could non-invasively provide promising 
insights for predicting TERT mutations and prognosis in GBM patients with 
excellent identification and calibration abilities.
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Introduction

Despite standard treatment, glioblastoma (GBM) is the most 
common and aggressive primary brain tumor in adults and has high 
recurrence and mortality rates (1, 2). The 2021 WHO classification 
system has redefined this entity and separated it into two distinct 
categories on the basis of its isocitrate dehydrogenase (IDH) genetic 
makeup (3, 4). The recommendation contributes to the accurate 
classification and characterization of IDH wild-type GBM (5). As a 
newly added molecular marker in the classification, telomerase reverse 
transcriptase (TERT) is of great significance for the diagnosis of 
GBM. Furthermore, and the presence of TERT promoter mutations 
has been identified as an important prognostic marker. TERT 
promoter mutations are reportedly associated with a poorer prognosis 
(6, 7). GBM with TERT gene mutations typically exhibit more invasive 
and malignant biological behavior, higher tumor recurrence rate, and 
poorer survival rate. However, GBM without TERT gene mutations 
generally have a better prognosis and higher survival rate. 
Furthermore, TERT gene subtyping can also guide the selection of 
treatment strategies for GBM (8). GBM with TERT gene mutations 
may be insensitive to radiation therapy and chemotherapy, requiring 
more aggressive treatment approaches such as surgical resection and 
targeted therapy. However, GBM without TERT gene mutations may 
respond better to conventional treatment protocols, leading to 
improved treatment outcomes.

Telomeres, which govern the restricted division of normal cells, 
are reduced with each division of normal cells; however, telomerase in 
cancer cells may constantly prolong cell division (9). Telomerase 
comprises an RNA component and reverse transcriptase, which 
maintain telomere length by adding DNA sequence repeats to 
chromosome ends to avoid chromosomal shortening during DNA 
replication (10). Mutations in the TERT promoter region increase 
gene expression and activate telomerase activity, thus giving tumor 
cells an infinite potential to proliferate and encouraging tumor 
development and spread (11). Notably, TERT gene mutations have 
been considered among the most common genetic alterations. In 
GBM, the subtypes of the TERT gene are mainly based on genetic 
variations that regulate its expression levels. Studies have shown that 
different subtypes of GBM with TERT promoter mutations exhibit 
distinct molecular characteristics and clinical behaviors (12). The two 
major subtypes are referred to as TERT-WT (wild-type) and 
TERT-Mut (mutant). Up to 80% of mutations were in the two hotspots 
C228T and C250T (13). These mutations lead to excessive expression 
of the TERT gene, enhancing the unrestricted proliferation and 
growth capacity of tumor cells. Therefore, TERT promoter mutations 
can serve as an important biomarker for GBM.

Gene sequencing plays a crucial role in the diagnosis and 
classification of TERT subtype in GBM patients. However, there are 
certain limitations and aspects where gene sequencing may not 
be  sufficient. Firstly, GBMs are known for their intratumoral 
heterogeneity, with different regions of the tumor exhibiting distinct 
molecular profiles. Gene sequencing performed on a single biopsy 
sample may not capture the full spectrum of genetic alterations 
present within the tumor, leading to an incomplete understanding of 
its molecular characteristics. Secondly, although gene sequencing can 
identify various genetic alterations, distinguishing between driver 
mutations (those that contribute to tumor development) and 
passenger mutations (random genetic changes) can be challenging. 

Understanding the functional implications of these alterations, such 
as their impact on cellular pathways or response to targeted therapies, 
requires additional experimental validation or integration with other 
imaging data. Furthermore, performing comprehensive gene 
sequencing can be  time-consuming and costly, especially when 
analyzing large numbers of genes or whole-genome sequencing. These 
factors may limit the widespread application of gene sequencing in 
routine clinical practice.

Therefore, for the stratification and characterization of these 
tumors, it is crucial to rely on non-invasive alternative methods like 
magnetic resonance imaging (MRI). Recent studies have shown that 
MRI-based radiomics can provide valuable insights into the biological 
characteristics and treatment response of gliomas (14–16). By 
analyzing the texture, shape, and intensity of gliomas in MRI images, 
researchers can also identify imaging features that are associated with 
specific genetic mutations. Some studies applied radiomics and 
identified the TERT promotor genotype in gliomas with an accuracy 
of over 60%. Nevertheless, most of the previous studies have mainly 
focused on grades 2–4 gliomas (17–19). Additionally, multi-parameter 
MRI-based radiomics nomogram in GBM has not been well reported 
yet. Based on the abovementioned reasons in the present study, 
we  aimed to construct a stable and reliable radiomics model for 
predicting TERT promoter mutations and prognosis in patients with 
GBM. To the best of our knowledge, there is a paucity of research on 
TERT in GBM, and our study also aimed to add a body of knowledge 
in this area. This approach may enable the development of better 
management strategies for this devastating disease.

Materials and methods

Patients

This retrospective study was approved by the institutional research 
ethics review board, and the requirement for obtaining patient consent 
was waived. In our cohort, 185 patients with GBM patients were 
included from two centers (Institution I, n = 158; Institution II, n = 27) 
between January 2019 and February 2023. All patients underwent 
resection and genetic testing, and clinical information on various 
aspects, such as age, sex, overall survival (OS) in months, preoperative 
Karnofsky Performance Status (KPS) score, and pathological data, was 
collected from the hospital information system. The MRI images were 
obtained from the Picture Archiving and Communication Systems 
(PACS) of the institutes. The inclusion criteria were as follows: (1) 
Pathological diagnosis consistent with the study; (2) Time elapsed 
between MRI examination and surgery not exceeding 1 week; (3) No 
history of surgery or chemoradiotherapy; (4) Available preoperative 
MRI imaging data; (5) Age > 18 years. The patient selection flowchart 
is shown in Figure 1.

MRI protocol

MRI imaging data included axial T2WI, DWI, and ADC 
sequences obtained on two 1.5 MRI system (GE, Octane, United States; 
Siemens, Altea, Germany) and two 3.0 T MRI system (Philips, 
Achieva, Netherlands; GE, Premier, United  States). The MRI 
parameters used are provided in Supplementary material 1.
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Pathological assessment

To determine the status of the TERT promoter mutation, 
histological analysis was performed for all GBM tissues obtained 
by surgical resection. Sanger sequencing was used to identify 
TERT promoter mutations, as shown in this report (20, 21).

Radiomics process

Images preprocessing and segmentation
Herein, T2WI, ADC and DWI DICOM images were imported 

into the 3D Slicer software (version 5.3.0).1 The images were 
resampled to voxel size of 1 mm × 1 mm × 1 mm, and the gray 
level was discretized with a bin width of 25. These steps helped 
reduce the variability caused by differences in scanning 
parameters and equipment. The volume of interest (VOI) was 
semi-automatically plotted on T2WI along the tumor margin 
slice by slice and automatically registered to DWI and ADC 
images. Tumor segmentation was performed by two 
neuroradiologists with 10 years of experience in neuroradiology. 
An interclass correlation coefficient value between 0.75 and 1 
indicated good agreement. Any disagreement between the two 
neuroradiologists was resolved by consensus. The radiomics 
process is shown in Supplementary material 2.

1 https://www.slicer.org/

Feature extraction
Radiomics feature extraction was performed by using FeAture 

Explorer (version 0.3.7)2 on Python (3.7.6). We extracted a total of 
2,553 (934  ×  3) features for each patient. These features could 
be categorized into five groups, namely shape features (n = 14); first-
order features (n = 18); texture features [gray level co-occurrence 
matrix (GLCM, n = 24), gray level dependence matrix (GLDM, n = 14), 
gray level run length matrix (GLRLM, n = 16), gray level size zone 
matrix (GLSZM, n = 16), and neighborhood gray-tone difference 
matrix (NGTDM, n = 5)], wavelet transform (n = 744), and Laplacian 
of Gaussian filter (n = 93). A total of 2,553 (934 × 3) features were 
extracted for each patient. Feature classification and radiomics 
parameters are shown in Supplementary material 3.

Feature selection and signature development
The datasets were randomly divided into two groups (the training 

set and the validation set) in a 7:3 ratio. Before feature reduction and 
selection in the training cohort, all extracted features are normalized 
using Z-score normalization. The Mann–Whitney U-test or 
independent t-test was used to assess the relevant features for 
differentiating TERT mutation status at baseline. Next, three 
commonly used machine learning algorithms, namely the support 
vector machine (SVM), random forest (RF), and the least absolute 
shrinkage and selection operator (LASSO), were compared and the 
optimal algorithm was chosen for signature construction. A rad-score 

2 https://github.com/salan668/FAE

FIGURE 1

The patient selection flow chart.
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Table 1 The basic clinical characteristics of the GBM patients.

Characteristics
Training set (n =  104) Validation set (n  =  43) p

TERT-mt TERT-wt
p

TERT-mt TERT-wt p

Age (mean ± SD) 57.20 ± 10.00 53.46 ± 9.41 0.035 56.44 ± 10.38 53.08 ± 9.34 0.028 0.569

Male 25 32 13 17

Sex 0.131 0.011 0.954

Female 23 24 7 6

KPS (mean ± SD) 3.40 ± 12.72 80.93 ± 12.33 0.026 76.11 ± 10.23 80.80 ± 9.54 0.034 0.073

OS (median [IQR]) 16.8 [11.4, 27.1] 28 [19, 34] 0.042 17.2 [12.5, 24] 26 [15, 36.7] 0.045 0.056

TERT mutant 47 (65.28%) 25 (34.72%) 0.042

TERT-mt: Telomerase reverse transcriptase mutant-type; TERT-mt: Telomerase reverse transcriptase wilde-type; KPS: Karnofsky performance status; OS: overall survival; IQR: interquartile 
range.

Table 2 The AUC, 95% CI, cut-off, accuracy, sensitivity, specificity, PPV, and NPV for LASSO, SVM, and RF model in training and validation sets.

Feature set AUC 95% CI Cutoff Acc Sen Spe PPV NPV Tasks

Lasso 0.736 [0.639–0.834] 0.475 0.709 0.627 0.788 0.744 0.683 Training

Lasso 0.419 [0.225–0.613] 0.475 0.475 0.533 0.44 0.364 0.611 Validation

SVM 0.817 [0.528–0.875] 0.468 0.777 0.765 0.788 0.780 0.774 Training

SVM 0.701 [0.816–1.000] 0.468 0.625 0.733 0.56 0.5 0.788 Validation

RF 0.892 [0.828–0.956] 0.560 0.854 0.784 0.923 0.909 0.814 Training

RF 0.824 [0.677-0.971] 0.560 0.775 0.733 0.800 0.688 0.833 Validation

Lasso, The least absolute shrinkage and selection operator; SVM, Support Vector Machine; RF, random forest; AUC, the area under the receiver operator characteristics curve, CI, confidence 
interval, PPV, positive predictive value, NPV, negative predictive value.

based on the best classification algorithm was assigned using the 
coefficient and preserved radiomics features.

A radiomics nomogram combining the rad-score and clinical 
variables was constructed using multivariate logistic regression 
analysis. The radiomics nomogram was verified on the validation 
cohort. The area under the curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive 
value (NPV) were applied to access the performance of the predictive 
model. The DeLong test was used to compare the performance of the 
ROC curves. The calibration curve was used to evaluate the degree of 
agreement between the predicted probability and observed outcomes 
across different risk levels. The Hosmer–Lemeshow test was used to 
evaluate the fit of all models. Decision curve analysis (DCA) was 
performed to quantify the net benefits under different threshold 
probabilities in the validation set.

Prognosis analysis
All patients were divided into high-risk (predicted TERT mutation-

positive) and low- risk (predicted TERT mutation-negative) groups 
according to their radiomics nomogram risk score. The Kaplan–Meier 
curve was used to compare the survival analysis results of patients with 
GBM between pathological diagnosis TERT mutant groups and risk 
stratification groups using the risk score. The log-rank test was performed 
to determine differences in survival between these two groups.

Statistical analysis

SPSS (version 27.0; IBM) and R statistical software (version 4.0.2) 
were used for statistical analyses. The independent-samples t-test or 

Mann–Whitney U-test was used for continuous variables. The 
chi-square test or Fisher’s exact test was used for categorical variables. 
The Kaplan–Meier method was used to assess OS between high-risk 
and low-risk subgroups, TERT mutant and wild-type subgroups. The 
survival curves were compared using the log-rank test. A p-value of 
<0.05 was considered indicative of statistical significance.

Results

Patient characteristics

The basic clinical characteristics of the GBM patients are showed 
in Table 1. One hundred and fifty-two patients [67 women, 85 men; 
mean age, 52.82 ± 11.09 years (range, 27–75 years)] were enrolled in 
this study. Among these, 72 patients (47.37%) were diagnosed as 
TERT mutation-positive and 80 patients (52.63%) as TERT mutation-
negative. There was no significant difference in sex distribution 
between the TERT subgroups. However, the age and KPS score were 
significantly different between the TERT mutation subgroups (p < 0.05 
for both).

Radiomics feature selection and model 
construction

The ROC curve results for SVM, RF, and LASSO algorithms in the 
training and validation sets are shown in Table 2 and Figure 2. The 
result revealed that with the highest diagnostic efficiency for 20 
features, the RF algorithm performed the best among the three 
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algorithms, followed by SVM and LASSO algorithms. The AUC 
values, accuracy, sensitivity, specificity, PPV, and NPV for RF in the 
training set were 0.892, 0.854, 0.784, 0.923, 0.909, and 0.814 

respectively; while in the validation set, they were 0.824, 0.775, 0.733, 
0 0.800, 0.688, and 0.833, respectively. In addition, among the 2,832 
extracted features, 2,100 features were excluded by baseline analysis, 

FIGURE 2

The ROC curves for the Lasso (A, B), SVM (C, D) and RF (E, F) algorithms were plotted separately for the training and validation sets, respectively.
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FIGURE 3

The radiomics nomogram comprised rad-score based on RF and clinical features.

Table 3 The AUC, 95% CI, cutoff, accuracy, sensitivity, specificity, PPV, and NPV for the clinical model, RF model and combined model in the training set 
and validation set.

Models AUC 95% CI Cutoff Acc Sen Spe PPV NPV Task

Clinical model 0.587 [0.476–0.698] 0.432 0.709 0.706 0.712 0.706 0.712 Training

0.672 [0.495–0.849] 0.432 0.775 0.867 0.720 0.650 0.900 Validation

RF model 0.892 [0.828–0.956] 0.560 0.854 0.784 0.923 0.909 0.814 Training

0.824 [0.677–0.971] 0.560 0.775 0.733 0.800 0.688 0.833 Validation

Combined model 0.916 [0.864–0.968] 0.487 0.845 0.804 0.885 0.872 0.821 Training

0.880 [0.743–1.000] 0.487 0.930 0.800 0.760 0.684 0.905 Validation

RF, random forest; AUC, the area under the receiver operator characteristics curve, CI, confidence interval, PPV, positive predictive value, NPV, negative predictive value.

and then, 20 features from among the remaining ones were selected 
using RF analysis. Finally, the pipeline produced a simpler model of 
seven features using the “one standard error” rule (22). The features 
reserved from SVM, LASSO, and RF pipelines are listed in 
Supplementary material 4. The findings revealed that among the seven 
most influential features identified by the RF model, four were derived 
from ADC maps, two from DWI images, and one from T2WI images.

The results of the cox proportional hazard regression model are 
showed in Supplementary material 5. The prognostic factors that 
influence the survival of patients with GBM, such as age, KPS, and 
Rad-score, should be considered in the nomogram analysis. Thus, the 
radiomics nomogram, incorporating the Rad-score along with 
relevant clinical variables, is presented in Figure  3 to provide a 
comprehensive prediction of TERT subtypes in patients with 
GBM. The performance of clinical model, RF model and combined 
model are showed in Table 3. The results revealed that the combined 

model yielded a higher diagnostic efficiency than single models in the 
training and validation sets (Figures  4A,B). The AUC of the 
nomogram was 0.916 (95% CI, 0.864–0.968) in the training set, 0.880 
(95% CI, 0.743–1.000) in the validation set. Delong test revealed that 
the AUC values in the combined model was significantly higher than 
that in clinical model (p < 0.05). By comparing the predicted outcomes 
with the actual outcomes, the calibration curve of the nomogram 
showed good agreement between the TERT subtypes predicted by the 
radiomics and the actual pathological results (Figures 4C,D). The 
Hosmer-Lemeshow test further verifies that the goodness-of-fit in the 
training and validation sets (p = 0.369 and 0.284, respectively). On the 
other hand, DCA of the nomogram is demonstrated by plotting 
threshold probabilities on the x-axis and net benefit on the y-axis. The 
blue line represents the decision curve of the RF model. The green line 
represents the clinical model curve, whereas the red line represents 
the decision curve of the RF model combined with clinical model of 
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FIGURE 4

ROC curve in the training set and validation sets for the nomogram (A,B). Calibration curves of this nomogram for distinguishing TERT mutations in 
training set and validation set (C,D). Clinical decision curve for the clinical model, RF model and combined model (E,F).
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patients with GBM. The combined nomogram model (Figures 4E,F) 
demonstrated superior performance in predicting TERT mutation 
status compared to clinical and RF models.

Prognostic performance of the prediction 
model

Among the 152 patients included in our cohort, The prognostic 
study comprised 143 patients who were known to have survived until 
the expiration date or had a specific time of death; the median 
follow-up duration was 36.8 months. we compared the survival curves 
of the high-risk and low-risk groups classified by radiomics nomogram 
with the TERT mutation group and the wild-type group based on 
pathological diagnosis. The results are shown in Table 4 and Figure 5. 
According to the radiomics nomogram, patients with a risk score 
higher than 60.979 were divided into the high-risk subgroup, and 
patients with a risk score lower than 60.979 were divided into the 
low-risk subgroup. Subsequently, Kaplan–Meier curves revealed 
significant differences between the two risk-stratified groups, which 
was in good agreement with the results of survival analyses in the 
TERT mutant group (both p < 0.001). This finding suggested that 
patients classified as high-risk exhibited an increased susceptibility to 
TERT mutation events, whereas patients classified as low-risk 
demonstrated a lower likelihood of acquiring TERT mutations. 
However, there was no significant difference between TERT mutant 
and high-risk subgroups and between TERT wild-type and low-risk 

subgroups (p = 0.322 and p = 0.068, respectively). The hazard ratio 
(HR) for the high-risk group compared to the low-risk group was 
2.828 (95% CI, 1.463–5.465), whereas the TERT mutant group 
exhibited a hazard ratio of 3.267 (95% CI, 1.853–5.762) when 
compared to the wild-type group. The median survival time of the 
high-risk group compared to the low-risk group was 18 months versus 
43 months, while for the TERT mutation group compared to the wild-
type group it was 17 months versus 36 months. The low-risk group and 
TERT wild type GBM demonstrated a significantly prolonged mean 
median survival time, indicating a positive impact on overall survival.

Discussion

We herein investigated the relationship between multi-parameter 
MRI features and the TERT mutation status, established a radiomics 
nomogram for predicting the TERT promoter mutation status, and 
verified its efficacy in prognostic assessment of GBM patients. The 
results revealed that the RF algorithm performed the best, with seven 
features yielding the highest diagnostic efficiency. Compared with RF 
models and clinical models, the combined model (clinical features and 
rad-score based on RF) showed the highest diagnostic efficacy in 
training and validation sets. The calibration curve and DCA further 
validate the pivotal clinical role of the nomogram in distinguishing 
TERT subtypes in GBM patients. Furthermore, we observed consistent 
alignment between the survival analyses in the risk-stratified group 
based on nomogram and those observed in the TERT promoter 

Table 4 The Kaplan–Meier curve of the pathologically confirmed TERT mutation group and the risk-stratified group.

Groups Subgroups Median survival 
(months)

HR
95% CI

p

TERT-mt 17

TERT mutation 3.267 [1.853–5.762]

<0.001

TERT-wt 36

High-risk 18

Risk stratification 2.828 [1.463–5.465]

<0.001

Low-risk 43

TERT, telomerase reverse transcriptase; HR, hazard ratio; CI, confidence interval.

FIGURE 5

Prognosis based on the risk-stratified based on radiomics signature (A) and pathologically confirmed TERT promoter mutation status (B).
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mutant group confirmed through pathological examination. 
Consequently, our findings suggested that the radiomics nomogram 
could non-invasively predict TERT subtypes and prognosis in GBM 
with excellent identification and calibration abilities.

Recently, there has been increasing interest in utilizing radiomics 
based on multi-parameter MRI for the prediction of TERT mutations 
in gliomas. One radiomics research used CE-T1WI, FLAIR, and ADC 
sequences to detect IDH-mutant TERT promoter-mutant gliomas 
(grades 2–4) and found that the implemented model had an AUC of 
0.971 (95% CI: 0.902–1.000), sensitivity of 0.833 (95% CI, 0.333–
1.000), and specificity of 0.966 (95% CI, 0.931–1.000) in the test set 
(23). Park et  al. developed a model that incorporated Visually 
Accessible Rembrandt Images and radiomics characteristics and 
showed improved performance (AUC = 0.854) in distinguishing TERT 
mutation of IDH wild-type low-grade gliomas (24). Although multi-
parametric radiomics has demonstrated promising results in 
accurately and sensitively predicting TERT mutations in gliomas, 
previous studies have primarily focused on grades 2–4 gliomas with 
limited investigation into GBM. Only two studies (25, 26) highlighted 
the potential of radiomics to predict TERT promoter mutation status 
in patients with GBM, providing evidence that radiomic features 
extracted from routine preoperative MRI images can be  used as 
non-invasive biomarkers for TERT classification. However, it should 
be  noted that these studies do not explicitly address the 
implementation of the radiomics nomogram. Hence, additional 
investigation is necessary to examine the prospective utility of 
incorporating a radiomics nomogram in this particular context.

Radiomics nomogram is a visual representation of the result of 
logistic regression or Cox regression. It sets a scoring scale based on 
the size of the regression coefficients for all independent variables, 
assigning a score to each value level of these variables. By calculating 
the total score for each patient, the conversion function between the 
score and the probability of the outcome occurring is used to 
determine the likelihood of the event time occurring. Studies have 
shown that the nomogram can offer valuable insights into its 
diagnostic capabilities and potential applications in clinical practice 
(17, 27–29). In this study, we systematically selected the most optimal 
classifier to achieve our objective of providing a more precise and 
reliable prediction of TERT typing. The ROC curve analysis revealed 
that the AUC values for RF algorithm in the training set were 0.892, 
indicating a superior discriminative ability compared to SVM and 
Lasso, despite all three being widely used machine learning algorithms 
for classification and regression tasks. Importantly, when we integrated 
the clinical features and rad-score on the basis of RF, the nomogram 
for the combined model demonstrated superior performance in 
predicting TERT mutation status compared to clinical and RF models 
(the AUC increased from 0.892 to 0.916). Additionally, both the 
calibration curve and clinical decision curve provide objective 
measures to evaluate the clinical application value of the nomogram 
in differentiating TERT subtypes for GBM patients.

In the present study, we also compared the survival curves of the 
high-risk and low-risk groups as classified by radiomics nomogram 
with those of the TERT mutation group and the wild-type group 
based on pathological diagnosis. The findings showed a robust 
concordance between the predictive efficacy of radiomics and 
pathological diagnosis for evaluating TERT mutations. Furthermore, 
the low-risk group and TERT wild-type GBM demonstrated a 
significantly prolonged mean median survival time, indicating a 
positive impact on overall survival. The survival analysis further 

demonstrated a significant association between the presence of TERT 
promoter mutations and shorter overall survival (OS) when compared 
to their absence, consistent with the observation of shorter survival in 
the high-risk group as opposed to the low-risk group. The findings of 
this study suggested the remarkable predictive capability of radiomics 
nomogram in identifying TERT mutations and its effectiveness in 
prognostic assessment, which aligned with previous studies (18, 30, 
31). Therefore, we  deduce that the incorporation of radiomics 
signature into clinical decision-making has the potential to be helpful 
in predicting patient outcomes, particularly during the follow-up in 
patients who are unable to undergo surgery.

Our current findings also suggest that TERT mutations are related 
to age, and that the mutation rate of TERT is higher in the elderly 
population, which was in lined with previous studies (17, 30). 
Researches have reported varying probabilities of the presence of these 
mutations, with some studies reporting that these mutations occur in 
60–80% of patients with GBM (32–34). In our cohort, TERT mutation 
was observed in 47.37% patients, which was similar to a study with a 
mutation rate of 48.27% (35). Theoretically, TERT mutations are 
hypothesized to augment telomerase activity, thereby facilitating 
cellular immortalization and potentiation of tumorigenesis. TERT 
promoter mutations serve as a pivotal oncogenic driver in GBM, 
facilitating telomerase activation and conferring unimpeded tumor 
growth and progression (34). The presence of these mutations signifies 
that the cancer cells have acquired a mechanism to evade the natural 
limitations set by the cell’s life cycle, enabling them to divide 
indefinitely and leading to rapid tumor growth (36). Furthermore, the 
TERT promoter mutations contribute to the aggressive nature of GBM 
by allowing the cancer cells to develop resistance to treatment, leading 
to a higher risk of relapse and reduced survival rates (37).

The identification of prognostic biomarkers holds immense 
significance in the medical field. Despite the generally poor prognosis 
for GBM patients, individualized treatments based on biomarkers have 
significantly improved survival rates for certain individuals. By 
providing a non-invasive and cost-effective method for predicting 
TERT typing, the radiomics may help to optimize treatment strategies 
and improve patient outcomes. More importantly, nomogram will help 
to verify the reliability, accuracy and practicability of the prediction 
model in clinical settings, and provide a valuable basis for the adoption 
and implementation of the model. This personalized approach may 
lead to improved patient outcomes by optimizing the balance between 
treatment efficacy and potential side effects (38). In future studies, 
we aim to develop more sophisticated and precise machine learning 
models to enhance the accuracy and robustness of TERT classification. 
Furthermore, integration of image data from different modalities such 
as structural MRI, functional MRI, and PET will be  employed to 
improve the precision and reliability of TERT typing.

Our study has some limitations. First, although all patients included 
were from two institutions (the sample size of the center II was too 
small to be used as an external validation cohort), further validation 
and optimization of these models on larger, more diverse patient 
cohorts are needed to uphold our results. Second, we used common 
MRI sequences to construct the radiomics signature. Although our 
results showed good diagnostic performance, incorporating more 
advanced MRI techniques is needed to improve discriminative abilities. 
Furthermore, TERT gene expression may vary between different 
regions of the same tumor, which may lead to unreliable diagnostic 
results. Hence, Advanced imaging techniques could be used to identify 
the most representative areas of the tumor for biopsy.
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Conclusion

The implementation of the RF algorithm can improve the 
diagnostic performance for detecting TERT mutations in patients 
with GBM. Moreover, the radiomics nomogram constructed by 
integrating RF algorithm and clinical features exhibits superior 
performance for determining TERT mutation status, thereby serving 
as an optimal decision-making tool to maximize net benefit in 
prognosis prediction. This approach holds great promise for 
optimizing treatment strategies and improving patient outcomes in 
future endeavors.
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