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Not all dizziness presents as vertigo, suggesting other perceptual symptoms for 
individuals with vestibular disease. These non-specific perceptual complaints 
of dizziness have led to a recent resurgence in literature examining vestibular 
perceptual testing with the aim to enhance clinical diagnostics and therapeutics. 
Recent evidence supports incorporating rehabilitation methods to retrain 
vestibular perception. This review describes the current field of vestibular 
perceptual testing from scientific laboratory techniques that may not be clinic 
friendly to some low-tech options that may be more clinic friendly. Limitations 
are highlighted suggesting directions for additional research.
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1. Introduction

Self-motion perception, the conscious awareness of active or passive motion/orientation of 
one’s body in space, is influenced by multiple factors in health and disease, including the state 
of peripheral vestibular reflexes (1), central postural control and spatial orientation systems (2, 
3), attentional networks (4), emotional states (5), and behavioral responses to perceived postural 
threats (6). Individuals with persistent complaints of vertigo/disequilibrium experience 
abnormal vestibular self-motion perception and spatial orientation (7–12). Subjective 
experiences and reported symptoms are often incongruent with the results of routine diagnostic 
tests of vestibular function and vary across individuals with similar diagnoses (13–20). This can 
be particularly troublesome for individuals with dizziness who present with normal vestibular 
function testing which can be the case for vestibular migraine, mal de debarquement syndrome, 
and persistent perceptual postural dizziness (21–23). It is interesting to note that several methods 
of vestibular perceptual testing are able to distinguish healthy individuals from individuals with 
vestibular disease (8, 24–29). Performance on some vestibular perception tests correlates with 
balance ability (30–32), which suggests clinical utility (33). However, the role of vestibular 
perceptual testing in the diagnosis and treatment of individuals with dizziness remains 
undefined, possibly in part due to the specialized equipment (34) or time involved in testing 
(35). In this review, we synthesize the existing literature describing several different forms of 
vestibular perceptual testing that range in application from the laboratory setting to clinical use.

We expand on the traditionally narrow definition of vestibular perception (movement 
detection or movement discrimination) to include spatial orientation, spatial navigation, and 
spatial cognition as vestibular signals are known to contribute to more global spatial perception\
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cognition and navigation (1, 36–44). In the first section, we briefly 
review the anatomical pathways contributing to vestibular perceptual 
abilities as well as review the historical and state of the art approaches 
to vestibular self-motion perception. In the second section, we review 
approaches to vestibular spatial orientation and verticality. In the third 
section, we review approaches to vestibular spatial navigation. In the 
fourth section, we review global perspectives on vestibular cognition. 
We conclude the review with the authors’ perspectives on clinical 
value and clinical utility as well as some potential recommendations 
for the future.

2. Vestibular perception: anatomy to 
laboratory testing

Vestibular perceptual thresholds are a laboratory-based technique 
used to measure an individual’s sensitivity to passive self-motion cues 
(33, 45). This is accomplished by measuring the ability to perceive a 
passive whole-body motion stimulus in the absence of visual feedback 
(e.g., blindfolded or in a light tight room) and with tactile and auditory 
cues minimized (e.g., noise cancelling headphones and padded seats). 
Although the specific test procedures and statistical approach used to 
estimate a threshold will ultimately determine the exact interpretation 
of the value reported, in general, an individual with a lower vestibular 
threshold should, on average, be  able to reliably perceive smaller 
motion stimuli. A person’s “vestibular threshold” therefore serves as a 
behavioral measure of the sensitivity of the vestibular system to a 
specific vestibular motion stimulus (e.g., tilt, rotation, or translation). 
In this review we will briefly cover the methodology used to measure 
vestibular thresholds, and then provide an overview of normal and 
pathologic responses captured by vestibular thresholds. Interested 
readers are referred to prior, more comprehensive reviews that cover 
the experimental methods and statistical approach to estimating 
vestibular thresholds (33, 45–48).

The most common method for measuring vestibular thresholds 
is a direction recognition task (DRT) (45). In a DRT, an individual 
is passively moved and then asked to judge the direction of the 
motion stimulus (e.g., left vs. right or up vs. down). Although this is 
commonly done using a two-alternative forced choice task (e.g., 
deciding between a left and right yaw rotation), recent approaches 
have successfully used up to 12 alternative choices (6 motion planes 
and 2 directions for each) (35, 49). An adaptive staircase procedure 
— decreasing the size of the motion stimulus after a number of 
consecutive correct responses and increasing the size of the stimulus 
after an incorrect response (50) — is also typically used to efficiently 
sample stimulus values around an individual’s threshold (45). The 
vestibular threshold is then determined from these binary responses 
by taking either (a) the average of the terminal staircase reversals 
[e.g., averaging the stimuli at the step up (after an incorrect 
response) and the step down (after a number of correct responses) 
(7, 51, 52) or (b) by fitting the data to a psychometric function (30, 
47, 53–56). Fitting the data to a psychometric function holds the 
advantage of using all of the participant’s responses, rather than only 
the final number of reversals, and also yields a threshold value with 
a clear physiological interpretation based upon signal detection 
theory (45, 57, 58). The methods described by Merfeld and 
colleagues (45, 46, 48) involve fitting the binary subject responses 
(e.g., right versus left) and stimulus magnitudes to a Gaussian 

cumulative distribution function (CDF) to estimate the 1σ (i.e., “one 
sigma”) threshold. This parameter corresponds to the stimulus 
magnitude that would on average be perceived accurately on ~84.1% 
of trials. Therefore, if a human observer has a yaw vestibular 
threshold of 0.5°/s, assuming zero bias, this individual should on 
average be able to accurately perceive the direction (e.g., right vs. 
left) of a 0.5°/s yaw rotation on 84.1% of trials. For an individual that 
instead has a threshold of 5°/s — putatively resulting from a bilateral 
vestibular lesion — the probability of correctly sensing the direction 
of the same 0.5°/s motion stimulus is nearly the same as the flip of a 
coin (~53%).

Based upon principles of signal detection theory, the 1σ parameter 
is equivalent to the width of the CDF, and as a result, the threshold 
parameter is proportional to the noise in an individual’s perceptual 
estimate of the motion stimulus [see (45, 59, 60) for additional details 
on vestibular noise]. Vestibular thresholds can therefore describe 
either “sensory noise,” or “sensory precision,” with the two terms being 
inversely related to the threshold parameter — higher thresholds 
indicating increased noise and lower precision (59). Regardless of 
whether the threshold is interpreted as a measure of “sensitivity” or a 
measure of “sensory precision/noise,” the definitions are harmonious. 
The threshold parameter in actuality reflects the ratio between signal 
strength and sensory noise (i.e., the signal to noise ratio). As such, a 
lower signal to noise ratio, as represented by a higher threshold, will 
make the relevant motion stimulus harder to separate from internal 
sensory noise resulting in both (a) the need for a larger motion 
stimulus to permit an accurate perception of motion (lower sensitivity) 
and (b) greater variability in the subjective experience of the motion 
(imprecision or increased noise) [see (59) for additional reading on this 
topic]. It is also worth mentioning that from these methods, a “bias” 
parameter that describes the mean of the CDF (i.e., the displacement 
of the CDF along the abscissa) is also estimated (45). However, in 
comparison to thresholds, vestibular bias has yet to be  studied 
in-depth in patient populations, and as a result we focus the present 
review only on the threshold parameter.

Throughout this section of the review, the term “vestibular 
threshold” will also be more precisely specified based upon the motion 
trajectory (translation, rotation, or tilt), plane of motion (e.g., fore-aft, 
interaural, superior–inferior) and the frequency of the motion 
stimulus; since single cycles of sinusoidal acceleration are most often 
used as the motion stimulus, the stimulus frequency describes the 
inverse of the motion duration (e.g., 1 Hz = 1 s per motion, 0.2 Hz = 5 s 
per motion). The vestibular system is multi-modal, with five sensors 
within each labyrinth that collectively allow us to sense and response 
to rotations (via the semicircular canals), translations (via the otolith 
organs), and tilts (via a combination of canal and otolith inputs) of the 
head (61). The relative excitability of afferent neurons within the 
different end-organs is determined primarily by the type of motion 
(rotation versus translation) and frequency of the motion stimulus 
(61). As such, by carefully selecting the plane of motion and the 
stimulus frequency (30, 53, 56, 62), vestibular thresholds can 
preferentially quantify motion perception with predominant 
contributions from the different end-organ pairs, see Figure 1 for an 
example. Table 1 summarizes several motion profiles commonly used 
to assay vestibular perceptual thresholds with predominant 
contributions from the various end-organs. This list is not all inclusive, 
but is instead based upon a recent series of empirical studies (53, 
56, 62–64).
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2.1. Normative data and age effects

Bermúdez Rey et  al. measured vestibular thresholds in 105 
asymptomatic adults between 18 and 80 years of age (30). Direction 
recognition thresholds were measured for 1 Hz yaw rotations (lateral 
canal), 1 Hz interaural translations (utricles), 1 Hz superior–inferior 
translations (saccules), and roll tilt at 2 frequencies (1 Hz – vertical 
canals, 0.5 Hz – canal-otolith integration). A linear increase in each of 
the thresholds was observed beginning at approximately age 40 (30). 
The strongest effect seen was for superior–inferior thresholds, with an 

observed increase of 83% per decade (Table  1). However, by 
comparison yaw rotation thresholds were relatively spared, showing 
only a weak association with age (15% increase per decade). Although 
the study by Bermúdez Rey et al. is the largest to date, additional 
studies of smaller sample sizes similarly support (1) an age effect on 
vestibular translation thresholds, specifically interaural translation and 
superior–inferior translation thresholds (29, 54, 65), as well as (2) a 
weak association between age and yaw rotation thresholds (54, 66, 67). 
Only a single study (N = 28) showed a lack of an association between 
interaural threshold and age (68), however the study by Kingma and 
colleagues showed an effect of age on fore-aft translation thresholds 
and the study only included adults up to age 60, potentially reducing 
the strength of the age effect on interaural translation thresholds. This 
is consistent with epidemiology reports indicating reduced otolith 
function in the 7th and 8th decade (69).

Gabriel et al. recently used a two-interval detection task (“did 
you  move in interval 1 or 2”) and a two-interval magnitude 
discrimination task (e.g., “was movement 1 or 2 larger”) to determine 
differences in 0.5 Hz superior–inferior translation and 0.5 Hz pitch tilt 
thresholds between young adult (N = 18) and older adult (N = 19) 
participants (70). They found that older adults demonstrated an 
increase in detection thresholds, but not discrimination thresholds, 
relative to young adults (70). This study also found that within the 
older adult group, superior–inferior detection thresholds, pitch 
detection thresholds, and pitch discrimination thresholds each 
showed significant correlations with quiet stance postural sway (70). 
Bermúdez Rey and colleagues also compared vestibular thresholds to 
“pass/fail” balance performance on the four conditions of the Modified 
Romberg Balance Test. In adults over the age 40 (N = 56), they showed 
that an individual’s 0.2 Hz roll tilt threshold (a test requiring the 
central integration of canal and otolith signals) was the strongest 
predictor of whether they were able to complete an “eyes closed, on 
foam” balance test (30, 31). This relationship between roll tilt 
thresholds and postural control has since been further characterized 

FIGURE 1

(A) Exemplar image of a subject sitting in a chair mounted to a hexapod base participating in an experiment to quantify roll-tilt threshold. Typically, this 
experiment would be conducted in the dark to emphasize vestibular signals of inertial motion. Subjects respond with a button press to indicate 
whether they tilted to the right or the left. (B) In this example the subject is tilted 5° to the right. The solid red line indicates earth vertical and the 
dashed purple line indicates body orientation after a head centered roll-tilt to the right.

TABLE 1 Common motion profiles used to measure vestibular perception 
with predominant contributions from the different end organs.

Vestibular end-
organ

Motion(s) References

Lateral canals
Earth vertical yaw 

rotations
(51, 62, 63)

Vertical canals

Earth horizontal tilts 

(≥2 Hz*) earth vertical 

rotations

(56, 62–64)

Utricles

Interaural translations 

(<2 Hz**) quasi-static 

tilts

(24, 53, 62–64)

Saccules

Superior–inferior 

translations (<2 Hz**) 

quasi-static tilts

(53, 62, 63)

Canal-otolith 

integration

Earth horizontal tilts 

(<1 Hz***)
(56, 62–64)

*2 Hz earth-horizontal tilts thresholds were shown to be equivalent to 2 Hz earth-vertical 
rotation thresholds, supporting the predominant use of vertical canal signals. **Relative to 
1 Hz translations, translations at 2 Hz were shown to be more influenced by extra-vestibular 
(e.g., proprioceptive) motion cues. ***Thresholds for earth horizontal tilts improve at lower 
frequencies (<1 Hz), presumably due to the integration of otolith and vertical canal inputs.
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by studies showing significant correlations between roll tilt thresholds 
and quantitative measures of postural sway (32, 71). The specific link 
between roll tilt thresholds and postural control does however contrast 
with the findings of Gabriel et al. (70), as the study by Bermúdez Rey 
and colleagues did not find a significant association between balance 
performance and superior–inferior translation thresholds (30, 31, 72). 
Yet, the disparate methods used (two-interval detection and 
discrimination tasks versus a one-interval direction recognition task) 
prevents a direct comparison between the findings of the two studies.

As it represents the largest normative dataset currently available, 
Table  2 provides an overview of the threshold values per decade 
measured in the study by Bermúdez Rey et al. (30). Despite the healthy 
nature of the population [see (30) for exclusionary criteria used] the 
thresholds measured displayed considerable variability within the 
cohort (30) (Figures  1–3). The source of variability in thresholds 
between asymptomatic adults may be indicative of subclinical changes 
to the vestibular system that cause an increases in thresholds prior to 
the onset of symptoms (60, 72) or may reflect the influence of 
confounding factors, unaccounted for in the current threshold 
assessment protocols. This remains an open area of investigation.

2.2. Vestibular hypofunction

Several studies have characterized the influence of peripheral 
vestibular hypofunction on vestibular thresholds. Due to the time 
required to complete a standard staircase procedure (i.e., to 50 to 200 
trials over 8 to 30 min) (47), Cutfield et al. developed an abbreviated 
‘time to response’ threshold task for the assessment of patients in the 
acute stages of vestibular neuritis (VN) (75). In contrast to the 
two-alternative forced choice task described above, individuals are 
asked to report the perceived direction of motion as quickly as 
possible, with the threshold being defined by the latency between the 
motion onset and a button press. Cutfield et  al. (75) showed that 
patients with acute unilateral vestibular hypofunction (UVH) due to 
VN (N = 12) showed a significant elevation in yaw rotation thresholds, 
as indicated by a prolonged duration between motion onset and 
subject response. In a follow-up study, Cousins et al. similarly showed 
that individuals with acute UVH (N = 25) due to VN showed an 
elevation of vestibular thresholds relative to healthy controls (N = 30) 
within the first 1–5 days from symptom onset (76). Rotation thresholds 
were increased for both ipsilesional and contralesional rotations but 
showed a greater elevation toward the lesioned ear. Even after a period 

of presumed vestibular compensation, participants showed a 
consistent elevation in thresholds at 10 weeks from the time of lesion 
(76). Recently, Madhani et al. used a two-alternative forced choice task 
to measure yaw rotation thresholds in a group of 8 participants 
diagnosed with neurofibromatosis (NF-2) related schwannomatosis 
(N = 5 bilateral and N = 3 unilateral) and 38 participants with sporadic 
unilateral vestibular schwannomas (SWN) (77). They found that 1 Hz 
yaw rotation thresholds were elevated for both groups relative to 
healthy controls (N = 23) (77). In two of the patients with bilateral 
NF2-SWN, perceptual thresholds were also improved following 
treatment with chemotherapy (bevacizumab) (77). Since the healthy 
labyrinth provides a bidirectional response to yaw rotations secondary 
to an inhibitory response from the contralateral side, approaches such 
as those utilized by Roditi and Crane (54) that use independent 
staircases for right and left rotations may be  of benefit in the 
assessment of vestibular hypofunction.

Prior to discussing the literature describing the impact of bilateral 
vestibular lesions on vestibular thresholds, a distinction must first 
be  made between studies that include “bilateral vestibular 
hypofunction” (BVH) and studies that have intentionally recruited 
patients with a total bilateral vestibular loss due to bilateral vestibular 
labyrinthectomies (BVL). In BVH, the vestibular apparatus remains 
present, and as a result BVH is often characterized by an incomplete 
loss of vestibular responses bilaterally. Individuals who have instead 
experienced a bilateral labyrinthectomy lack a vestibular system, and 
as such, produce no vestibular response to motion. As a result, studies 
that include individuals with BVL have primarily been conducted as 
a means to describe vestibular contributions to motion perception (62, 
63), rather than as a means to gain specific insights into a common 
patient population. Valko et al. found that patients with BVL (N = 3) 
had vestibular thresholds that were between 1.3 and 56.8 times greater 
than age-matched healthy controls (N = 14) with the magnitude of the 
difference depending upon both the specific motion direction 
(interaural translation, superior–inferior translation, yaw rotation, 
and roll tilt) and frequency (62). In a more recent study, Kobel and 
colleagues showed that vestibular thresholds for 2 individuals with 
BVL were between 2 and 35 times greater than healthy controls for a 
more comprehensive set of motions that included roll tilts (head 
rotated about an earth horizontal axis while sitting upright) and roll 
rotations (rotated about an earth vertical axis while supine) performed 
across a broad range of frequencies (0.2 to 2 Hz) (63). Together these 
studies highlight the dominance of vestibular inputs during vestibular 
thresholds assayed using a direction recognition task.

TABLE 2 Data presented show the geometric mean and 95% confidence intervals for each threshold measure for each age range (N  =  105).

Yaw rotation Interaural translation Superior–inferior 
translation

Roll tilt Roll tilt

Stimulus frequency 1 Hz (1 s/cycle) 1 Hz (1 s/cycle) 1 Hz (1 s/cycle) 0.2 Hz (5 s/cycle) 1 Hz (1 s/cycle)

18–29 1.06 (0.87–1.28) 0.61 (0.48–0.79) 1.36 (1.04–1.77) 0.37 (0.31–0.44) 0.70 (0.60–0.82)

30–39 1.04 (0.86–1.26) 0.64 (0.52–0.78) 1.26 (0.96–1.67) 0.37 (0.30–0.46) 0.65 (0.52–0.81)

40–49 0.99 (0.83–1.19) 0.79 (0.59–1.05) 1.91 (1.44–2.53) 0.46 (0.37–0.59) 0.92 (0.71–1.18)

50–59 1.16 (0.94–1.44) 0.99 (0.75–1.29) 2.81 (2.23–3.53) 0.57 (0.45–0.72) 1.19 (1.00–1.42)

60–80 1.45 (1.14–1.84) 1.15 (0.87–1.53) 4.35 (2.86–6.60) 0.67 (0.51–0.88) 1.74 (1.29–2.35)

Change per decade 15% 46% 83% 32% 56%

The percent change per decade is relative to a baseline, under which no age effects were seen. This table is recreated from (30) with permission.
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In individuals with BVH, early studies looking at motion 
perception were less conclusive. In the late 1990’s and early 2000’s, 
two studies that included four and five individuals with BVH 
respectively, found a lack of evidence to support a difference in 
translation (78) or tilt (79) perception relative to healthy adults. 
However later, Priesol et al. captured a more comprehensive battery 
of vestibular thresholds in four individuals that each had received 
a prior diagnosis of idiopathic BVH (26). They found that thresholds 
were not uniformly elevated across this sample, but instead 
individuals with BVH showed a selective increase in yaw rotation 
thresholds (assaying the lateral canals) and low frequency interaural 
translation thresholds (assaying the utricles) (26). Valko et  al. 
similarly found a larger difference in translation thresholds at lower 
frequencies in individuals with BVL which suggests a potential 
increase in the contributions of non-vestibular inputs at the higher 
frequencies (62). Priesol et al. did not however show a significant 
difference between individuals with BVH and healthy controls for 
superior–inferior translation (assaying the saccules) or roll tilt 
(assaying central canal-otolith integration) thresholds. More 
recently, Shayman and colleagues did find a significant increase in 
1 Hz yaw rotation thresholds for individuals with BVH (80), 
however this study included only 3 participants, and thus differences 
in the results of Priesol (n = 4) and Shayman (N = 3) may be a result 
of the small sample sizes. Since vestibular thresholds vary 
considerably between even healthy (asymptomatic) individuals 
(Table  2), the results of studies that include small sample sizes 
should be viewed with caution.

In two larger studies of adults with BVH (N > 30), van Stiphout 
et al. and Agrawal et al. found more global changes in vestibular 
thresholds (49, 65). Van Stiphout and colleagues measured thresholds 
for 3 planes of translation (fore-aft, interaural, and superior–inferior) 
and 3 planes of rotation/tilt (yaw rotation, pitch tilt, and roll tilt) in 
37 adults with BVH and 34 healthy controls. In contrast to a standard 
two-alternative forced choice task, a 12 alternative choice task was 
used that required the participants to select both the direction (e.g., 
right vs. left, up vs. down) and type of motion (rotation vs. 
translation) experienced. The data were then analyzed within two 
subgroups, a middle-aged group aged 40–59 (N = 18 with BVH) and 
an older adult group aged 60–79 (N = 19 with BVH). With the 
exception of superior–inferior translation thresholds in the older 
adult group and roll tilt thresholds in the middle-aged group, all 
other thresholds measured were significantly elevated relative to 
age-matched healthy controls. Of note, superior–inferior translation 
thresholds are markedly increased in asymptomatic older adults (30) 
(Table 2), and thus, this may explain the lack of an effect of BVH of 
superior–inferior thresholds specifically in the older adult group. An 
additional study by Agrawal and colleagues found significant 
increases in interaural, fore-aft, and superior–inferior thresholds in 
individuals with BVH (N = 33) relative to healthy controls 
(N = 42) (65).

The principal take away from these studies is that vestibular 
thresholds are capable of detecting specific changes in vestibular self-
motion perception in individuals with peripheral vestibular 
hypofunction. Since vestibular hypofunction may include varying 
levels of damage to the different branches of the vestibular nerve or to 
the individual vestibular end-organs, a characteristic change in a 
specific motion paradigm should not be assumed. Instead, these data 
highlight the need for future studies to characterize a comprehensive 

battery of threshold measures to fully capture the impact of UVH and 
BVH on the vestibular system.

2.3. Vestibular migraine and Meniere’s 
disease

Over the past decade, vestibular thresholds have been studied as 
a potential objective measure to help with the diagnosis of vestibular 
migraine (VM). Lewis et  al. showed that individuals with VM 
(N = 8) demonstrated significantly lower 0.1 Hz roll tilt thresholds 
compared to both healthy controls (N = 8) and individuals with 
non-vertiginous migraine (N = 8) (7). Alternative vestibular 
thresholds that relied primarily upon either the semicircular canals 
(1 Hz dynamic roll tilt, 0.1 Hz supine roll rotation, and 1 Hz supine 
roll rotation) or the otoliths (quasi-static roll tilt) in isolation did not 
differ between patients with VM and the other groups. In a follow-up 
study, King et al. showed that individuals with VM (N = 12) displayed 
low to mid frequency (0.05 to 0.2 Hz) roll tilt thresholds that were 
significantly lower compared to individuals with non-vertiginous 
migraine (N = 12), healthy controls (N = 12), and individuals 
diagnosed with Meniere’s disease (MD; N = 8; only 0.2 Hz roll tilt 
thresholds were measured in this group) (24). Similar to the earlier 
study, thresholds for higher frequencies of roll tilt (≥1 Hz) as well 
interaural translations (0.2, 0.3, and 0.5 Hz) and supine roll rotations 
(0.2 and 0.5 Hz) were not significantly different between the 
individuals with VM and either the healthy controls or 
non-vertiginous migraineurs.

Due to the overlapping clinical presentations of VM and MD, 
additional studies have also attempted to use vestibular thresholds to 
differentiate between these two patient groups. Bremova et al. found 
that patients with MD (N = 27) demonstrated higher 1 Hz interaural, 
fore-aft, and superior–inferior translation thresholds compared to 
individuals with VM (N = 20); only superior–inferior and fore-aft 
thresholds were elevated relative to the healthy control group (N = 34) 
(29). Consistent with the findings of Lewis et al. (7) and King et al. 
(24), individuals with VM did not display differences in translation 
thresholds relative to healthy controls (29). Using a “time to response” 
task, Bednarczuk et  al. did however find that patients with VM 
(N = 15) showed a longer response latency during earth vertical yaw 
rotations when compared to healthy controls (N = 15), as well as 
compared to individuals with non-vertiginous migraine (N = 15) (81). 
A group with benign paroxysmal positional vertigo (BPPV, N = 15) 
was also included and showed similar yaw rotation thresholds as the 
VM group (81). It is worth highlighting that this timed response task 
differs substantially from the forced choice direction recognition task 
used in the prior studies of individuals with VM.

From these data it can be concluded that vestibular thresholds in 
individuals with MD are consistent with a loss of sensitivity to self-
motion cues, analogous to the effect of vestibular hypofunction. 
Conversely, individuals with VM show a higher sensitivity to low to 
mid frequency roll tilts (i.e., lower thresholds). Since the perception of 
a low to mid frequency roll tilt stimulus requires that the brain 
perform computations that combine angular velocity signals from the 
vertical semicircular canals with gravitoinertial acceleration signals 
from the otolith organs [see (82–85) for greater details], these findings 
in individuals with VM have been posited to reflect abnormal central 
canal-otolith integration (7, 8, 24).

https://doi.org/10.3389/fneur.2023.1265889
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Grove et al. 10.3389/fneur.2023.1265889

Frontiers in Neurology 06 frontiersin.org

2.4. Traumatic brain injury

A traumatic brain injury (TBI) can be  readily diagnosed by 
correlating symptom onset with a traumatic event. However, recently 
considerable attention has been given to further classifying individuals 
into concussion subtypes (e.g., vestibular, headache, cognitive) to 
enable early access to targeted medical and rehabilitative services (86, 
87). Vestibular dysfunction following TBI is primarily determined by 
the subjective report of symptoms elicited by specific head motions 
(88); physiologic vestibular metrics that capture vestibular impairments 
have been more elusive (89). A recent study found that vestibular 
perceptual thresholds may aide in the identification TBI related 
vestibular impairment, referred to as “vestibular agnosia” (44). 
Seemungal and colleagues showed that in the acute phase after a TBI 
(N = 37), yaw rotation thresholds were significantly elevated relative to 
age-matched healthy controls (N = 37) (44). Individuals with elevated 
vestibular thresholds also showed an increase in postural sway (44), 
increasing the likelihood that the changes observed represented a 
change in vestibular function. However, the isolated assessment of yaw 
rotation thresholds restricts these data to describing only the influence 
of TBI on the processing of lateral canal signals, and the broader impact 
of TBI on the remaining vestibular modalities requires further study.

2.5. Benefits of vestibular thresholds

Vestibular thresholds are not currently available as a clinical 
assessment for individuals with suspected vestibular pathology. 
Nevertheless, thresholds hold several notable advantages over the 
currently available vestibular clinical assessments. One of the primary 
advantages to vestibular thresholds is the ability to quantify different 
vestibular modalities using a single experimental methodology. While 
vestibular thresholds are not free of confounding influences (e.g., 
attention, fatigue) these factors should similarly influence the 
perception of different motion paradigms (tilt, translation, or rotation 
thresholds) and as such, non-vestibular factors should not exert a 
disparate influence on translation versus rotation thresholds. By 
comparison, standard clinical metrics assess the semicircular canals 
by quantifying the vestibulo-ocular reflex (e.g., calorics, video head 
impulse testing) and the otolith organs by measuring vestibular 
evoked myogenic potentials (VEMPs). The marked differences in 
experimental methodologies (oculomotor versus electromyographic 
responses) introduces the potential for confounding factors that may 
have disparate influences on the specific canal or otolith assessments. 
The second fundamental advantage is that vestibular thresholds are 
the most direct method for specifically measuring vestibular sensation 
in human participants. Alternative vestibular assessments require that 
sensory dysfunction be inferred from changes in the sensorimotor 
response observed (e.g., increased sway, decreased slow phase eye 
velocity, absent myogenic potentials), and as a result, these measures 
represent changes in sensory function alongside a sensorimotor 
transformation and the integrity of the motor limb of the response.

2.6. Limitations of vestibular thresholds

Vestibular thresholds possess several limitations that may serve as 
a barrier to their eventual clinical implementation. There is currently 

an absence of standardized methodologies for measuring and analyzing 
thresholds. As a result, data collected in different laboratories should 
be  compared with caution. An additional barrier to the use of 
thresholds as a diagnostic measure is the variability in thresholds 
within samples of healthy, asymptomatic adults. Since thresholds can 
vary widely in healthy adult populations (30), identifying cut-off values 
for vestibular pathology is challenging. It is however likely that this 
variability is a result of both natural variance within the population as 
well as variability inherent to the threshold assessment paradigms 
currently used. The standardization of methods, and the identification 
of “normative” data and cut-off values for vestibular pathology are 
critical steps needed to develop vestibular thresholds as a viable clinical 
assessment tool. Finally, the assessment of thresholds currently requires 
specialized equipment and software that are not at the present time 
available in clinical settings. It is however worth highlighting that the 
cost of a 6-degree-of-freedom motion platform is comparable to the 
cost of the computerized dynamic posturography platforms that are 
commonly found in many audiologic and physical therapy clinics. As 
such, if the clinical utility of vestibular thresholds can be established, 
this final limitation is unlikely to pose a substantial challenge to the 
clinical implementation of vestibular thresholds.

3. Vestibular perception: spatial 
orientation and verticality

Moving beyond detection and direction discrimination of self-
movement, we  next focus on vestibular contributions to spatial 
perception. Spatial orientation can be conceptualized as the ongoing 
estimate of the three-dimensional spatial relationship between self and 
the surrounding world which necessarily implies sensory integration 
(90–93), and one’s ability to update the spatial reference frame of self-
relative to the world after moving within the world (94–97). This 
process depends on successful and accurate integration of egocentric 
(vision, vestibular, somatosensation) self-motion cues and allocentric 
spatial representations, such as landmarks (2, 98, 99). Not surprisingly, 
spatial orientation involves distributed higher cognitive processing (43, 
100–104), and can be adversely impacted by cognitive impairment, 
stress, and mental health disorders (5, 105–107). For the purpose of 
this review, we will restrict this topic to vestibular contributions to 
spatial orientation: the otoliths and semicircular canals (37, 39, 95, 
108–110). We also distinguish spatial orientation (rotation only) from 
directional linear translations (heading) that may be  navigation 
specific. Spatial navigation will be discussed in the next section.

Rotational vestibular signals directly contribute to three-dimensional 
compass mapping of space (111, 112). Specifically semicircular canal 
inputs provide input to head direction cells via thalamic pathways (39, 
113, 114), thought to directly contribute to our ability to recognize which 
direction we  are currently facing. This head in space directional 
information combined with the inertial signal from motion allows for 
recognition of which direction we were previously facing as well as 
updating to the new spatial orientation (1, 28, 101, 108). Similar to 
frequency dependent non-linearity observed with the vestibulo-ocular 
reflex, spatial orientation is worse at low frequencies (99). Importantly, 
spatial updating depends on knowledge of results of the movement 
based on integrating sensory feedback or cognitive knowledge (108), and 
greater reliance on cognitive representations of space is needed when 
individuals are asked to delay their response rather than immediately 
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respond (115). Rotational spatial orientation can be  conceptualized 
based on the response question: “where\what am I currently facing” (1, 
28, 108) versus “where\what was I facing” (99, 116). Responses vary by 
metrics from reporting degrees of rotation, analog clock positions, or 
allocentric world fixed objects as proxies for rotation.

3.1. Normative data and age effects

For small low frequency rotations (~16°) reorienting errors 
(“where were you  facing”) in healthy subjects are biased in the 
direction of physical rotation (exaggerating displacement) but 
normalized at higher frequency rotations (99). For larger rotations, 
average errors in healthy adults are relatively small ~25° or less (1, 28, 
108). There is conflicting information regarding the potential for an 
aging effect on spatial orientation updating. Jáuregui-Renaud initially 
found no relationship between age and spatial orientation updating 
ability (28). However, using a similar paradigm, we demonstrated an 
aging effect such that older individuals made larger errors than 
younger individuals independent of vestibular function (108). In a 
study that involved self-controlled rotation back to the origin following 
a rotation in the dark, Zachou and Bronstein identified an age-related 
decline in accuracy for the return to origin, but not for the more 
complex complete the circle condition (97). Importantly, this style of 
spatial orientation testing (rotational trajectory matching) may involve 
different cognitive processes and has the potential for increased 
sensory noise associated with aging to negatively impact accuracy on 
the spatial estimate for both the initial rotation and the return rotation 
(59). Taken together, these findings suggest that increased age has a 
negative influence on spatial orientation for relatively simple spatial 
orientation tasks, which may reflect the reduction in vestibular 
function associated with loss of hair cells and afferent neurons known 
to occur with aging (69, 117, 118). The lack of an aging effect for more 
complex tasks may indicate greater resilience to aging effects associated 
with higher cognitive processes that estimate space or time (119–121).

3.1.1. Vestibular hypofunction
Individuals with BVH demonstrate larger spatial errors during 

rotational testing compared to healthy individuals, tending towards 
underestimation for large amplitude spatial rotation tests (1, 28). 
Interestingly, individuals with UVH perform with similar spatial 
accuracy compared with healthy individuals, regardless of presence 
of dizziness. Intact vestibular function is linked to the ability to 
represent external space as well as accurate body spatial schema (122–
124). This may explain why individuals with unilateral vestibular loss 
perform at levels similar to healthy individuals. The existing spatial 
orientation tests are performed at peak velocities below inhibitory 
cut-off, allowing afferent rotational signals from the intact ear to 
provide sufficient self-motion signals for spatial integration (125). In 
this context, any residual function should be sufficient to perform 
supra-threshold spatial orientation tasks with relative accuracy.

3.2. Verticality perception

The related concept of verticality (gravitational) perception can 
be evaluated using several different frameworks. Arguably the most 
common clinical method of verticality perception is subjective visual 

vertical (SVV) (126–129); although, subjective visual horizontal 
testing can also be examined (73, 130, 131). Visual vertical/horizontal 
perception involves orienting or judging a line with respect to the 
perceived direction of gravity (or orthogonal to gravity in the case of 
horizontal estimates) and implies integration of vision and otolithic 
function (127, 129, 130, 132). These methods are often applied as a 
solitary line in an otherwise featureless environment (133), but can 
also be presented with disorienting visual cues such as a tilted frame 
or rotating disc to evaluate the degree of visual dependence (134–137).

SVV has been found to be a valid and reliable perceptual test and 
is relatively easy to apply clinically (138–140). Unfortunately, 
abnormal percepts of verticality are not restricted to vestibular 
end-organ dysfunction (73, 131, 141, 142), indicating a lack of 
specificity from a diagnostic perspective. Recently, SVV was suggested 
to provide prognostic information related to resolution of BPPV (143), 
and within 6 months of VN errors in SVV has normalized (144).

SVV is most commonly examined in sitting, but can also 
be  performed in standing, see Figure  2 for examples (145). 
Interestingly, verticality perception is also influenced by both static 

FIGURE 2

Examples of subjective visual vertical (SVV) testing. (A) Low-tech 
“bucket” method testing a seated subject (73). (B) Example styles of 
high-tech SVV testing with projection screens or using virtual reality, 
(1) tilted line on blank background; (2) “Rod and Frame” - tilted line 
presented in tilted square; (3) dynamic SVV – background of dots 
rotating clockwise or counter-clockwise with a tilted line in the 
center. (C) SVV performed in virtual reality while seated. (D) SVV 
performed in virtual reality while standing. Patient task in all scenarios 
is to indicate when the visible line is oriented with vertical either 
verbally or by button press. Photos in (C,D) digitally altered to 
improve visibility of the tilted red line presented on the computer 
monitor.
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and dynamic body positioning suggesting integration beyond visual 
and vestibular contributions (25, 92, 132, 146–151). Importantly, SVV 
is a distinct construct from subjective body vertical (141). Differences 
in methodology such as reorienting the line versus indicating the 
direction of tilt (two-alternative forced choice) as well as whether the 
subject/patient performs the reorientation actively or halts an 
observed reorientation make it difficult to compare results across 
studies and are each prone to specific biases (152). Despite variations 
in test performance, SVV has excellent validity and reliability (133), 
thus making SVV testing very clinic appropriate.

3.2.1. Normative data and age effects
The normative values for SVV are less than 2° of error (153–155), 

and in some studies there is a suggestion that monocular viewing 
enhances test correlation with disease state (156). Although aging leads 
to reduced otolith function as assessed by VEMPs, there does not seem 
to be a consistent adverse effect of aging on static SVV accuracy (135, 
155). In contrast, older adults make larger errors when tested with a 
dynamic rotating visual background during dynamic SVV testing (135), 
implying greater deficits in multisensory perceptual integration with age.

3.2.2. Vestibular hypofunction
Individuals with BVH have demonstrated larger visual biases with 

rod and frame testing and overall greater variability in response 
accuracy with head on body tilted positions compared to healthy 
individuals (157). Individuals with bilateral hypofunction, but 
preserved utricular function based on ocular VEMPs have lower 
variability and overall higher accuracy for SVV (158) than individuals 
with unilateral vestibular hypofunction.

3.3. Traumatic brain injury

Individuals with TBI often experience dizziness, not necessarily 
related to vestibular pathology (89, 159–161). It is unclear whether 
individuals with concussion\TBI experience spatial disorientation as a 
component of their dizziness, the existing knowledge is more related to 
navigation and cognitive challenges (12). Brainstem and cortex lesions 
are associated with larger errors on SVV testing, implicating central 
pathways are involved in processing these signals (142, 156). 
Approximately 40% of individuals with non-specific dizziness after a 
mild TBI demonstrate abnormally large errors on SVV testing (162). It 
is unclear whether subjective visual vertical abnormalities after TBI are 
due to peripheral, central or mixed causes reducing diagnostic specificity.

3.4. Implications of spatial and verticality 
testing in rehabilitation

Clinicians interested in including assessments of spatial 
orientation need to recognize the difference between (1) spatial 
orientation and (2) spatial updating, and select a test designed to 
evaluate the desired function. Spatial updating may provide a further 
window into vestibular cognition, but importantly should also involve 
progressive improvement due to the inclusion of “ground truth” 
knowledge of results provided after each movement via verbal 
feedback or multisensory integration (163–165). This would 
be characterized by reduction in errors over testing repetitions. For 

spatial orientation/updating tasks, rotational speed will be important 
as slower rotation velocities (lower frequencies) will lead to biased and 
more variable responses. Unlike the expensive equipment necessary 
for threshold testing, spatial orientation/updating examination can use 
a barber/salon style chair with a footrest, which may allow for greater 
clinical uptake. Importantly, spatial performance for individuals with 
VM and MD is unknown, and whether spatial orientation testing will 
have added clinical value remains to be determined.

Clinical testing for SVV can be implemented with the low tech 
“bucket test” (133), which provides widely available access. Virtual 
reality systems incorporating SVV testing have also become more 
affordable and widely available (166–169). This increased access 
combined with high reliability and validity makes testing visual 
vertical perception an ideal starting place for the clinician that seeks 
to implement vestibular perceptual testing.

3.5. Limitations of spatial and verticality 
perceptual testing

Currently there is no universal agreement for which style of 
spatial orientation question holds the most clinical relevance (“where 
am I” vs. “where was I”), nor is there an idealized response variable, 
or method for capturing that information (verbal report vs. rotating a 
dial). Further, the lack of discrimination between unilateral and 
bilateral vestibular hypofunction in the existing literature may relate 
to motion profiles below the threshold for semicircular canal 
inhibitory cut-off (~100°/s), which would allow the intact side to 
accurately detect motion direction and inertial qualities necessary to 
derive spatial orientation. The existing knowledge on accuracy ratings 
for health subjects may reflect testing interval bias (smallest intervals 
~30 to 45°). To date, there is no published information regarding test–
retest reliability or detectable change values. Due to the variation in 
application of spatial orientation across studies, clinicians should use 
and interpret these tests with caution. SVV testing has high reliability 
and validity; although, the spectrum of disease states that often have 
abnormally large errors is not restricted to peripheral vestibular 
disease (156, 170), reducing vestibular specificity. Methods for 
determining average error after SVV testing are also not consistent 
across studies with some papers recommending absolute rather than 
signed errors (171). Additional research is needed to optimize clinical 
utility for spatial and verticality perception prior to broad 
clinical adoption.

4. Vestibular perception: spatial 
navigation

Next, we  turn our attention to spatial navigation, a complex 
sensorimotor skill that is required for accurate locomotion within the 
local (small-scale) and global (large-scale) environments. Egocentric 
(person-centered) and allocentric (world-centered) orientation 
processes must be  integrated for accurate navigation. This section 
focuses on relevant data from vestibular-impaired adults who 
performed real-world spatial navigation tasks. Studies involving only 
healthy adults, sensory manipulations (e.g., galvanic stimulation), or 
in which solely virtual navigation was utilized are not included as our 
emphasis is on findings readily applicable to clinical practice.
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Persons with peripheral (40, 74, 172–177), central (178–180), and 
age-related (181) vestibular dysfunction have impaired spatial 
navigation. Accuracy in spatial navigation is assessed using path 
integration tasks, during which a person moves along a specified path 
or towards a previously viewed target (102). Both linear (40, 172, 175, 
176) and geometrically-shaped (182–184) paths have been utilized in 
prior studies in vestibular-impaired adults. Standardized tests that 
measure aspects of spatial navigation ability include the Triangle 
Completion Test (TCT) (182) and the Gait Disorientation Test (GDT) 
(185). Sense of direction is also commonly measured in studies of path 
integration, one such measure is the Santa Barbara Sense of Direction 
Scale (SBSODS) (186).

The TCT (182) is conducted using right triangles, the sides of 
which are distinctly marked on the floor (Figure 3). Before donning a 
blindfold and noise-attenuating headphones, participants are 
instructed to visualize the triangle to be walked. For each triangle, 
participants are passively guided along one leg, a 90° turn, and then 
the second leg. Once the examiner lets go, participants are instructed 
to “turn and complete the triangle” by walking its hypotenuse. The 
linear distance walked, linear end-point error (distance between 
where the participant stopped and the origin), and angle error 
(absolute value of the angular error with respect to the ideal rotation 
angle) are recorded. Recently, concerns about the reliability of the 
TCT have been raised by McLaren and colleagues (187) who found 
that the test–retest reliability for the distance walked was moderate but 
it was poor for end-point error and angle error.

The recently-developed GDT is a less complex navigation task that 
has excellent test–retest reliability. During the GDT, the participant is 
timed while walking 6.1 M with their eyes open and again with their 
eyes closed. Markings on the floor are used to facilitate timing 
(Figure 4). The result is the difference in time needed to walk that 
distance with eyes closed versus with eyes open. Although it has not 
yet been used as an outcome measure, the GDT result is proposed to 
be a composite measure of several determinants of spatial navigation 
(e.g., walking speed, spatial memory, and cognitive-perceptual 
processes) (185).

The SBSODS (186) is a 15-item questionnaire that consists of 
statements such as, “I have a very good sense of direction”; “I very 
easily get lost in a new city”; and “I have trouble understanding 
directions.” Each item is answered using a seven-point Likert scale, 
and negative statements are reverse-scored. A lower average score 
(range = 0–7 points) indicates worse self-reported sense of direction. 
Gandhi and colleagues (188) showed that reduced bilateral saccular 
function predicted lower scores on the SBSODS in a cohort of 
community-dwelling healthy older adults. Thus, vestibular afference 
appears to contribute to one’s perceived sense of direction ability.

4.1. Linear small-scale spatial navigation

In one of the earliest studies of the effects of vestibular loss on path 
integration, Glasauer et al. (189) studied goal-directed linear walking 
in healthy (N = 10) and bilaterally vestibular-impaired (N = 7) adults. 
Participants were tasked with walking straight ahead towards a target 
anchored to the floor 4 M ahead of them. Walking trials were 
performed at varying velocities and with either eyes open or while 
blindfolded. No significant between-group differences were found for 
distance walked errors; however, vestibular-impaired adults had 
significantly larger end-point errors. Vestibular-impaired adults also 
demonstrated significantly greater path curvature during blindfolded 
walking and significantly slower gait velocity compared with healthy 
adults. Despite the fact that vestibular-impaired participants were less 
stable and had larger end-point errors compared with healthy adults, 
the authors concluded that, because vestibular-impaired adults could 
perform the blindfolded task, the vestibular system was not necessary 
for active path integration. Vestibular afference appears to contribute 
to directional accuracy more so than distance accuracy.

Subsequently, Cohen (172) examined the performance of healthy 
adults (N = 24), individuals with vestibular SWN (N = 31), and 
individuals with chronic (≥3 months duration) peripheral vestibular 
impairments (N = 55) on a straight course. Those with vestibular 
SWN were tested pre-operatively and at weeks one and three post-
operatively. Participants walked 7.62 M, once with eyes open and 
three times with eyes closed. The time needed to complete each trial, 
the distance walked before veering, and the angle of veering were 
recorded for each participant. Compared with healthy controls, SWN 
patients were significantly impaired on all measures. SWN patients 
also demonstrated a larger angle of veering and longer duration of 
trials compared to controls. Pre-operatively, SWN patients were 
significantly impaired compared to controls for the distance walked 
before veering. Compared with the pre-operative status, SWN 
patients were more impaired 1 week post-operatively for the angle of 
veering. Partial recovery of path integration ability was evident at 
week three post-operatively as individuals with SWN walked further 

FIGURE 3

The triangle completion test (TCT): the TCT (74) is conducted using 
right triangles, the sides of which are distinctly marked on the floor. 
Participants don a blindfold and noise-attenuating headphones and, 
then, are instructed to visualize the triangle to be walked. Participants 
are passively guided along one leg, a 90° turn, and then the second 
leg. Once the examiner lets go, participants are instructed to “turn 
and complete the triangle”.
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before veering, veered less, and required less time to complete the 
task compared to week one post-operatively. These findings conflict 
with Glassauer et al. (189); however, differences in the length of the 
course may explain this discrepancy. Importantly, Cohen’s results 
suggest that central vestibular compensation partially mitigates path 
integration deficits following vestibular deafferentation.

4.2. Complex small-scale spatial navigation

Peruch et al. (40) evaluated spatial performance in unilaterally 
vestibular-impaired (N = 8) and healthy adults (N = 6) who were 
assessed on visual and non-visual navigation tasks. Performance was 
assessed at four time points before and at 1 week, 1 month, and 
3 months after impaired participants underwent unilateral vestibular 
neurotomy. Healthy adults were assessed at similar time intervals. 
Participants first explored an environment in which four locations 
were marked by different objects. Then, participants attempted to 
navigate to those locations by reproducing the routes that were 
traversed during exploration, by reversing routes, or by taking 
shortcuts (making spatial inferences). Finally, participants performed 
identical navigation tasks in virtual reality while seated in front of a 
large projection screen. Navigation in the virtual environment was 
controlled by the participant using a joystick. Prior to surgery, 
vestibular-impaired participants had lower angle errors during real-
world navigation when reproducing previously traversed routes 
compared with healthy controls. The authors postulated that patients 
were using compensatory strategies that relied on somatosensory 
afference prior to surgery to learn and reproduce routes. However, 
since no between-group differences were found for navigating with 
shortcuts prior to surgery, compensatory mechanisms were 
insufficient for higher-level spatial processing. Angle errors were also 
larger for patients compared to controls during virtual navigation, 
which suggests that vestibular afference must be integrated with visual 
cues for accurate navigation. Angle errors in real-world and virtual 
navigation increased after surgery for patients; however, between-
group differences were seen only at 1 week post-operatively. Thus, in 
agreement with Cohen (172), central vestibular compensatory 
mechanisms may result in rapid restoration of spatial navigation 
ability following vestibular deafferentation.

Glasauer et  al. (94) investigated the effects of vestibular 
dysfunction on complex path integration ability in healthy (N = 7) and 

vestibular-impaired (N = 5) adults. Vestibular-impaired participants 
had chronic (several months duration) symptoms and were assessed 
after the completion of vestibular rehabilitation. After viewing the 
course, participants walked a right triangular path (each leg 
length = 3 M). The task was completed in both the clockwise and 
counter-clockwise directions three times while blindfolded, then once 
with eyes open. Three-dimensional trajectories in 6° of freedom were 
collected from head-worn markers. The distance walked was similar 
to the required distance in both groups and there were no between-
group differences. Additionally, there were no significant between-
group differences in the arrival error at the first corner; however, there 
were significant between-group differences for the end-point error. 
Larger end-point errors in vestibular-impaired participants were 
attributed to angle errors. The authors postulated accuracy in path 
integration depends on proprioceptive and motor efference 
information related to turning corners and is enhanced by sensory 
input regarding angular velocity from the vestibular system. 
Interestingly, unilaterally and bilaterally vestibular-impaired 
participants had increased angular errors, and unilaterally involved 
participants had larger errors when turning towards their uninvolved 
side. The reason for this is not immediately clear, but larger variability 
in the lead time between the predictive head turn in advance of the 
turn may have been a factor for individuals with vestibular-
impairments. Additionally, differences in walking and head turning 
velocities between the smaller first turn and the larger second turn 
may have influenced performance.

Péruch et  al. (184) assessed path integration in unilaterally 
vestibular-impaired adults (N = 7). Participants were assessed 1 day 
prior, as well as 1 week and 1 month after unilateral vestibular 
neurectomy. Healthy, age-matched controls were also assessed at the 
same intervals. All participants were tasked with either (1) reproducing 
a right triangular path (leg length = 3 M) that had been walked with 
the examiner, (2) completing the reverse of the route walked with the 
examiner, or (3) taking a shortcut back to the origin. These tasks were 
performed in a real-world environment (while blindfolded) and in 
virtual reality (head-mounted display). Absolute and signed turn 
error, as well as absolute and signed distance error were measured. 
Unilateral vestibular deafferentation impaired the orientation 
component of spatial navigation, and the extent of these impairments 
differed depending on task complexity and on which sensory cues are 
available for interpretation. Performance on tasks with greater 
complexity significantly differed between healthy and vestibular-
impaired adults. When performing more complex spatial navigation 

FIGURE 4

The gait disorientation test (GDT): during the GDT, the participant is timed while walking 6.1  M with their eyes open and again with their eyes closed. 
The GDT result is the difference in time needed to walk that distance with eyes closed versus with eyes open. GDT scores ≥4.5  s differentiate 
vestibular-impaired form healthy adults. Figure adapted from Grove et al. (185).
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tasks, vestibular-impaired participants also showed greater distance 
errors than healthy controls. From these data, one can conclude that 
task complexity and which sensory inputs are available during 
performance are likely relevant for training path integration.

Guidetti et al. (174) assessed whether spatial navigation deficits 
persisted in adults with well-compensated UVH. In this study, 
vestibular-impaired (N = 50) and healthy (N = 50) adults were tasked 
with visually memorizing three different routes marked on the floor 
(a triangle, a circle, and a square), and, then, to walk these routes while 
blindfolded and again with vision. The time to complete each task was 
recorded. Additionally, participants completed a test of short-term 
visual–spatial memory and neuropsychological testing. Even well-
compensated adults with vestibular-impairment required more time 
to complete the tasks with eyes closed compared with controls; 
however, there were no within-group differences in completion time 
for clockwise and counter-clockwise navigation. Vestibular-impaired 
participants also had worse visual–spatial ability and higher levels of 
anxiety and depression, which may have influenced spatial 
navigation performance.

Xie et al. (181) reported on the effects of age-related vestibular 
decline on spatial navigation ability. A total of 48 adults participated, 
including young healthy controls (N = 9), older healthy controls 
(N = 15), and older adults with dizziness (N = 24). All participants were 
tested for vestibular function using cervical VEMPs and the video 
head impulse test, they also completed the TCT. Results showed a 
step-wise increase in end-point errors from young controls to older 
controls to older participants with dizziness. Additionally, both 
control groups had smaller angle errors than the group with dizziness. 
End-point and angular errors were increased for participants (control 
or dizzy) with abnormal otolith and semicircular canal function. Thus, 
even sub-clinical changes in vestibular function may affect 
spatial navigation.

4.3. Complex large-scale navigation

Schoberl et al. (190) used a novel paradigm to assess real-world 
spatial navigation performance in adults with either complete or 
incomplete bilateral vestibular paresis and healthy matched controls. 
All participants performed standardized navigation tasks in an 
outpatient clinic. After a familiarization phase, the examiner cued 
participants to find specific landmarks without guidance and in 
particular sequences that required participants to retrace a familiar 
route, traverse a new route, or to take shortcuts. Ten minutes were 
allowed for the completion of 15 routes; if a participant could not 
locate a specific landmark, the examiner gave instructions to find the 
next item. The primary outcome was the error rate, defined as not 
being able to find, passing by, or ignoring a specific item. Gait 
velocity, saccades, and visual fixations were also recorded using a 
mobile eye tracking device. Adults with BVH\L performed worse 
than controls when navigating new routes, but there were no 
between-group differences in errors when retracing familiar routes. 
The number of errors was associated with the extent of vestibular loss. 
Additionally, compared to controls, adults with BVH\L had greater 
fluctuations in gait speed, spent less time at intersections, and utilized 
shortcuts less often. Further, adults with BVH\L had fewer gaze 
fixations and made horizontal head movements less often while 
traversing new routes compared with controls. Thus, persons with 

BVH\L may have more difficulty navigating and may report more 
disorientation in unfamiliar environments compared with 
familiar environments.

Dordevic et al. (191) studied cognition, spatial skills, and path 
integration in adults with unilateral or bilateral vestibular 
hypofunction (N = 15) and healthy matched controls (N = 15). All 
participants completed clinical vestibular tests of balance, the video 
head impulse test, caloric tests, the TCT, and whole-body rotational 
memory. Tests of visuo-constructive, spatial, attention, and 
concentration abilities were also administered using paper and pencil. 
Additionally, participants underwent imaging for structural brain 
analyses. Adults with UVH\BVH performed worse than controls on 
all clinical balance tests, whether these were conducted with eyes open 
or closed. Compared with controls, the impaired participants made 
greater distance errors on the TCT when passively transported in a 
wheelchair, and demonstrated worse rotational memory. However, 
there were no significant between-group differences in visuo-spatial, 
general cognitive abilities, and whole-brain or region-of-interest gray 
matter volumes. Although these results suggest that visuo-spatial and 
general cognitive abilities are preserved in persons with impaired 
vestibular cognition, a recent systematic review (192) provides 
summary evidence of the effects of vestibular loss on cognitive function.

Biju et al. (193) investigated the effects of vestibular deficits on 
route-based and place-based navigation in real-world and virtual 
environments. Adults with unilateral or bilateral vestibular 
hypofunction (N = 20) and matched controls (N = 20) navigated two 
routes in two environments, an outpatient clinic and virtual reality on 
a laptop computer. Prior to traversing the real-world routes, participants 
were familiarized with the route and specific landmarks, placed in a 
wheelchair and blindfolded, rotated around several times to disorient 
them, and, then, passively transported to the start via a random route. 
In the route-based task, participants were instructed to reproduce the 
route traversed during familiarization. During the place-based task, 
participants were asked to navigate to the landmark at the end of the 
route using the shortest path possible. Participants also completed a 
judgement of relative direction task in the real-world and on the laptop, 
as well as the SBSODS. Vestibular-impaired participants had higher 
path length ratios (required versus actual path) than controls. Path 
ratios were higher in the virtual compared to the real environment. 
Additionally, the place-based task resulted in higher path ratios 
compared with the route-based task. Regarding judgements of relative 
direction, there were no significant between-group differences; however, 
errors were greater in the virtual compared to the real environment. 
Although there was significant correlation between performance in real 
and virtual environments for controls, no such associations were found 
for vestibular-impaired participants. Additionally, no between-group 
differences were found for self-reported sense of direction. Together, 
these findings suggest that vestibular afference contributes to both 
route-based and place-based spatial navigation. Additionally, the 
authors postulated that, although healthy adults likely used the same 
strategies to navigate in real and virtual environments, vestibular-
impaired participants employed different navigational strategies.

4.4. Spatial navigation training

Cohen and Kimball (194) were the first to assess whether 
vestibular rehabilitation leads to improvements in spatial navigation. 
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These authors assessed path integration in adults with chronic 
peripheral vestibulopathies (N = 53) who completed 4 weeks of 
vestibular habituation exercises. In this study, the path integration 
task was the same as used by Cohen (172), described above. 
Performance was assessed pre-and post-rehabilitation. Gait velocity 
increased and the angle of veering decreased over time. Natural 
recovery is an unlikely confounder since all participants had reported 
brief episodes of vertigo elicited by head movement for at least 
2 months prior to enrollment. The authors concluded that performing 
exercises that create visual-vestibular interaction leads to reduced 
spatial disorientation. Thus, one may not need to practice path 
integration tasks to achieve improvements in this domain.

Ishikawa and Zhou (195) assessed whether spatial navigation 
could be improved in a group of adults with self-reported poor sense 
of direction (N = 40) based on the SBSODS (186). Participants were 
assigned to perform path integration training with knowledge of 
results feedback, with (Group 1) or without (Group 2) allocentric 
training. The performance of these two groups was compared to that 
of a cohort of adults with average self-reported sense of direction. A 
test of mental rotation was also administered. All participants 
completed six weekly sessions in which they were tasked with actively 
walking one triangular, one quadratic, and one crossing path while 
blindfolded. Prior to traversing each path twice, participants who 
received allocentric training oriented to cardinal directions (e.g., 
north). Once they thought they had reached the origin, participants’ 
perceived location and orientation was recorded; then, participants 
received feedback about their accuracy. During each study visit, all 
participants in both groups also traversed one of six real-world routes 
in a residential district in Tokyo, Japan that were 450 M long and 
incorporated five turns and four easily recognizable landmarks. After 
completing the real-world route, participants were assessed for their 
accuracy in estimating the orientation of one landmark relative to 
another and the distance between sets of landmarks. The groups did 
not differ in mental rotation or path integration at the outset. 
Allocentric training improved the accuracy of direction estimates, and 
feedback alone led to improved accuracy in straight-line distance 
estimates and sketching route maps. Thus, translation between 
egocentric and allocentric representations is difficult and may not 
be readily trainable.

4.5. Implications for rehabilitation

The works reviewed herein lead to several conclusions. 
Interventions aimed at reducing misperceptions (non-specific 
dizziness/vertigo), like habituation, gaze stability training, and 
balance/gait activities (196), may lead to improvements in spatial 
navigation without task-specific training of path integration for 
individuals with vestibular hypofunction. Navigation training will 
likely produce task and/or environment specific effects; thus, the type 
of training should be individualized to address each patient’s specific 
deficits. Baseline cognitive ability and emotional state may influence 
navigational rehabilitation outcomes. The optimal training parameters 
for interventions aimed at improving path integration skills are not yet 
known; however, intensive training appears to facilitate robust 
improvements immediately post-training. Practicing path integration 
using routes of varying levels of difficulty and incorporating varying 
numbers of turns and path crossings may be a useful intervention, 
particularly if feedback regarding allocentric orientation is provided.

5. Vestibular perception: vestibular 
cognition

The domains of cognitive performance are not independent of 
each other. Within each domain there are often subdomains which 
refer to component cognitive abilities or processes. To fully understand 
a patient’s clinical presentation related to vestibular perception it is 
critical to consider the distinct contribution of all cognitive abilities or 
impairments. One challenge in synthesizing the literature related to 
the interplay between vestibular and cognitive function is the 
variability in the assessment methods used across investigations. 
Another challenge is discerning if multiple cognitive abilities are 
contributing to the cognitive performance and/or if the specific 
assessment method is truly measuring the domain that it was intended 
to assess.

It is important for clinicians to understand which domain of 
cognition is impaired because it could help determine specific 
interventions to include within the plan of care and/or determine how 
best to modify the delivery of vestibular interventions to optimize 
outcomes for their patients. Unfortunately, the best cognitive 
assessment methods for vestibular scientists and clinicians to use to 
measure each of the component cognitive abilities/processes is yet to 
be determined. Despite the discordance in assessment methods used, 
there is considerable evidence from human studies suggesting that 
multiple domains and subdomains of cognition (including: attention; 
executive function; memory; and visual spatial ability) are associated 
with vestibular disorders (102).

The findings related to cognitive processes that have been 
observed in investigations of common vestibular diagnoses including 
UVH, BVH, VM, and MD will be  illustrated below. The specific 
assessment method for each finding will be  indicated within 
parentheses following the cognitive ability/impairment. While 
navigation is considered a visual spatial ability, it was discussed 
separately in the previous section.

5.1. Unilateral vestibular hypofunction

Compared to healthy controls, some studies show that people with 
UVH display impaired attention, memory, and visual spatial ability. 
However, there are conflicting findings which could be due in part to 
the choice of assessment methods used and/or the specific component 
processes being assessed. A 2022 study reported that compared 
patients with healthy controls, people with UVH do not differ 
significantly in working memory abilities (digit span test), executive 
function (Stroop Task), or attention (Attention Network Test and 
Flanker Test) (197).

Attention impairments were however reported in adults with 
UVH (n = 15) using a dual-task paradigm that measured concurrent 
postural demands and cognitive tasks (reaction time) (198). Redfern 
et al. found that during concurrent balance or vestibular tasks people 
with UVH displayed a delayed response and decreased accuracy for 
the cognitive task when the postural or vestibular challenge was 
added. Another study also found that people with UVH (N = 14) also 
displayed decreased cognitive performance during dual-task gait 
challenges compared to healthy controls (199). Both investigations 
yielded similar conclusions suggesting that the brain prioritizes 
attentional resources to maintain balance and motor tasks at the 
expense of other cognitive tasks.
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Visuospatial ability impairments (visual scanning reaction time 
test and processing speed tasks) have been reported in people with 
UVH (N = 16) when compared to healthy controls (200). A 2020 
investigation of people with acute UVH (N = 21) also reported 
impaired visuospatial ability (Benton’s Judgment of Line Orientation 
test), attention and psychomotor speed (verbal and non-verbal 
cancellation tests), and short-term memory and mental manipulation 
(backward digit span) when compared to healthy controls (201).

Conversely, two other studies found no differences in visuospatial 
cognitive processes. Spatial perception (SVV including rod and frame 
conditions) (124), spatial memory also did not differ and the 
hippocampal volume did not significantly differ in people with UVH 
(202). Another study of people with acute UVH (N = 28) showed that 
visuo-spatial ability (line bi-section task, Albert’s test, Bell’s test, and a 
figure copying task) was not clinically impaired (203).

5.2. Bilateral vestibular hypofunction

Compared to healthy controls, people with BVH have been shown 
to have impaired attention, executive function, memory, and visual 
spatial ability. It is appreciated that cognitive impairments are typically 
more pronounced in BVH compared to UVH (200).

A recent 2022 study reported clinically meaningful lower scores 
for global cognition (RBANS-H total scale) in people with BVH 
(N = 34) compared to healthy controls (N = 34) (204). Those authors 
reported that the subdomains of memory, visuospatial cognition, and 
attention on the RBANS-H assessment were impaired in BVH but 
there were no differences observed with language or delayed memory 
subdomains (204). Attention impairment has also been demonstrated 
using a walking and cognitive dual task paradigm, whereby both 
walking and cognitive performance was degraded for people with 
BVH (N = 12) compared to healthy controls (N = 12) (205).

Another investigation revealed that people with BVH (N = 18) had 
impaired short-term memory (Theory of Visual Attention), executive 
function (Backward Corsi Block Tapping test), processing speed 
(Stroop Color-Word test), and visuospatial abilities (visual scanning 
reaction time) compared to people with UVH (N = 16) and healthy 
controls (N = 17) (200).

Significant spatial memory deficits (computerized virtual water 
Morris maze task) associated with bilateral hippocampal atrophy have 
been observed in people with BVH (173, 177, 206). While there was 
not a difference between healthy controls and people with UVH, 
investigators of another study reported that people with BVH have 
worse spatial imagery (mental body transformations) (124).

5.3. Vestibular migraine and Meniere’s 
disease

There is conflicting evidence regarding cognitive impairment in 
people with MD. A 2023 investigation of cognition using the Montreal 
Cognitive Assessment (MoCA) scale people with MD (N = 30) and 
healthy controls (N = 17) found significantly lower memory (MoCA 
memory sub score) and overall cognition (MoCA total score) in the 
people with MD (207). Conversely, another 2023 study concluded that 
neither MD (N = 19) or VM (N = 19) have significant differences in 
cognition compared to healthy controls (208). The domains of 
cognition assessed in the study of people with VM and MD included: 

global mental status (Mini Mental State Examination); working 
memory and attention (Stroop test); spatial cognition (Benton’s 
Judgement of Line Orientation test); and working memory, visual 
processing, visuospatial skills, attention, and processing speed (Trail 
Making Test) (208). The lack of differences could be  due to the 
episodic nature of these diagnoses and confounding accompanying 
symptoms that are associated with VM and MD and/or the choice of 
the assessment method used to measure cognition.

5.4. Implications for rehabilitation

Notably, there are many factors that can impact cognition in 
people with vestibular disorders including acuity of the vestibular 
diagnosis, age, anxiety, depression, hearing, medications, sleep 
hygiene. Additionally, poorer self-reported sense of direction has been 
shown to be significantly associated with vestibular impairment (188). 
Regardless of the cause of the interplay between cognitive and 
vestibular function seen in common vestibular diagnoses which has 
been proposed in the literature (209, 210), appreciating the common 
co-occurrence of cognitive and vestibular impairments could help 
clinicians develop therapeutic strategies to facilitate recovery.

The impact of cognitive impairment on vestibular rehabilitation 
outcomes is not well understood. Although cognitive impairment may 
not alter the physiology of vestibular compensation, it could impact 
recovery if it interferes with a person’s ability to comply with exercises 
and recall what he/she has previously learned in therapy. Micarelli 
et al. suggested worse long-term function in people with cognitive 
impairment (211). A modification for the delivery of vestibular 
rehabilitation that is in alignment with clinical practice guidelines has 
been published that emphasizes motor learning abilities for people 
with cognitive impairment (212). Utilizing modified vestibular 
therapy interventions is currently being investigated in people with 
Alzheimer’s disease (213).

Future work should aim to determine the best clinically feasible 
assessment methods to screen and assess cognition for people with 
vestibular disorders. It is proposed that working memory should 
be assessed in people with peripheral vestibular disorders (214). An 
important clinically relevant conclusion from a 2023 dual task 
investigation during functional gait performance in people with 
chronic vestibular disorders reiterated the importance of measuring 
cognition in people with vestibular disorders to ensure the inclusion 
of appropriate interventions (215). Identifying the specific cognitive 
abilities/processes that are impaired will allow development of 
targeted interventions to optimize outcomes for people with 
vestibular disorders.

6. Summary and conclusions

As of this writing, few studies have examined the clinical 
application of vestibular perception in any form despite the 
extensive literature demonstrating disease state discrimination. 
Threshold testing in current form has limited clinical availability 
primarily due to the equipment and space requirement. Despite 
this limitation, roll thresholds are associated with postural control 
and future development of more clinic friendly perceptual 
assessments is needed. Spatial orientation and navigation testing 
may have greater clinical utility, but current testing methods have 
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either unclear or low test–retest reliability. Screening for 
neurocognitive function and other forms of vestibular function 
has a place in vestibular rehabilitation, but additional research to 
determine clinical validity and reliability is needed to expand 
integration beyond limited use for initial clinical screening. 
Additional work is also needed to characterize the exercise 
interventions that optimally improve perceptual deficits for 
individuals with vestibular disease.
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