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The e�ect of the Lokomat
®

robotic-orthosis system on lower
extremity rehabilitation in patients
with stroke: a systematic review
and meta-analysis

Lina Wu*, Gui Xu and Qiaofeng Wu

Department of Rehabilitation, Foresea Life Insurance Nanning Hospital, Nanning, Guangxi Province,

China

Background: The Lokomat
®

is a device utilized for gait training in post-stroke

patients. Through a systematic review, the objective was to determine

whether robot-assisted gait training with the Lokomat
®

is more e�ective in

enhancing lower extremity rehabilitation in patients with stroke in comparison to

conventional physical therapy (CPT).

Methods: In this study, a systematic search was conducted in various databases,

including CINAHL, MEDLINE, PubMed, Embase, Cochrane Library, Scopus, Web of

Science, and Physiotherapy Evidence Database (PEDro), as well as bibliographies

of previous meta-analyses, to identify all randomized controlled trials that

investigated the use of Lokomat
®

devices in adult stroke patients. The study

aimed to derive pooled estimates of standardized mean di�erences for six

outcomes, namely, Fugl–Meyer Assessment lower-extremity subscale (FMA-LE),

Berg Balance Scale (BBS), gait speed, functional ambulation category scale (FAC),

timed up and go (TUG), and functional independence measure (FIM), through

random e�ects meta-analyses.

Results: The review analyzed 21 studies with a total of 709 participants and found

that the use of Lokomat
®

in stroke patients resulted in favorable outcomes for

the recovery of balance as measured by the BBS (mean di�erence = 2.71, 95%

CI 1.39 to 4.03; p < 0.0001). However, the FAC showed that Lokomat
®

was less

e�ective than the CPT group (mean di�erence = −0.28, 95% CI −0.45 to 0.11,

P = 0.001). There were no significant di�erences in FMA-LE (mean di�erence =

1.27, 95% CI −0.88 to 3.42, P = 0.25), gait speed (mean di�erence = 0.02, 95% CI

−0.03 to 0.07, P = 0.44), TUG (mean di�erence = −0.12, 95% CI −0.71 to 0.46, P

= 0.68), or FIM (mean di�erence = 2.12, 95% CI −2.92 to 7.16, P = 0.41) between

the Lokomat
®

and CPT groups for stroke patients.

Conclusion: Our results indicate that, with the exception of more notable

improvements in balance, robot-assisted gait training utilizing the Lokomat
®

was

not superior toCPT based on the current literature. Considering its ability to reduce

therapists’ work intensity and burden, the way in which Lokomat
®

is applied

should be strengthened, or future randomized controlled trial studies should use

more sensitive assessment criteria.
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Introduction

Stroke is a highly prevalent medical condition that often leads

to permanent disability (1). Post-stroke impairment can have a

significant impact on various aspects of physical function, including

joint mobility and stability, muscular strength, tone, reflexes,

muscle endurance, movement control, and gait pattern functions.

These deficits can pose significant challenges to activities such as

transferring, maintaining body posture, movement, balance, and

walking (2). According to estimates, a considerable proportion of

individuals who have suffered stroke, up to 65%, experience lower

limb complications in the post-stroke phase (3). The ability to walk

and achieve independence in activities of daily living (ADL) holds

significant importance in various domains, including enhancing

psychological wellbeing (4), mitigating the risk of cognitive decline

(5), and promoting physical activity (6). The restoration of gait,

both in terms of quantity and quality, is regarded as a primary

objective (7).

Rehabilitation robotics is an emerging clinical intervention

aimed at re-establishing functional movement of the limb by

stimulating and restoring the nervous system that controls limb

movement. This goal is achieved through multiple movements

powered by robotic devices (8). Studies have shown that

robot-assisted gait training triggers unique neurophysiological

modulations (9). In addition, robot-assisted gait training enables

patients to perform intense rehabilitation exercises in a safe manner

while reducing the time and physical burden on physical therapists

(10). Numerous empirical studies have supported the significant

efficacy of robot-assisted interventions in the treatment of lower

limb injuries after stroke (11). Stationary robot-assisted training

can better improve the walking ability of subacute stroke survivors

compared to traditional training methods. In addition, end-effector

robots are superior to exoskeleton robots in improving step speed

(12). However, some scholars have questioned the widespread

use of body weight-supported running training (BWSTT) and

robot-assisted gait training (RAST) in clinical practice through

retrospective studies, arguing that physical therapists should

remain cautious in adopting these strategies in the absence of

sufficient evidence to support them (13).

Lokomat
R©
(Hocoma AG, Volketswil, Switzerland) is a globally

utilized exoskeleton equipped with linear drives on the hip

and knee joints designed to aid in locomotion on a treadmill

by directing the participant’s legs along a predetermined path

(14). Prior research endeavors aimed at assessing the efficacy of

Lokomat
R©
have predominantly amalgamated the lower-extremity

robot, comprising both the end-effector and exoskeleton, and

have scarcely scrutinized individual devices. Furthermore, the

outcomes of such studies have primarily centered on gait kinematic

parameters (15–17). Recent research has primarily examined the

effects of Lokomat
R©
intervention on balance function in patients,

with limited literature available to provide a comprehensive

assessment of the restoration of lower limb function (18). It is

essential to identify and employ the techniques that have been

shown to produce the most significant results in order to lower

the cost and improve the effectiveness of post-stroke rehabilitation.

Hence, the aim of this study was to determine the effects of robot-

assisted gait training with Lokomat
R©
in stroke patients on lower

extremity function. In this study, FMA-LE was used as the primary

outcome indicator, and BBS, gait speed, FAC, TUG, and FIM were

used as secondary outcome indicators.

Methods

In this study, we adhered to the guidelines set forth by the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) in order to accurately report our findings from

the systematic review (Figure 1) (19). The Cochrane handbook’s

published guidelines were strictly followed throughout the study

(20). In addition, in this study, to ensure that the inclusion metrics

were high-quality studies relevant to the study topic, we used

predefined outcome measures to select studies. The protocol for

this review is registered on PROSPERO (no. CRD42023438449).

Search strategy

For relevant English-language literature, we searched the

following electronic databases: CINAHL, MEDLINE, PubMed,

Embase, Cochrane Library, Scopus, Web of Science, and

Physiotherapy Evidence Database (PEDro). These databases define

the search time to be from 1 January 2000 to 31 May 2023. The

words stroke, cerebrovascular accident, CVA, Lokomat, robotic

device, exoskeleton, robotic-assisted gait training, RAGT, gait,

lower extremity function, and motion control were used in the

literature search. Additionally, the PICOS framework (population,

intervention, comparison, outcome, and study setting/design) was

used in the design of this study.

Study selection

Two authors (LW and GX) evaluated the title and summary of

the studies that were found and then analyzed the complete reports

of all studies that could be relevant based on predetermined criteria.

Any discrepancies in the selection of studies were resolved through

discussion with a third author (QW).

This study aimed to identify randomized controlled trials

(RCTs) that compared the effectiveness of robotic-assisted gait

training using Lokomat
R©

with CPT in improving lower limb

function among stroke patients. The inclusion criteria for the RCTs

were as follows: patients of both genders aged over 18 years with

lower-extremity hemiparesis, outcome measures focused on motor

function and limited walking ability after ischemic or hemorrhagic

stroke, and sufficient cognitive abilities to comprehend the exercises

involved in the interventions. Trials that utilized electromechanical

devices other than Lokomat
R©
were excluded from the analysis.

Data extraction

Two authors (LW and GX) conducted an independent

extraction of information from each study included in the

analysis. The extracted information included title, authors, country,

year of publication, journal of publication, participants (number,

mean age, and gender), study design, rehabilitative intervention
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FIGURE 1

PRISMA flowchart showing the screening process.

details (frequency and duration of the sessions, Lokomat
R©

parameters such as weight support and speed), outcome measures,

results, follow-up, attrition rates, and safety. Any discrepancies

in the extracted data were resolved through discussion with

another author (QW). In the context of reporting data on

scale, the utilization of medians and interquartile ranges was

accompanied by a reference to the methods proposed by Hozo

et al. (21). These methods involve the application of basic

inequalities and approximations to estimate the sample mean

and standard deviation (SD), thereby facilitating subsequent

analysis. In instances where it was deemed necessary, we initiated

communication with the authors to obtain supplementary data.

Risk of bias in included studies

Of the specific methods described for randomization, 20 out

of 21 studies mentioned randomization, of which 12 specifically

described randomization methods, 6 studies used computer-

generated, 5 used random number table generation, and 1

used hidden envelope generation. In contrast, one study did

not mention randomization. Allocation concealment to conceal

enrollment identities, studies in 12 articles mentioned distribution

concealment, with 7 detailing the use of opaque envelopes, 3

studies using a specific scale, and 2 only mentioning it without

specifying how it was implemented. The remaining 9 did not report

whether concealment was performed. Blinding of participants and

staff: Due to the nature of the intervention, it was not possible to

blind participants and research staff. Therefore, all studies were

judged to be high risk. However, 15 of the included studies made

reference to blinding the assessor. Incomplete outcome data: the

field is unbiased.

Assessment of the quality and
methodology of literature inclusion

The evaluation of the methodological quality of the studies

included in the research was carried out independently by two

authors (LW and GX). The assessment was conducted using the

PEDro scale (22), a validated and reliable tool for measuring

methodological quality (23). The PEDro scale consists of 11

items, including eligibility criteria, random allocation, concealed

allocation, similarity at baseline, subject blinding, therapist

blinding, assessor blinding, follow-up of at least 85% for one

key outcome, intention-to-treat analysis, between-group statistical

comparison for one key outcome, and point and variability

measures for one key outcome. The score of the first entry does

not count toward the final overall score. If criteria are not specified,

they are considered not met. The achieved criteria can be summed

to obtain a score ranging from 0 (minimum) to 10 (maximum),
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TABLE 1 Evaluation of the study’s methodological quality using the PEDro criteria.

Included
studies

Eligibility
criteria

Random
allocation

Concealed
allocation

Baseline
comparability

Blind
subject

Blind
therapist

Blind
assessor

Adequate
follow-
up

Intention-
to-treat
analysis

Between-
group
comparisons

Point
estimates
and
variability

Total
score
(0–
10)

Methodological
quality

Bang et al.

(25)

X X X X ✓ ✓ X X ✓ X X 7 Good

Belas et al.

(26)

X ✓ ✓ X ✓ ✓ X ✓ ✓ X X 4 Poor

Bergmann

et al. (27)

X X X X ✓ ✓ X ✓ ✓ X X 6 Good

Chang et al.

(28)

X X X X ✓ ✓ X X ✓ X X 7 Good

Choi et al.

(29)

✓ X ✓ X ✓ ✓ ✓ X ✓ X X 5 Acceptable

Ucar et al.

(30)

✓ X ✓ X ✓ ✓ X ✓ ✓ X ✓ 4 Poor

Han et al. (31) X X ✓ X ✓ ✓ X ✓ ✓ X X 5 Acceptable

Hidler et al.

(32)

X X ✓ X ✓ ✓ ✓ X ✓ X X 6 Good

Hornby et al.

(33)

X X X X ✓ ✓ ✓ ✓ ✓ X X 5 Acceptable

Husemann

et al. (34)

X X X X ✓ ✓ X X ✓ X X 7 Good

Kelley et al.

(35)

X X ✓ X ✓ ✓ X X ✓ X X 6 Good

Kim et al. (36) X X X X ✓ ✓ X X ✓ X X 7 Good

Manuli et al.

(37)

X X ✓ X ✓ ✓ X X ✓ X X 6 Good

Mustafaoglu

et al. (38)

X X ✓ X ✓ ✓ X X X X X 7 Good

Park et al.

(39)

X X ✓ X ✓ ✓ X X ✓ X ✓ 5 Acceptable

Schwartz

et al. (40)

X X ✓ X ✓ ✓ X ✓ X X X 6 Good

Taveggia et al.

(41)

X X ✓ X ✓ ✓ X X X X X 7 Good

Uivarosan

et al. (42)

✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ X X 3 Poor

(Continued)
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indicating the overall methodological quality of the study (≤4 poor,

4–5 acceptable, 6–8 good, 9–10 excellent), (Table 1).

Data analysis

The analysis in this study was conducted using the Review

Manager (RevMan) software (computer program, version 5.4,

Copenhagen: The Nordic Cochrane Centre, The Cochrane

Collaboration, 2020). In the case of each study that was

incorporated and presented with continuous data, the between-

group effect sizes were computed by contrasting the means between

groups post-intervention. Furthermore, in instances where the

outcome was evaluated by more than two RCTs, the pooled

effects were determined using mean differences (MDs) with 95%

confidence interval (CI) through random effects models that

accounted for the differences in the use of instruments. The present

study utilized pooled analyses, which were reported with 95%

CI. The assessment of heterogeneity through the utilization of I2

statistics was interpreted in the following manner: when I2 = %,

there is an absence of heterogeneity; when I2 >0% but < 25%,

there is minimal heterogeneity; when I2 is ≥ 25% but < 50%,

there is mild heterogeneity; when I2 ≥ 50% but < 75%, there

is moderate heterogeneity; and when I2 ≥ 75%, there is strong

heterogeneity (24).

Results

Literature search

A total of 4126 references were identified through various

databases and additional sources. These included 200 references

from CINAHL, 748 from PubMed, 408 from MEDLINE, 1024

from Embase, 74 from Cochrane Library, 869 from Scupos, 21

from PEDro, 751 from Web of Science, and 31 from other

sources. Among these references, 3274 were duplicates, and 611

were excluded based on a review of their titles and abstracts.

Further exclusions were made for 114 articles, which were deemed

unsuitable due to reasons such as being conference abstracts, non-

English publications, unavailability, or brief reports. Ultimately,

a total of 127 articles were selected for full-text review. After

careful examination, articles were excluded if they did not focus on

motor function, did not involve single intervention factors, did not

employ effective RCT study methods, or did not pertain to robotic

treatment using the Lokomat
R©
. As a result, 21 articles met the

inclusion criteria and were included in the final analysis.

Included studies

Table 2 displays the methodological characteristics and main

results of the aforementioned studies.
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TABLE 2 Methodological characteristics and main results of the included studies.

Study (country) Study design Population (1 =
RAGT; 2 = CPT)

Intervention (Lokomat
®

characteristics)
Comparison Outcomes Follow-up

Bang et al. (25) (Korea) RCT 1. n= 9 (4F/5M; mean age

53.56± 3.94);

2. n= 9 (5F/4M; mean age

53.67± 2. 83)

Parameters: BWS (40%), speed

(0.45 m/s); Frequency: 5 (1 h/session)

for 4 weeks

Treadmill training without body

support

BBS; Gait Speed; ABC None

Belas et al. (26) (Brazil) RCT 1. n= 7 (2F/5M; mean age

44.4± 12. 7);

2. n= 9 (2F/6M; mean age

56.4± 11. 8)

Parameters: BWS (50%), speed

(1.5 km/h); Frequency: 3 (1

h/session/week) for 5 months

Therapist-assisted gait training+

conventional treatment

BBS; TUG; FIMSARA None

Bergmann et al. (27)

(Germany)

RCT 1. n= 15 (5F/10M; mean age

72± 9);

2. n= 15 (8F/7M; mean age

71± 10)

Parameters: BWS (50%), speed

(2 km/h); Frequency: 5 (1

h/session/week) for 2 weeks

Conventional treatment (consisted of

active and dynamic exercises)

FAC; SCP; BLS; SVV 2-weeks/FAC

Chang et al. (28) (Korea) RCT 1. n= 20 (7F/13M; mean age

55.5± 12. 0);

2. n= 17 (7F/10M; mean age

59.7± 12. 1)

Parameters: BWS (from 40% to 0%),

guidance force (from 100% to 10%),

speed (from 1.2 to 2.6km/h); Frequency:

10 (40 min/session/week) for 2 weeks

Conventional treatment (based on NDT

developed Bobath)

FMA-LE; FAC; MI-L None

Choi et al. (29) (Korea) RCT 1. n= 6 (4F/2M; mean age

54.7± 12. 3);

2. n= 6 (3F/3M; mean age 61.

4± 9.7)

Parameters: BWS (50%); Frequency: 5 (1

h/session/week) for 6 weeks

Conventional physical therapy+ gait

training with treadmill+ NDT

BBS; TUG None

Ucar et al. (30) (Turkey) RCT 1. n= 11 (0F/11M; mean age

56.2);

2. n= 11 (0F/11M; mean age

61. 5)

Parameters: BWS (50%), speed

1.5 km/h; Frequency: 5 (30

min/session/week) for 2 weeks

Conventional treatment (focused on

gait)

TUG 8-weeks/TUG

Han et al. (31) (Korea) RCT 1. n= 30 (13F/17M; mean age

67.89± 14.96);

2. n= 26 (11F/15M; mean age

63.2± 10.62)

Parameters: BWS (from 50% to 0%),

guidance force (from 100% to 40%),

speed (from 1.2 to 2.6km/h); Frequency:

5 (30 min/session/week) for 4 weeks

Conventional treatment (NDT) FMA-LE; BBS; FAC None

Hidler et al. (32)

(United States)

RCT 1. n= 33 (12F/21M; mean age

59.5± 11. 3);

2. n= 30 (12F/18M; mean age

54.6± 9.4)

Parameters: BWS (40%), guidance force

(100%), speed (1.5 km/h); Frequency: 3

(1.5 h/session/week) for 8∼10 weeks

Conventional treatment (gait training) FAC; 3-months/FAC

Hornby et al. (33)

(United States)

RCT 1. n= 24 (9F/15M; mean age

57± 10);

2. n= 24 (9F/15M; mean age

57± 11)

Parameters: BWS (40%), speed

(2∼3 km/h); Frequency: 12

(30-min) sessions

Treadmill with BWS assisted by

therapist

BBS; Gait Speed None

Husemann et al. (34)

(Germany)

RCT 1. n= 16 (5F/11M; mean age

60± 13);

2. n= 14 (4F/10M; mean age

57± 11)

Parameters: BWS (30%); Frequency: 20

(1 h) sessions

Conventional physiotherapy (gait

training)

FAC; Gait Speed; MI-L;

BI

None

(Continued)
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TABLE 2 (Continued)

Study (country) Study design Population (1 =
RAGT; 2 = CPT)

Intervention (Lokomat
®

characteristics)
Comparison Outcomes Follow-up

Kelley et al. (35)

(United States)

RCT 1. n= 11 (4F/7M; mean age

66.91± 8.50);

2. n= 19 (3F/6M; mean age

64.33± 10.91)

Parameters: BWS (40%), guidance force

(100%), speed (0.42∼0.89 m/s);

Frequency: 5 (1 h/session/week) for

8 weeks

Conventional physiotherapy

(endurance, velocity, safety, and gait

deviations)

Gait Speed 3-months/ Gait Speed

Kim et al. (36) (Korea) RCT 1. n= 10 (1F/9M; mean age

48.70± 7.01);

2. n= 9 (2F/7M; mean age

46.00± 15.64)

Parameters: BWS (from 80% to 50%),

guidance force (from 100% to 20%),

speed (1.0∼3.0 km/h); Frequency: 5

(session/week) for 4 weeks

Conventional physiotherapy (static and

dynamic balance)

FMA-LE; Gait Speed;

FAC; TIS; SARA

None

Manuli et al. (37)

(Italy)

RCT 1. n= 30 (26F/4M; mean age

40.1± 10.7);

2. n= 30 (16F/14M; mean age

43.1± 9.7)

Parameters: BWS (from 70% to 20%);

Frequency: 5 (1 h/session/week) for

8 weeks

Conventional treatment (NDT) FIM None

Mustafaoglu et al. (38)

(Turkey)

RCT 1. n= 15 (4F/11M; mean age

53.7± 11. 6);

2. n= 15 (4F/11M; mean age

52. 6± 14.7)

Parameters: BWS (40%), speed

(1.2∼2.6 km/h); Frequency: 2

times/week for 4 weeks

Conventional treatment (trunk

stabilization, weight transfer)

BBS; TUG; RMI None

Park et al. (39)

(Turkey)

RCT 1. n= 12 (5F/7M; mean age

55.58± 10.42);

2. n= 16 (7F/9M; mean age

57.50± 9.90)

Parameters: BWS (30%), guidance force

(100%), speed (1.5∼2.0 km/h);

Frequency: 3 (45 min/session/week) for

6 weeks

Gait training with treadmill BBS; TUG; BI; FMA None

Schwartz et al. (40) (Israel) RCT 1. n= 37 (21F/16M; mean age

62± 85);

2. n= 30 (20F/10M; mean age

65± 75)

Parameters: BWS (from 50% to 10%);

Frequency: 5 (30 min/session/week) for

6 weeks

Conventional physiotherapy (gait

training)

Gait Speed; TUG; FIM None

Taveggia et al. (41) (Italy) RCT 1. n= 13 (6F/7M; mean age

71± 5);

2. n= 15 (5F/10M; mean age

73± 7)

Parameters: BWS (50%), speed

(0.4 m/s); Frequency: 5 (session/week)

for 5 weeks

Conventional physiotherapy (gait

training)

Gait Speed; FIM 17-weeks/ Gait Speed; FIM

Uivarosan et al. (42)

(Romania)

RCT 1. n= 18 (3F/15M; mean age

63.67± 6.63);

2. n= 30 (14F/16M; mean age

64.12± 7.25)

Parameters: speed (maximum that

patients tolerate); Frequency: 14 (30

min/session/day) per 6 months

Recovery therapy (kinetotherapy+

hydrokinetotherapy+masotherapy+

electrotherapy et al.)

BI; FIM None

Van Nunen et al. (43)

(Netherlands)

RCT 1. n= 16 (6F/10M; mean age

50.0± 9.6);

2. n= 14 (8F/5M; mean age

56.0± 8.7)

Parameters: BWS (up to 10%), guidance

force (up to 20%), speed (1.5 km/h, up

to 2.5 km/h); Frequency: 2 h/week for

8 weeks

Overground assisted therapy BBS; TUG; Gait Speed;

FAC; RMI

36-weeks/ BBS; TUG; Gait

Speed; FAC; RMI

Westlake et al. (44)

(United States)

RCT 1. n= 8 (2F/6M; mean age

58.6± 16.9);

2. n= 8 (1F/7M; mean age

55.1± 13.6)

Parameters: BWS (35%),

speed (2.5km/h); Frequency: 3 (30

min/session/week) for 4 weeks

Conventional physiotherapy (treated by

skilled physical therapists/trainers)

FMA-LE; BBS; Gait

Speed

None

(Continued)
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Design and participants

Stroke patients were recruited from stroke units or in-hospital

rehabilitation centers in nine countries across Europe, Asia, and

America. A total of 709 patients were included in the study, with

436 (59%) being male subjects. The average age of the participants

was 58.43 years, ranging from 40 to 73 years. The average time

from stroke onset to inclusion in the study was 13.7 months, with

a range of 16.1 days to 10.5 years. Out of the 21 RCTs included

in the analysis, seven studies conducted follow-up assessments at

an average of 13 weeks after the completion of treatment, ranging

from 2 to 36 weeks. The remaining 14 studies only reported post-

treatment assessments.

Characteristics of robot-assisted gait

training with Lokomat
®

The Lokomat system, manufactured by Hocoma in Volketswil,

Switzerland, was the robotic device utilized in this research.

The Lokomat
R©

device is employed alongside a body weight

support (BWS) system, which assists in offsetting a portion of the

individual’s weight.

All 20 studies provided specific experimental parameters,

except for one study that did not include machine setup parameters

(42). These parameters included body support weight, guiding

force, step speed, and treatment frequency time. The majority

of studies reported body support weights ranging from 30% to

50%, with some studies noting that 30% was the most commonly

used weight (46). Guidance force varied from 20% to 100%,

and the initial training pace was approximately 1 km/h, gradually

increasing to 3 km/h over the training period. The minimum

number of training sessions in a treatment cycle was 8, the

maximum was 60, and the median was 20 (26, 38, 41, 43). For a

single session, the minimum duration was 30min, the maximum

was 2 h, and the median was 45min (30, 31, 33, 40, 42, 44, 45).

The details of the Lokomat
R©
setup parameters and treatment

frequency can be found in Table 2.

Characteristics of CPT

In the studies analyzed, the CPT group received treatment

of similar duration and frequency as the experimental

group. The included studies encompassed four that utilized

neurodevelopmental therapy (NDT)-based rehabilitation

methods, four that incorporated treadmill training, and

the remaining CPT interventions consisted of gait training,

dynamic and static exercises, trunk control, and balance training

(25, 28, 29, 31, 33, 37, 39, 45).

Evaluation of the study’s methodological
quality with the PEDro criteria

Based on the evaluation using the PEDro scale, it was

determined that out of the total number of studies assessed, 3 were
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classified as poor (26, 30, 42), 5 as acceptable (29, 31, 33, 39, 43),

and 13 as good (25, 27, 28, 32, 34–38, 40, 41, 44, 45), indicating a

generally high quality of literature. It is worth noting that only two

studies reviewed did not make mention of randomization (26, 42),

while eight studies reported allocation concealment (25, 27, 28,

33, 34, 36, 44, 45). Furthermore, 14 studies were found to have

employed blinding techniques to the assessor (25–28, 30, 31, 34–

41), with three of them extending this blinding the statistical

analysts (25, 37, 41). Due to the inherent characteristics of the

intervention, it was not feasible to implement blinding for both

participants and researchers. Consequently, none of the studies

were scored in either of these two aspects.

Adverse events

Only one study mentioned the occurrence of an adverse event,

specifically: 12 skin changes (redness or breakage of the skin due to

pressure or friction on the shoulder strap or cuff) in 5 Lokomat
R©

participants (35).

Meta-analysis results

Primary outcome
FMA-LE

A total of five studies were included in the assessment of the

Functional Mobility Assessment of the Lower Extremities (FMA-

LE), involving a total of 164 patients. The studies exhibitedminimal

heterogeneity (I2 = 18%, P= 0.30). A meta-analysis was conducted

using a random effects model, which revealed no significant

difference in the combined effect [MD = 1.27, P = 0.25, 95% (CI

−0.88, 3.42)]. This suggests that there is no statistically significant

distinction between Lokomat
R©

robot-assisted gait training and

CPT in terms of their impact on lower limb functional training

(Figure 2).

Secondary outcome
BBS

A comprehensive analysis was conducted on a total of nine

studies involving 273 patients to evaluate the effectiveness of

Lokomat
R©

robot-assisted gait training compared to CPT in

improving balance function. The study groups exhibited mild

heterogeneity (I2 = 37%, P = 0.12), and a random-effects model

was employed for the meta-analysis. The results revealed a

significant difference in the combined effect [MD= 2.71, P < 0.01,

95% CI (1.39, 4.03)], indicating that Lokomat
R©
robot-assisted gait

training was more efficacious in enhancing balance function when

compared to CPT (See Figure 3).

Gait speed

Gait speed was chosen as an outcome measure in a total of

nine studies involving 272 patients. The study groups exhibited

moderate heterogeneity (I2 = 54%, P = 0.03), and a meta-analysis

was conducted using a random-effects model. The results showed

no significant difference in the combined effect [MD = 0.02, P

= 0.44, 95% CI (−0.03, 0.07)], indicating that Lokomat
R©

robot-

assisted gait training does not offer a significant advantage over

CPT in terms of improving walking speed (Figure 4).

FAC

A comprehensive analysis was conducted on a total of seven

studies involving 275 patients to evaluate the effectiveness of

Lokomat
R©

robotic-assisted gait training compared to CPT in

improving functional walking. The study groups exhibited a slight

degree of heterogeneity (I2 = 15%, P = 0.31). A meta-analysis was

performed using a random-effects model, revealing a significant

difference in the combined effect [MD = −0.28, P < 0.01,

95% CI (−0.45, −0.11)]. This indicates that Lokomat
R©

robotic-

assisted gait training did not demonstrate superiority over CPT in

enhancing functional walking (Figure 5).

TUG

A systematic review was conducted to assess the effectiveness

of Lokomat
R©

robot-assisted gait training compared to CPT in

improving the time to complete the TUG. A total of seven studies

involving 204 patients were included in the analysis. The study

groups exhibited moderate heterogeneity (I2 = 70%, P < 0.01). A

meta-analysis was performed using a random-effects model, which

revealed no significant difference in the combined effect [MD =

−0.12, P= 0.68, 95% CI (−0.71, 0.46)]. These findings suggest that

Lokomat
R©
robot-assisted gait training is not significantly superior

to CPT in terms of enhancing TUG performance (Figure 6).

FIM

A selection of five studies involving a total of 218 patients was

utilized to assess the Functional Independence Measure (FIM). The

study groups exhibited a moderate level of heterogeneity (I2 =

54%, P = 0.07). A meta-analysis was conducted using a random-

effects model, which revealed no significant difference in the

combined effect (MD= 2.12, P= 0.41, 95% CI [−2.92, 7.16]). This

suggests that there is no substantial disparity in the improvement

of functional independence between Lokomat
R©
robot-assisted gait

training and CPT (Figure 7).

Discussion

The existing studies lack a comprehensive evaluation of the

effectiveness of robot-assisted gait training using the Lokomat
R©

compared to CPT for lower extremity rehabilitation. Therefore, the

purpose of this systematic review is to fill this gap. The literature

examined in this review demonstrates a commendable level of

quality, with the majority of studies being deemed acceptable and

good. As a result, our conclusions can be considered informative.

In a meta-analysis conducted by Baronchelli et al. (18), the

authors examined the recovery of balance function in stroke

patients using three different balance scales in comparison to

traditional physical therapy. The findings indicated that Lokomat
R©

robot-assisted walking training was more effective in improving

the TUG test and the Rivermead Mobility Index, while the results

for BBS were inconclusive. The inconsistency in the BBS results

can be attributed to the fact that Baronchelli et al. calculated the

difference between pre- and post-treatment outcome measures,

whereas our study combined the results after treatment, leading
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FIGURE 2

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on FMA-LE at post-treatment.

FIGURE 3

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on BBS at post-treatment.

FIGURE 4

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on gait speed at post-treatment.

to inconsistent findings. We argue that our approach aligns with

the guidelines outlined in the Cochrane Handbook for Systematic

Reviews of Interventions. In terms of motor function, our analysis

of the functional ambulation category (FAC) yielded consistent

results with a study conducted by Calafiore et al. (16), showing

no significant difference between the two interventions. It is worth

noting that the wide range of grading in the FAC scale may

make it challenging to detect treatment differences within a short

intervention period. Additionally, other studies have reported that

the robot did not outperform traditional therapy in areas such as

daily life function and walking speed (47, 48). The early design

of the robot also restricted trunk and pelvic movements, which

negatively affected pelvic movements during gait training (32). This

limitation may explain the lack of observed improvement in gait in

some studies.

The findings of the present study indicate that the development

of robotic devices has aimed to alleviate the physical strain

associated with repetitive manual-assistance tasks and enhance the
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FIGURE 5

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on FAC at post-treatment.

FIGURE 6

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on TUG at post-treatment.

FIGURE 7

Forest plot: comparison of the e�ect of robot-assisted gait training with the Lokomat
®
and CPT on FIM at post-treatment.

quality of gait performance and to provide assistance to therapists

and patients throughout different phases of neurorehabilitation.

While there is scientific and clinical evidence supporting the

efficacy, safety, and tolerability of gait training with robotic devices,

there is a scarcity of documentation regarding their comparative

advantages over conventional therapies. Currently, there is a focus

on enhancing the assisted gait patterns by utilizing sensors and

control algorithms in order to improve their quality (49). Recent

studies have demonstrated that the utilization of robot-assisted

treadmill training led to a more balanced distribution of muscle

activity in individuals with paresis as opposed to the conventional

treatment methods (50). Another aspect of interest is that

Lokomat
R©
robot-assisted walking training can reduce the burden

on the therapist when the training is more intense and longer in

duration (51). Although no such data were obtained in this study,

this is an important reason for us to recommend the promotion

and use of Lokomat
R©

even after drawing this conclusion. With

the exception of Kelley et al. (35), who documented study-related

adverse events (AEs) such as skin redness or breakage caused

by pressure or friction from the straps or cuffs, no other studies

reported any adverse events. Consequently, the utilization of the

Lokomat
R©
robot is generally considered to be safe.

It is conceivable that the diverse outcome measures employed

in the literature reviewed may obscure the potential benefits
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derived from the Lokomat
R©
. In essence, the outcome measures

utilized in the articles may not accurately reflect the true

effects of the treatment. Consequently, there is a necessity for

more refined and objective scales to comprehensively assess

the clinical outcomes, enabling a more accurate understanding

of the treatment’s efficacy. Furthermore, the utilization of the

Lokomat
R©

in gait training heavily relies on the therapist’s

personal experience and familiarity with the device. While

efforts are continuously made to refine standard rehabilitation

protocols, it is evident that the use of the robot necessitates

individualized treatment. It is imperative to perceive it as a tool

rather than a ready-made solution, thus necessitating further

investigation into treatment duration, support weights, walking

parameters, and other relevant factors to optimize its utility

for physiotherapists.

Potential discrepancies in the findings of this study may have

arisen from various factors, including the quality and language

of the literature incorporated. First, with regard to the quality

of the literature, it is worth noting that while all the included

trials were RCTs, the adequacy of blinding and randomization

procedures in individual studies was not consistently well executed.

Second, the restriction to English language literature may have

resulted in the exclusion of relevant studies published in

other languages. Unavailability due to non-publication or non-

appearance in publicly available databases introduces a certain

amount of uncertainty when analyzing the results. This may

result in our results not being comprehensive enough to capture

the true effect across the field. Therefore, a certain amount of

caution is introduced when interpreting our results and presenting

conclusions. In addition, we recommend that future studies

consider reporting their findings more comprehensively and make

them as accessible as possible so that further meta-analysis can

better reveal the true picture of the effect of the Lokomat
R©

on

motor function rehabilitation after stroke. Although the assessment

of literature quality adhered to basic criteria across the board, it

is important to acknowledge the presence of heterogeneity in the

results, indicating a potential lack of reliability.

In general, the system is easily configured, minimizes the

requirement for physical therapy labor, and aligns with human

expectations of robotic assistance. Nevertheless, the findings of

the present investigation indicate suboptimal clinical outcomes in

lower extremity rehabilitation, particularly in relation to exercise.

Consequently, additional improvements in the implementation

and assessment approaches are necessary.
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