Cerebrovascular disease (CeVD) is a prominent contributor to global mortality and profound disability. Extensive research has unveiled a connection between CeVD and retinal microvascular abnormalities. Nonetheless, manual analysis of fundus images remains a laborious and time-consuming task. Consequently, our objective is to develop a risk prediction model that utilizes retinal fundus photo to noninvasively and accurately assess cerebrovascular risks.
To leverage retinal fundus photo for CeVD risk evaluation, we proposed a novel model called Efficient Attention which combines the convolutional neural network with attention mechanism. This combination aims to reinforce the salient features present in fundus photos, consequently improving the accuracy and effectiveness of cerebrovascular risk assessment.
Our proposed model demonstrates notable advancements compared to the conventional ResNet and Efficient-Net architectures. The accuracy (ACC) of our model is 0.834 ± 0.03, surpassing Efficient-Net by a margin of 3.6%. Additionally, our model exhibits an improved area under the receiver operating characteristic curve (AUC) of 0.904 ± 0.02, surpassing other methods by a margin of 2.2%.
This paper provides compelling evidence that Efficient-Attention methods can serve as effective and accurate tool for cerebrovascular risk. The results of the study strongly support the notion that retinal fundus photo holds great potential as a reliable predictor of CeVD, which offers a noninvasive, convenient and low-cost solution for large scale screening of CeVD.