Check for updates

OPEN ACCESS

APPROVED BY Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE Frontiers Production Office production.office@frontiersin.org

RECEIVED 05 July 2023 ACCEPTED 05 July 2023 PUBLISHED 13 July 2023

CITATION

Frontiers Production Office (2023) Erratum: Subjective perception of activity level: a prognostic factor for developing chronic dizziness after vestibular schwannoma resection? *Front. Neurol.* 14:1253462. doi: 10.3389/fneur.2023.1253462

COPYRIGHT

© 2023 Frontiers Production Office. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Erratum: Subjective perception of activity level: a prognostic factor for developing chronic dizziness after vestibular schwannoma resection?

Frontiers Production Office*

Frontiers Media SA, Lausanne, Switzerland

KEYWORDS

vestibular schwannoma, physical activity, chronic dizziness, balance, risk factors

An Erratum on

Subjective perception of activity level: a prognostic factor for developing chronic dizziness after vestibular schwannoma resection?

by Van Laer, L., Hallemans, A., Van Rompaey, V., De Valck, C., Van de Heyning, P., and Vereeck, L. (2022). *Front. Neurol.* 13:925801. doi: 10.3389/fneur.2022.925801

Due to a production error, there was a mistake in Table 3 as published. Following a correction requested during production, a change was carried out to the upper part of the table (Univariable regression analyses) and not the lower part of the table (multivariate regression). The corrected Table 3 appears below.

The publisher apologizes for this mistake. The original article has been updated.

TABLE 3 Predictive factors for perceived disability due to dizziness at 6 months.

Univariable regression analyses with perceived disability at 6 months as the dependent variable				
Independent variable	R^2	Intercept (a)	Slope (b)	Level of significance
Age	0.032	3.022	0.302	<i>p</i> = 0.153
Sex	0.031	14.357	6.590	<i>p</i> = 0.155
Koos classification	0.009	23.017	-2.072	p = 0.438
Preoperative vestibular function (LA)	0.022	21.764	-0.101	p = 0.324
Preoperative vestibular function (VOR gain)	0.010	21.374	-8.017	p = 0.484
Preoperative vestibular function (VOR phase)	0.001	18.951	-0.053	p = 0.799
Treatment group	0.008	20.130	-2.384	p = 0.494
Standing Balance Performance*	0.109	35.984	-0.321	$p = 0.009^*$
Timed Up and Go test*	0.110	-20.795	4.929	$p = 0.008^*$
Subjective level of physical activity*	0.166	47.961	-0.404	$p = 0.005^*$
Multiple regression analysis with perceived disability at 6 months as the dependent variable				
Model	R^2	F _{x,y}	Level of significance	
Model after elimination with two variables*	0.239	$F_{2,42} = 6.581$	$p = 0.003^*$	
Independent variable	Intercept (a)	Slope (b)	Level of significance	
Timed Up and Go test	-1.836	5.173	p = 0.052	
Subjective level of physical activity		-0.268	p = 0.081	

Perceived disability = DHI-score at 6 months, R^2 = explained variance of the dependent variable, intercept (a) and slope/regression-coefficient (b) in regression formula: Y (DHI-score) = a + bX(independent variable).

LA, labyrinthine asymmetry; VOR, Vestibulo-Ocular Reflex; F, ratio of the mean regression sum of squares divided by the mean error sum of squares; x/y, degrees of freedom. *Significant result (p < 0.05).