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Introduction: The Arm Activity Measure was developed to assess active and

passive functions of the upper limb in people with unilateral paresis, but a Chinese

version is not available and its psychometric properties have not been specifically

tested in people with stroke. This study aimed to translate and culturally adapt

the Chinese version of the Arm Activity Measure (ArmA-C) and establish its

psychometric properties in people with chronic stroke.

Methods: The psychometric properties of ArmA-Cwere determined in 100 people

with chronic stroke.

Results: The ArmA-C had good test–retest reliability (intraclass correlation

coe�cients [ICC] = 0.87–0.93; quadratic weighted Kappa coe�cients = 0.53–

1.00). A floor e�ect was identified in section A of the ArmA-C. The content

validity and internal consistency (Cronbach’s alpha coe�cients= 0.75–0.95) were

good. The construct validity of the ArmA-C was supported by acceptable fit to

the two-factor structure model and significant correlations with the Fugl-Meyer

Assessment for Upper Extremity score, grip strength, theWolf Motor Function Test

score, the Trail Walking Test completion time, and the Oxford Participation and

Activities Questionnaire scores.

Conclusions: The ArmA-C is reliable and valid for assessing active and passive

functions in people with chronic stroke.
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1. Introduction

Upper-limbmotor impairment is common after a stroke and has a great influence on the
functional performance of people with stroke. It has been shown to have a high prevalence
rate of 77% in people with subacute stroke (1), and few of those affected achieve complete
functional recovery after the subacute stage. More than 50% of people with chronic stroke
suffer from persistent motor impairments of the upper limb, such as spasticity, weakness,
and abnormal muscle synergy (2), on the affected side (3). Deficits in both the proximal
and distal segments of the upper limb may contribute to functional loss, as impairments
in the proximal arm may cause difficulties in transporting and rotating the hand and
impairments in the distal armmay reduce the ability to contact and interact with objects (4).
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Upper-limb function greatly influences the performance of
activities of daily living (r = 0.74, p < 0.001) (5) and the social
participation (β = 0.14, p = 0.05) of people with stroke (6). Loss
of upper-limb function may cause restrictions in daily activities
and social engagement (7). Moreover, upper-limb function is also
related to walking performance after stroke (β = 0.11, p = 0.047)
due to the role of arm swing in maintaining postural balance and
controlling the center of mass movement (8, 9).

Impairments in the active and passive functions of the upper
limb affect the functional recovery and independence of people
with stroke. Active and passive functions are two separate concepts
indicating different functional aspects in people with stroke (10).
The goals for upper-limb motor rehabilitation are to improve
performance in holding and manipulating objects, defined as active
function, and the ability to care for the affected arm, defined
as passive function (11). An instrument with both active and
passive function constructs may help clinicians and researchers
to comprehensively assess the functional performance of the
affected upper limb to improve clinical practice and evaluate the
effectiveness of interventions used in stroke rehabilitation.

Several self-reported instruments have been developed to reflect
the “real-life” active and passive functions of the upper limb in
people after stroke or brain injury. For example, the Leeds Adult
Spasticity Impact Scale (LASIS) measures the perceived difficulty in
passive function tasks, such as “cleaning the palm of the affected
hand”, and low-level active function tasks, such as “difficulty
balancing in standing,” to evaluate upper-limb performance in
real-life contexts, but it has not undergone psychometric testing
(12). Similarly, the ABILHAND questionnaire assesses upper-limb
performance by examining the perceived ease or difficulty in
performing daily tasks using the upper limb. However, it mainly
focuses on active function, and there are few items assessing passive
function (13). The floor effect may also exist in people with stroke
due to the complexity of the items in the ABILHAND, such as
“hammering a nail” and “threading a needle” (11, 14).

To address the inadequacies of LASIS and ABILHAND, the
Arm Activity Measure (ArmA) was developed to measure upper-
limb function in people with unilateral paresis. It assesses the
subjective difficulty in performing active and passive functional
aspects of daily activity tasks. Section A of the ArmA includes eight
items that measure the ability to perform passive functional tasks,
such as maintaining hygiene and dressing. Section B includes 13
items that examine the ability to perform active functional tasks
with the affected hand, such as holding and manipulating objects.
The original English version of the ArmA has demonstrated good
internal consistency and test–retest reliability in people with upper-
limb paresis due to stroke, brain injury, and other neurological
conditions (15). It has also been shown that scores for the original
English version of the ArmA significantly correlate with LASIS (rs
= 0.48–0.50) and the Disabilities of Arm Shoulder and Hand (rs
= 0.63) scores (15). The ArmA has previously been translated into
Thai (16) and Swedish (17).

Although the ArmA has potential as a self-reported
questionnaire that equally covers and assesses both the active
and passive functions of people with stroke, it has not been
translated into Chinese, and its psychometric properties have not
been systematically assessed in community-dwelling people with

chronic stroke. The objectives of this study were to (1) translate
and culturally adapt the original English version of the ArmA into
Chinese and (2) to examine the test–retest reliability, ceiling and
floor effects, content validity, internal consistency, and construct
validity of the Chinese version of the ArmA in people with stroke
and its correlations with other stroke-specific function-related
outcome measures.

2. Materials and methods

2.1. Participants and sample size
calculation

A convenience sample of people with stroke was recruited from
February to June 2021 from local self-help groups in Hong Kong.
People with stroke were included in the study if they: (1) were
50 years old or above; (2) were diagnosed with stroke at least
12 months previously; (3) scored 7 or more on the Abbreviated
Mental Test (18); (4) were community-dwelling; and (5) were able
to understand Cantonese. Participants were excluded if they had
another neurological condition, a musculoskeletal disorder, or any
unstable medical condition that could affect their assessment.

Written informed consent was obtained from all participants
before their enrolment in the study. The study was approved by the
Human Subjects Ethics Committee of The Hong Kong Polytechnic
University and was conducted in accordance with the guidelines of
the Declaration of Helsinki.

At least 100 people with stroke were required because factor
analysis was involved in this study (19). In previous studies,
the test–retest reliability of different versions of the ArmA was
evaluated using the quadratic weighted Kappa coefficient. The
lowest weighted Kappa coefficient reported in prior studies is 0.83
(17). Our sample size calculation showed that 36 participants would
be required to establish sufficient test–retest reliability at a power
of 0.8 and a significance level of 0.05. Thus, 100 people with
stroke were eventually recruited, and 36 participants were invited
to complete a reassessment after 1 week.

2.2. Translation and cultural adaption of the
ArmA

The ArmA was translated based on the recommendations of
Beaton et al. (20) after obtaining permission from the developers
of ArmA. The English version of the ArmA was independently
translated into Chinese by two bilingual translators. One of the
translators has a rehabilitation training background, and the other
one is a professional translator without a rehabilitation training
background. The translators reviewed two forward translations and
resolved any discrepancies by discussion to reach a consensus and
produce a reconciled translated version. The reconciled version
was then back-translated into English by another two independent
translators who were not involved in forward translation, including
one with a rehabilitation training background and a professional
translator without a rehabilitation training background. These
two translators compared the back-translated versions with the
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original English version and identified and resolved any conceptual
discrepancies by discussion. The reconciled translation was then
adopted as the initial Chinese version of the ArmA.

The semantic, experiential, conceptual, and idiomatic
equivalence of the Chinese version of the ArmA were evaluated
by a panel of five professionals, including physiotherapists,
nurses, and a professional translator. Each item was examined
using a 4-point Likert scale, with 1 representing “not relevant,” 2
representing “somewhat relevant,” 3 representing “quite relevant,”
and 4 representing “highly relevant”. The initial Chinese version
of the ArmA was tested on nine people with stroke to ascertain its
fluency, clarity, and comprehensibility. The final Chinese version of
the ArmA (ArmA-C) was produced and used in the current study.

2.3. Outcome measures

2.3.1. ArmA
The ArmA-C is a self-reported questionnaire to assess passive

(section A) and active (section B) real-life arm function (21).
Section A comprises eight items that assess the difficulty in caring
for the affected limb, while section B comprises 13 items that
examine the difficulty in performing tasks or activities using the
affected arm (21). Each item is scored using a 5-point Likert
scale, where 0 indicates no difficulty, 1 indicates mild difficulty,
2 indicates moderate difficulty, 3 indicates severe difficulty, and 4
indicates the inability to perform the activity. The total scores range
from 0 to 32 for section A and 0 to 52 for section B. Lower scores
represent less perceived difficulty in functional tasks and better arm
function on the affected side. The original English version of the
ArmA has been shown to be valid (Cronbach’s alpha = 0.85–0.96)
and reliable (quadratic weighted Kappa coefficients = 0.90–0.93)
in people with upper-limb paresis due to stroke, brain injury, and
other neurological conditions (15).

2.3.2. Fugl–meyer assessment for upper extremity
The motor domain of Fugl–Meyer Assessment for Upper

Extremity (FMA-UE) measures reflex activities, movements, and
coordination of the affected upper limb (22). The items in FMA-UE,
except two items assessing the reflex activity, are rated with 0, 1, or
2 points, which represent “cannot perform,” “performs partially,” or
“performs fully,” respectively. The total score ranges from 0 to 66,
with higher scores representing better motor performance of the
upper limb. FMA-UE scores of 0 to 31 indicate severe impairment,
and scores of 32 to 66 indicate mild-to-moderate impairment in the
upper extremity (23). The inter-rater reliability of the FMA-UE has
been found to be excellent [intraclass correlation coefficient (ICC)
= 0.98] in people with stroke (24).

2.3.3. Grip strength
The grip strength of the affected hand was measured using a

digital hand dynamometer (EH101; Zhongshan Canry Electronic
Co. Ltd., Zhongshan, China). The participant was seated in a
comfortable chair, with shoulder adduction at 0◦ and elbow flexion
at 90◦. They were asked to grip the hand dynamometer with
maximal isometric effort for at least 5 s. No other body movements

were allowed. Two trials were performed by each participant with
at least a 2-min rest between trials to avoid muscle fatigue and the
mean strength was calculated. Excellent test–retest reliability (ICC
= 0.97–0.98) of grip strength measurements has been shown in
healthy adults using this hand dynamometer (25).

2.3.4. Wolf motor function test
The Wolf Motor Function Test (WMFT) evaluates the motor

abilities of the affected and unaffected upper extremities using six
timed joint-segment movement items and nine timed functional
items (26). The quality of movement of both arms is rated on a
6-point scale ranging from 0 (no attempt made) to 5 (movement
appears to be normal), with total scores ranging from 0 to 75 (27). A
maximum time of 120 s is allowed for the completion of each timed
task (27). A higher score in the WMFT indicates better movement
capability of the upper extremities. The WMFT has demonstrated
excellent inter-rater reliability (ICC = 0.88–0.97) and test–retest
reliability (r = 0.90–0.95) in people with chronic stroke (28).

2.3.5. Trail walking test
The TrailWalking Test (TWT) simultaneously measures motor

(locomotion and turning) and cognitive functions (visual search
function and short-term memory) (29). In the TWT, participants
are required to walk to 15 numbered cones sequentially at their
normal walking speed (30). One trial was performed by each
participant, and the completion time was recorded. Good test–
retest reliability (ICC = 0.88) and excellent inter-rater reliability
(ICC = 0.99) have been found for the TWT in people with chronic
stroke (30).

2.3.6. Oxford participation and activity
questionnaire

The Chinese version of the Oxford Participation and Activities
Questionnaire (Ox-PAQ-C) consists of 23 items that assess the
level of participation and activity based on three domains, namely
routine activities, social engagement, and emotional wellbeing
(31). The items are scored according to a 5-point Likert scale (0
= never; 1 = rarely; 2 = sometimes; 3 = often; 4 = always).
The total scores for the routine activities, social engagement, and
emotional wellbeing subscales are 56, 16, and 20, respectively.
Higher scores in the Ox-PAQ-C represent greater difficulties in
participation and activity. The Ox-PAQ-C has demonstrated good
internal consistency (Cronbach’s alpha = 0.86–0.91) and excellent
test–retest reliability (ICC = 0.91–0.94) in people with chronic
stroke (32).

2.4. Statistical analysis

The item-level content validity index (I-CVI) value was
calculated using the number of panel members giving a relevance
rating of 3 or 4 for the item, divided by the total number of panel
members. Items with an I-CVI value equal to or higher than 0.78
are considered to have good content validity (33). The scale-level
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content validity index (S-CVI) was calculated by averaging the I-
CVI values of all items. An S-CVI value of 0.90 or above indicates
acceptable content validity for the whole scale (33).

Statistical analyses were performed using the Statistical Package
for the Social Sciences (version 28.0; IBM Corp, Armonk, NY,
USA). The demographic characteristics of people with stroke
were summarized using descriptive statistics. The scores in the
section A and B of ArmA-C obtained by participants with
different characteristics were compared using an independent
Student’s t-test, which can compare the continuous variables
from two different categories. The test–retest reliability of the
two subscales between 2 days were evaluated using ICC3,1,
which is the ICC model with two-way mixed effects by absolute
agreement. ICC values <0.50, 0.50 to 0.75, 0.75 to 0.90, and >0.90
indicate poor, moderate, good, and excellent reliability, respectively
(34). Item-level test–retest reliability was also assessed using the
quadratic weighted Kappa coefficient. Weighted Kappa coefficients
of 0.01–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 reflect
slight, fair, moderate, substantial, and almost perfect agreement,
respectively (35). To examine the ceiling or floor effects of the
ArmA-C, the proportions of participants obtaining the maximum
and minimum scores were calculated. A ceiling or floor effect of
<10% is considered to be acceptable (36).

The internal consistency of the ArmA-C was assessed using
Cronbach’s alpha coefficient. A Cronbach’s alpha coefficient >0.75
is indicative of good internal consistency (37). To assess construct
validity, confirmatory factor analysis with the two subscales in
the original ArmA (15) was performed to test the theoretical
foundation in ArmA-C. The fit of data to the model was assessed
using the following criteria: the ratio of chi-square to degree
of freedom (χ2/df) < 3.0, the comparative fit index (CFI) >

0.90, and the root mean square error approximation (RMSEA)
< 0.06 (38). In addition, the construct validity of ArmA-C was
investigated by hypothesis testing. We hypothesized strong to
very strong correlations between ArmA-C scores and FMA score,
grip strength, and WMFT scores, as they examine upper limb
motor function. Moreover, a weak to moderate correlation was
expected between ArmA-C scores and TWT completion time,
because the upper limb motor function may be associated with
the performance in gait control of people with stroke (8, 9).
We also hypothesized a weak to moderate correlation between
ArmA-C scores and Ox-PAQ-C scores, as the motor function has
a dynamic interaction with activity and participation of people
with stroke based on the framework of International Classification
of Functioning, Disability and Health. The degree of correlation
was determined using Spearman’s correlation coefficient (rs). The
strength of the correlation was defined as weak (rs = 0.20–0.29),
moderate (rs = 0.30–0.39), strong (rs = 0.40–0.69), or very strong
(rs ≥ 0.70) (39).

3. Results

3.1. Characteristics of the participants

The characteristics of the participants recruited in this study are
described in Table 1. One hundred people with chronic stroke were

TABLE 1 Demographic characteristics of the participants (n = 100).

Characteristics

Age (Mean± SD) 65.00± 6.18

Years since stroke (Mean± SD) 7.76± 4.44

Gender, number (%)

Male 58 (58.00)

Female 42 (42.00)

Employment status, number (%)

Employed 3 (3.00)

Unemployed/retired 97 (97.00)

Cause of stroke, number (%)

Ischemic 68 (68.00)

Hemorrhagic 32 (32.00)

Dominant-side hemiplegia, number (%)

Yes 53 (53.00)

No 47 (47.00)

Upper extremity impairment level, number (%)

Mild-to-moderate 75 (75.76)

Severe 24 (24.24)

SD, standard deviation.

recruited. The median scores for sections A and B of the ArmA-
C were 1.00 (interquartile range [IQR] = 5.00) and 28.50 (IQR =

33.00), respectively.
Table 2 shows a comparison of the ArmA-C scores for

participants with various characteristics. Significant differences
were found between participants with different upper-extremity
impairment levels, as determined by the FMA-UE score. Stroke
participants with a severe impairment level (FMA-UE scores of 0–
31) (23) had significantly higher ArmA-C scores in both sections A
and B than those with a mild-to-moderate impairment level (FMA-
UE scores of 32–66) (23). There were no significant differences
in ArmA-C scores according to sex, employment status, cause of
stroke, or the presence of dominant-side hemiplegia.

3.2. Reliability

Test–retest reliability evaluations of the ArmA-C resulted in
ICC values of 0.87 and 0.93 for sections A and B, respectively.
The quadratic weighted Kappa coefficients of all items ranged from
0.53 to 1.00 (Table 3). There were no ceiling effects in section A.
However, 45 participants (45%) achieved the lowest score in section
A, indicating a floor effect. There were no ceiling or floor effects
identified in section B.

3.3. Validity

All items in the ArmA-C obtained an I-CVI value of 1 except
items 9 and 12 in section B, which had I-CVI values of 0.4 and
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TABLE 2 Comparisons for the scores of Arm Activity Measure of stroke survivors with di�erent characteristics.

Characteristics Section A
(Mean ± SD)

t-value (p-value) Section B
(Mean ± SD)

t-value (p-value)

Gender t= 1.68 (p= 0.096) t= 0.67 (p= 0.505)

Male 3.33± 3.65 26.28± 16.20

Female 2.14± 3.23 24.12± 15.51

Employment status t=−1.26 (p= 0.212) t= 1.38 (p= 0.172)

Employed 5.33± 9.24 13.00± 14.93

Unemployed/retired 2.75± 3.28 25.75± 15.82

Cause of stroke t=−0.58 (p= 0.567) t=−1.02 (p= 0.312)

Ischemic 2.69± 3.54 24.26± 16.06

Hemorrhagic 3.13± 3.50 27.72± 15.45

Dominant-side hemiplegia t=−1.67 (p= 0.099) t=−1.98 (p= 0.050)

Yes 2.28± 3.43 22.45± 15.96

No 3.45± 3.54 28.66± 15.28

Upper extremity impairment level t= 2.64 (p= 0.010) t= 6.99 (p < 0.001)

Mild-to-moderate 2.35± 3.36 20.12± 14.74

Severe 4.46± 3.61 41.54± 4.67

SD, standard deviation.

0.8, respectively. The S-CVI value was 0.96. The Cronbach’s alpha
coefficients for sections A and B were 0.75 and 0.95, respectively
(Table 4). The confirmatory factor analysis model of ArmA-C is
presented in Figure 1. Although the RMSEA of 0.08 in the model
did not reach the criteria, the model displayed an acceptable fit with
the CFI of 0.92 and χ2/df of 1.74 (p < 0.001).

Table 5 summarizes the correlations between ArmA-C scores
and other outcome measures. The ArmA-C scores demonstrated
significant strong to very strong correlations with the FMA-UE
score and WMFT score of the affected side (rs = −0.40 to −0.81),
which supported the hypotheses regarding the construct validity.
However, the correlation between the section A of ArmA-C and
grip strength was weak (rs = −0.29) and did not support the
hypothesis regarding the construct validity. The ArmA-C scores
demonstrated significant weak to strong correlations with the TWT
time (rs = 0.29 to 0.45) and Ox-PAQ-C scores (rs = 0.20 to
0.51). The correlation between the section B of ArmA-C and TWT
time was strong (rs = 0.45), and that between the section A of
ArmA-C and routine activities subscale (rs = 0.51), and emotional
wellbeing subscale of Ox-PAQ-C (rs = 0.44) were strong, which
did not support the hypotheses regarding the construct validity.

4. Discussion

This is the first study to translate the ArmA into Chinese
and use it to evaluate the active and passive functional upper-
limb performance in people with chronic stroke. The ArmA-
C demonstrated good test–retest reliability, content validity, and
internal consistency. Moreover, the ArmA-C scores had good
construct validity by demonstrating acceptable fit to two-factor

structure model in the confirmatory factor analysis and significant
correlations with the FMA-UE score, grip strength, WMFT scores,
TWT completion time, and Ox-PAQ-C scores.

The findings of this study revealed that people with chronic
stroke (median scores for sections A and B: 1 and 28.5, respectively)
had less difficulty in performing functional tasks with their
upper limb than the participants of studies conducted using the
original English (median scores for sections A and B: 12 and
48, respectively) (15) and Swedish (median scores for sections A
and B: 12 and 46, respectively) versions of the ArmA (17). These
discrepancies may be attributed to the different characteristics
of the samples. The studies using the English and Swedish
versions of the ArmA recruited people with stroke and other
neurological conditions who had upper-limb spasticity (e.g., a
median Modified Ashworth Scale score of 3 in the Swedish
study), which may impair their upper-limb functions. However,
our study involved community-dwelling people with chronic stroke
only, who were more active and took initiative to participate
in their daily activities. They may have developed compensatory
strategies to accommodate constraints in the functional tasks.
Thus, they may have had better active and passive functions and
obtained lower scores in the ArmA-C than the participants in
previous studies.

Consistent with previous findings (40), there was
no significant difference in ArmA-C scores between
participants with and without dominant-side hemiplegia.
The possible reason is that people with dominant-side
hemiplegia may be more motivated to use their dominant
arm because they were not used to using their non-
dominant arm before the stroke (40). The propensity to
use the dominant arm may produce a “training effect”
and support the recovery of the affected arm (40). This
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TABLE 3 Test-retest reliability of the Chinese version of the Arm Activity

Measure.

Item Weighted
Kappa
value

95% confidence
interval (lower;

upper)

Section A

1. Cleaning the palm of the
hand

0.72 0.47; 0.97

2. Cutting finger nails 0.85 0.72; 0.99

3. Cleaning the armpit 0.78 0.58; 0.99

4. Cleaning the elbow crease 0.78 0.57; 0.99

5. Positioning arm on a
cushion or support in sitting

0.74 0.50; 0.97

6. Putting arm through a
garment sleeve

0.86 0.63; 1.09

7. Putting on a glove 1.00 /

8. Putting on a splint 1.00 /

Section B

1. Difficulty with balance
when walking due to your arm

0.53 0.26; 0.81

2. Hold an object still while
using unaffected hand

1.00 /

3. Open (affected hand) a
previously opened jar

0.79 0.62; 0.96

4. Pick up a glass, bottle, or
can

0.89 0.80; 0.97

5. Drink from a cup or mug 0.82 0.65; 0.99

6. Brush your teeth 0.85 0.73; 0.97

7. Tuck in your shirt 0.83 0.65; 1.00

8. Write on paper 0.78 0.63; 0.92

9. Eat with a knife and fork 0.94 0.88; 1.00

10. Dial a number on home
phone

0.92 0.86; 0.98

11. Do up buttons on clothing 0.78 0.64; 0.93

12. Comb or brush your hair 0.82 0.74; 1.02

13. Use a key to unlock the
door

0.90 0.84; 0.98

Subscale ICC3,1 95% confidence
interval (lower; upper)

Section A 0.87 0.76; 0.93

Section B 0.93 0.87; 0.97

may explain why no significant difference in functional
performance existed between participants with and without
dominant-side hemiplegia.

However, there were significant differences in active and passive
functions between stroke participants with mild-to-moderate and
severe impairment of the upper extremities, as measured by the
FMA-UE. Participants with a greater impairment level obtained
significantly higher scores in sections A and B of the ArmA-C.
Impairment after stroke may affect the level of spasticity, muscle

TABLE 4 Internal consistency of the Chinese version of the Arm Activity

Measure.

Item Cronbach’s
Alpha

Corrected
item-total
correlation

Alpha if item
deleted

Section A 0.75

1. Cleaning the
palm of the hand

0.69 0.69

2. Cutting finger
nails

0.43 0.78

3. Cleaning the
armpit

0.71 0.68

4. Cleaning the
elbow crease

0.61 0.70

5. Positioning arm
on a cushion or
support in sitting

0.48 0.73

6. Putting arm
through a garment
sleeve

0.68 0.68

7. Putting on a
glove

0.20 0.77

8. Putting on a
splint

0.18 0.76

Section B 0.95

1. Difficulty with
balance when
walking due to your
arm

0.18 0.96

2. Hold an object
still while using
unaffected hand

0.14 0.96

3. Open (affected
hand) a previously
opened jar

0.75 0.95

4. Pick up a glass,
bottle, or can

0.83 0.95

5. Drink from a cup
or mug

0.86 0.95

6. Brush your teeth 0.83 0.95

7. Tuck in your
shirt

0.86 0.95

8. Write on paper 0.76 0.95

9. Eat with a knife
and fork

0.86 0.95

10. Dial a number
on home phone

0.92 0.94

11. Do up buttons
on clothing

0.83 0.95

12. Comb or brush
your hair

0.85 0.95

13. Use a key to
unlock the door

0.83 0.95

strength, and joint mobility of the upper limb, which may lead
to functional limitations during daily activities (2), resulting
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FIGURE 1

Confirmatory factor analysis of the Chinese version of the Arm Activity Measure.
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TABLE 5 Correlations between the Chinese version of the Arm Activity

Measure and other outcome measures.

Variables Section A Section B

rs p rs p

Fugl-Meyer
Assessment for
Upper Extremity

−0.42∗∗ <0.001 −0.81∗∗ <0.001

Grip strength
(affected side)

−0.29∗∗ 0.006 −0.59∗∗ <0.001

Wolf Motor Function Test

Affected side −0.40∗∗ <0.001 −0.79∗∗ <0.001

Unaffected side −0.09 0.383 −0.20 0.050

Trail Walking Test 0.28∗∗ 0.005 0.45∗∗ <0.001

Oxford Participation and Activities Questionnaire

Routine activities
subscale

0.51∗∗ <0.001 0.37∗∗ <0.001

Social engagement
subscale

0.34∗∗ <0.001 0.25∗ 0.013

Emotional
wellbeing subscale

0.44∗∗ <0.001 0.20∗ 0.049

∗p < 0.05.
∗∗p < 0.01.

in greater difficulty in performing active and passive upper-
limb tasks.

Good test–retest reliability was found for sections A and
B of the ArmA-C, with similar results to the original English
and Swedish versions of the ArmA (15, 17). The item-level
agreement was moderate to almost perfect, ranging from 0.53
to 1.00. The ArmA-C had lower item-level test–retest reliability
than the original English version of the ArmA (quadratic
weighted Kappa coefficients = 0.71–0.94) (15). The possible
reason is that a 1-day interval was chosen in the original
ArmA, whereas a 1-week interval was used in our study for the
evaluation of test–retest reliability. A short test–retest interval
may result in higher Kappa coefficient values due to the risk of
recall bias.

In contrast to the original English (15) and Swedish versions of
the ArmA (17), a floor effect was present in section A of the ArmA-
C. Previous studies have shown that the original English ArmA
had a ceiling effect in section B (15), but the Swedish ArmA had
no ceiling or floor effects in the two subscales (17). One possible
reason for the floor effect observed in the ArmA-C was that our
participants were community-dwelling people with chronic stroke.
They may have developed their own compensatory strategies after
their stroke to perform personal care in their daily lives. Thus, they
may have perceived less difficulty in performing the upper-limb
tasks in section A.

The professional panel supported the content validity of the
ArmA-C, with I-CVI values of 0.4 to 1 and an S-CVI value of 0.96.
Items 9 and 12 in section B had relatively low I-CVI values of 0.4
and 0.8, respectively, due to the use of Chinese wording. The overall
good content validity may be due to the linguistic and contextual
equivalence of the ArmA-C and ArmA for the evaluation of arm
functions in people with stroke.

The two subscales of the ArmA-C showed good internal
consistency. The Cronbach’s alpha coefficient was similar between
section B of the ArmA-C (Cronbach’s alpha = 0.95) and other
versions of the ArmA, including the original English version
(Cronbach’s alpha = 0.96) (15), the Thai version (Cronbach’s alpha
= 0.88) (16), and the Swedish version (Cronbach’s alpha = 0.93)
(17). However, the internal consistency of section A of the ArmA-C
(Cronbach’s alpha = 0.75) was lower than the internal consistency
of other versions, which had Cronbach’s alpha coefficients of 0.85
to 0.94 (15–17). This discrepancy may be due to the low item–
total correlations in items 7 and 8. Eighty-five percent and 97%
of participants scored 0 for items 7 and 8, respectively. Some
participants had not performed the tasks in items 7 and 8 in section
A and they scored 0 for these items according to the original
guidelines, which was also interpreted as no difficulty. These
misinterpretations may have contributed to the weak correlations
between these two items and the subscale, resulting in relatively low
internal consistency.

Our study performed confirmatory factor analysis to assess the
fit of data in ArmA-C for the two-factor structure of the original
English version of the ArmA (“Passive function” and “Active
function”). Although the RMSEA in the model did not reach the
criteria, this model displayed an acceptable goodness of fit. The
possible reason may be different characteristics of the sample in
previous study and this study. In the original English version of
the ArmA, people with upper-limb paresis due to stroke, brain
injuries, and other neurological conditions, were recruited (15),
whereas only people with chronic stroke were recruited in this
study. Participants with various diagnoses and different signs and
symptoms may perceive various levels of difficulty in performing
tasks related to personal care and object manipulation. Thus,
their perceptions of their functional limitations may be different
from the perceptions of people with stroke and other neurological
conditions, resulting in a discrepancy in the results. Further studies
will be required to investigate the underlying factors influencing the
factor structure model of ArmA-C.

The results of the construct validity in this study supported
our stated hypotheses and suggested the construct of ArmA-C was
similar with FMA-UE andWMFT. Significant strong to very strong
correlations were found between the ArmA-C scores and FMA-
UE score. Upper-limb impairment after stroke may negatively
influence muscle strength, range of motion, and hand dexterity (2,
41). These changes affect functional performance during personal
care and object manipulation by the hands of people with stroke,
resulting in strong correlations between ArmA-C and FMA-UE
scores. The ArmA-C scores also demonstrated significant strong to
very strong correlations with the WMFT scores of the affected arm,
as the single- or multiple-joint functional movements included in
the WMFT are related to difficulty in performing upper limb tasks
in the ArmA-C. For example, item 8 (“lift can”) in the WMFT
was linked to item 4 (“pick up a glass, bottle, or can”) in section
B of the ArmA-C because both of these items assess the ability of
cylindrical grasping. Furthermore, item 2 (“forearm to box [side]”)
in the WMFT, which requires the participant to place their forearm
on a box, is related to item 6 (“putting arm through a garment
sleeve”) in section A of the ArmA-C, due to the involvement of
shoulder abduction in both items.
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Our results also demonstrated that the grip strength of the
affected hand was correlated with the ArmA-C scores, which was
consistent with the findings of a previous study, illustrating the
relationship between grip strength and upper extremity function
in people with stroke (r = 0.70, p < 0.01) (42). Reduced grip
strength may decrease arm stability, confine hand usage, and affect
upper-limb control and coordination (43). These factors directly
influence active and passive functions in the daily lives of people
with stroke. However, our stated hypothesis was not supported by
the result of construct validity due to weak correlation between the
section A of ArmA-C and grip strength. The section A of ArmA-
C assesses the ability to care for the affected arm and its items
can be performed under the assistance of unaffected arm of people
with stroke. Therefore, this may cause weak correlation between the
section A of ArmA-C and grip strength of affected hand.

Surprisingly, significant weak to strong correlations were
demonstrated between the ArmA-C scores and TWT completion
times in this study, which did not support our hypothesis. The TWT
examines gait control, which involves the walking performance and
cognitive function of people with stroke (30). Previous studies have
suggested the important role of arm movements in maintaining
coordination between the upper and lower body and gait stability
during walking (9, 44) and upper-limb function was related to
walking ability in people with stroke (β = 0.11, p = 0.047) (8).
Another possible explanation for the strong correlation between
the section B of ArmA-C scores and TWT completion time is that
cognitive functions contribute to the performance of upper-limb
tasks in people with stroke (45). Lin et al. found that cognitive
impairment explained a substantial proportion of the variance
(33%) in functional upper-limb tasks in people with stroke (45).
The performance of object manipulation during daily activities
also demands cognitive abilities, such as executive function,
visual perception, and proprioception. Therefore, both motor and
cognitive function assessed in the TWT may be correlated with
passive functions, resulting in significant strong correlation the
section B of ArmA-C scores and TWT completion time.

Other hypotheses were not supported because the ArmA-
C scores also showed significant weak to strong correlations
with the Ox-PAQ-C scores, including the routine activities,
social engagement, and emotional wellbeing subscales. Upper-
limb impairment after stroke may cause limitations in routine
activities in people with stroke, including reaching for, grasping,
manipulating, transporting, and releasing objects (46). Thus,
significant strong correlation was presented between ArmA-C
scores and routine activities subscale scores in the Ox-PAQ-C. In
addition, reduced upper-limb motor function may also lead to
restrictions in social participation by people with stroke due to
difficulties in maintaining relationships and transportation (47).
The reduced capacity to perform daily tasks and participate in social
roles may also affect the emotional and psychological wellbeing of
people with stroke (47), resulting in a significant strong correlation
between the emotional wellbeing subscale scores in the Ox-PAQ-C
and ArmA-C scores.

This study has several limitations that should be noted. First,
the study comprised community-dwelling people with chronic
stroke who may have better upper-limb motor function than
other people with stroke. The findings of this study may not be

generalisable to people with stroke with more severe upper-limb
motor deficits. Further studies should involve individuals with
different levels of post-stroke impairment or different stroke phases
to examine the applicability of the ArmA-C. Second, as women had
significantly worse functional performance than men after stroke
(48), the uneven sex ratio of the participants may have affected the
results in this study. Third, the sample size of people with stroke
was barely enough to conduct factor analysis. A larger sample size
of people with other diagnoses is recommended to further explore
the factor structure of the ArmA-C in future studies and provide a
more robust conclusion regarding the two-factor structure model.
Finally, a limited number of outcome measures were included in
the present study. More assessment tools may be necessary in
correlation analyses to evaluate the construct validity of ArmA-C
scores and in people with stroke.

5. Conclusions

The ArmA-C was shown to have good test–retest reliability,
content validity, internal consistency, and construct validity in
community-dwelling people with chronic stroke. It can be adopted
in clinical practice to examine active and passive functions
in people with upper-limb impairment. This may facilitate
our understanding of their functional performance in real-
life contexts.
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