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Background: This study aimed to compare the performance of different machine 
learning models in predicting symptomatic intracranial hemorrhage (sICH) after 
thrombolysis treatment for ischemic stroke.

Methods: This multicenter study utilized the Shenyang Stroke Emergency Map 
database, comprising 8,924 acute ischemic stroke patients from 29 comprehensive 
hospitals who underwent thrombolysis between January 2019 and December 
2021. An independent testing cohort was further established, including 1,921 
patients from the First People’s Hospital of Shenyang. The structured dataset 
encompassed 15 variables, including clinical and therapeutic metrics. The primary 
outcome was the sICH occurrence post-thrombolysis. Models were developed 
using an 80/20 split for training and internal validation. Performance was assessed 
using machine learning classifiers, including logistic regression with lasso 
regularization, support vector machine (SVM), random forest, gradient-boosted 
decision tree (GBDT), and multilayer perceptron (MLP). The model boasting the 
highest area under the curve (AUC) was specifically employed to highlight feature 
importance.

Results: Baseline characteristics were compared between the training cohort 
(n  =  6,369) and the external validation cohort (n  =  1,921), with the sICH incidence 
being slightly higher in the training cohort (1.6%) compared to the validation 
cohort (1.1%). Among the evaluated models, the logistic regression with lasso 
regularization achieved the highest AUC of 0.87 (95% confidence interval [CI]: 
0.79–0.95; p  <  0.001), followed by the MLP model with an AUC of 0.766 (95% CI: 
0.637–0.894; p  =  0.04). The reference model and SVM showed AUCs of 0.575 
and 0.582, respectively, while the random forest and GBDT models performed 
less optimally with AUCs of 0.536 and 0.436, respectively. Decision curve analysis 
revealed net benefits primarily for the SVM and MLP models. Feature importance 
from the logistic regression model emphasized anticoagulation therapy as the 
most significant negative predictor (coefficient: −2.0833) and recombinant tissue 
plasminogen activator as the principal positive predictor (coefficient: 0.5082).

Conclusion: After a comprehensive evaluation, the MLP model is recommended 
due to its superior ability to predict the risk of symptomatic hemorrhage post-
thrombolysis in ischemic stroke patients. Based on decision curve analysis, the 
MLP-based model was chosen and demonstrated enhanced discriminative ability 
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compared to the reference. This model serves as a valuable tool for clinicians, 
aiding in treatment planning and ensuring more precise forecasting of patient 
outcomes.

KEYWORDS

machine learning, prediction, symptomatic intracerebral hemorrhage, intravenous 
thrombolysis, stroke, multicenter

Introduction

Symptomatic intracerebral hemorrhage (sICH) represents an 
infrequent yet exceptionally dreaded complication following 
intravenous thrombolysis for ischemic stroke. The capacity to 
accurately pinpoint individual patients with an elevated risk of sICH 
has considerable clinical ramifications, extending from aiding 
clinicians in therapeutic deliberations and enlightening patients and 
relatives regarding prognosis to tailoring monitoring regimes.

An assortment of prognostic instruments has been conceived to 
ascertain the risk of sICH subsequent to intravenous thrombolysis for 
stroke (1–5). Nonetheless, a mere handful of these models have been 
formulated or externally corroborated in patients undergoing 
endovascular treatment (EVT) for ischemic stroke (3, 5). Before a 
prediction model can be assimilated into clinical practice, it warrants 
a rigorous appraisal, with external validation serving as a crucial stage 
to assess its broad applicability (6). Regardless, the aggregate accuracy 
of these scores persistently remains moderate, highlighting a persistent 
demand for individualized patient management strategies.

Machine learning techniques, by virtue of their capability to apply 
computational algorithms to expansive datasets with manifold, 
multidimensional variables, may be  poised to address certain 
shortcomings of the contemporary analytical strategies for risk 
prediction (7). Through capturing high-dimensional, non-linear 
correlations among clinical attributes, these methods could potentially 
enhance the precision of outcome predictions. Indeed, machine 
learning methodologies have commanded interest owing to their 
superior predictive prowess compared to traditional approaches 
across diverse settings and disease states (8–10). However, to the best 
of our knowledge, there is a conspicuous dearth of research employing 
machine learning models trained on large-scale, multicenter data to 
predict sICH.

Furthermore, the majority of risk models scrutinized hitherto 
have predominantly been developed and validated in patients of 
European American lineage, thus creating a lacuna in our 
comprehension of the risk in patients from diverse racial backgrounds.

Given this scenario, our study endeavors to bridge these gaps by 
analyzing data accrued from multiple centers across China to devise 
machine learning-based triage models, predicting the likelihood of 
sICH-ensuing intravenous thrombolysis. We  postulate that these 
models will supersede traditional risk prediction models in terms of 
precision and adaptability across heterogeneous patient cohorts. 
Additionally, we  intend to externally validate the predictive 
competency of our models in patients treated with intravenous 
thrombolysis in everyday clinical practice. We aspire that our research 
will culminate in the enhancement of management strategies for 
patients susceptible to sICH following an ischemic stroke.

Methods

This study is designed as an observational, multicenter, 
retrospective cohort study, encompassing data from several 
comprehensive hospitals. It primarily aims to evaluate and compare 
the efficacy of different machine learning models in predicting 
outcomes for ischemic stroke patients after thrombolysis treatment. 
To ensure ethical considerations and maintain research integrity, this 
study received formal approval from the Research Ethics Committee 
of Shenyang First Hospital (Approval Number: 2023SYKYPZ08).

Datasets

We initiated our research drawing from the Shenyang Stroke 
Emergency Map database, which caters to a vast population exceeding 
9 million and stands as a keystone for the citywide initiative aiming at 
the enhancement of stroke care quality. Specialized personnel from 30 
diverse and comprehensive hospitals directly uploaded clinical data to 
this database. With this extensive data pool, our focus was on a 
distinct cohort of 8,924 acute ischemic stroke (AIS) patients who 
underwent thrombolytic therapy. These patients were gathered from 
29 of these hospitals, and our study spanned from January 2019 to 
December 2021. Our primary inclusion criteria were patients aged 
18 years or older who were confirmed as having an ischemic stroke 
upon hospitalization. First, we excluded patients who had undergone 
EVT, as recorded in the database. Furthermore, patients missing data 
on either their admission National Institutes of Health Stroke Scale 
(NIHSS) score or post-thrombolysis NIHSS score were removed. 
Moreover, a crucial aspect of our data filtering process involved 
omitting patients who lacked information simultaneously in both the 
Swallowing Function Score and the Admission mRS Score columns. 
Given the clinical importance of these metrics in evaluating patient 
health and treatment outcomes, their absence could lead to a 
potentially incomplete or misleading patient assessment. Beyond 
these specific data-related exclusion criteria, we also excluded patients 
with severe organ dysfunctions, such as heart, liver, and kidney issues, 
as well as those with malignant tumors or other significant infections. 
Additionally, cases with other missing key feature data or those with 
poor data quality were also disregarded.

Subsequently, an additional independent testing cohort was 
established, comprising 2,046 consecutive patients who received 
thrombolytic therapy at the First People’s Hospital of Shenyang during 
the identical timeframe. Using the same stringent inclusion and 
exclusion criteria as our primary cohort, 1,921 patients from this 
independent group were finalized to serve as the testing set for 
our study.
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Following the stringent patient selection criteria, our data 
preparation encountered an anticipated challenge: missing values. 
Within the scope of our study, absent data for both predictor and 
outcome variables were evident. Such omissions may be attributed to 
various reasons, such as unperformed tests or incomplete patient 
records. To address this intricacy, we adopted the Multiple Imputation 
by Chained Equations (MICE) approach, employing the mice 
package in R (11). During the imputation process, we incorporated 
all predictor variables and the outcome variable, opting for the 
random forest (RF) method owing to its adeptness in deciphering 
intricate data patterns. It is noteworthy that, despite the inherent 
complexity of our dataset, we abstained from introducing interaction 
terms in the imputation model.

We proceeded with the creation of 20 imputed datasets. For the 
purpose of aggregation, the imputed values across these datasets were 
averaged with categorical variables determined by the model. Post-
imputation, a thorough analysis of each dataset ensued. To consolidate 
the findings, Rubin’s rules (12) were meticulously applied, yielding a 
harmonized output. To corroborate the robustness of our imputation 
technique, a sensitivity analysis juxtaposing the imputed and original 
datasets was performed, the details of which have been annexed.

Predictors

The structured dataset encapsulated 15 variables. This included 
the following 12 clinical metrics: gender, age, postawakening stroke, 
in-hospital stroke, body mass index (BMI), systolic blood pressure 
(SBP), diastolic blood pressure (DBP), Admission mRS Score, 
Admission NIHSS Score, Swallowing Function Score, onset-to-needle 
time (ONT), and TOAST Classification. Additionally, there were three 
therapeutic metrics: thrombolytic drugs, antiplatelet therapy, and 
anticoagulation therapy.

Primary outcomes

The primary outcome was the occurrence of sICH following 
thrombolysis. sICH was defined as “any neurological deterioration 
(increase of NIHSS≥1) within 36 h after tPA administration that is 
attributed to intracerebral hemorrhage (ICH) confirmed by CT or 
MRI,” as per the definition of the National Institute of Neurological 
Disorders and Stroke (NINDS) (13).

Model development and validation

The training cohort was arbitrarily divided into two subsets: 80% 
for model training and 20% for internal validation. Subsequently, 
experiments with five machine learning classifiers—logistic regression 
with lasso regularization (lasso regression), support vector machine 
(SVM), RF, gradient-boosted decision tree (GBDT), multilayer 
perceptron (MLP)—were implemented to generate our proprietary 
models for the prediction of each study outcome. The reference model 
employed a logistic regression with no regularization and was trained 
using the “saga” solver. An exhaustive grid search was applied to 
optimize the hyperparameters for these classifiers within predefined 
ranges. The internal validation cohort was specifically employed to 
adjust the models’ parameters. Through the grid search method, 

we identified the optimal hyperparameters corresponding to the highest 
AUC value on the internal validation set for each model. In the training 
cohort (80% randomly selected samples), we constructed a reference 
model and five proprietary machine learning models for each outcome.

Model performance was appraised in the external validation 
cohort according to a spectrum of learning metrics (mean area under 
the receiver operating characteristic curve [AUC] and decision curve 
analysis [DCA]), and the optimal performing model for the study 
outcome was selected. The DCA is a measure that considers the 
varying weights of different misclassification types with a direct 
clinical interpretation (for example, trade-offs between undertriage 
and overtriage for each model) (14, 15). Specifically, the relative effect 
of false-negative (undertriage) and false-positive (overtriage) results, 
given a threshold probability (or clinical preference), was calculated 
to produce a net benefit in each model. The net benefit of each model 
over a specified range of threshold probabilities of outcome was 
graphically demonstrated as a decision curve.

Data imbalance

In the dataset, the sICH prevalence was significantly low, at 
approximately 1.6%, leading to a noticeable class disparity. To mitigate 
this imbalance and enhance model performance, we  utilized the 
Synthetic Minority Over-sampling Technique (SMOTE). SMOTE 
works by generating synthetic instances for the minority class, 
drawing upon the characteristics of existing samples. By using this 
technique, we equilibrated the representation of the sICH positive and 
majority classes, ensuring a more sensitive and accurate model for 
identifying potential sICH cases.

Feature importance

The model exhibiting the highest AUC was chosen to highlight 
the importance of features, ensuring insights into the most 
influential predictors.

Statistical analysis

Categorical variables are delineated as count (%) and continuous 
variables as mean (SD) or median (interquartile range). The presence 
of a normal distribution was confirmed by the Kolmogorov–Smirnov 
test. We employed the t-test to evaluate disparities between parametric 
continuous variables, the Mann–Whitney U test for non-parametric 
variables, the χ2 test for categorical variables, and the Fisher’s exact test 
for 2 × 2 tables. No correction for multiple testing was instituted. A 
two-sided value of p of <0.05 was deemed statistically significant. All 
analyses were conducted with R version 4.1.2 and Python 
version 3.10.2.

Results

Table 1 illustrates the baseline characteristics of patients from the 
training cohort (n = 6,369) and the external validation cohort 
(n = 1,921). Both groups showed a similar median age of 65 years and 
a gender distribution where women accounted for approximately 30%. 
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Notably, there was a significant difference in in-hospital stroke rates, 
with the training cohort having 5.2% compared to 1.5% in the external 
validation cohort. Variations were also observed in clinical metrics 
such as SBP, DBP, Swallowing Function Score, and TOAST 
Classification. The use of recombinant tissue plasminogen activator 
(rt-PA) was predominant in the training cohort (89%), while 
urokinase was more frequently used in the validation cohort (35%). 
The sICH incidence was slightly higher in the training cohort at 1.6% 
compared to the validation cohort’s 1.1%. Overall, while some 
demographic characteristics aligned between the cohorts, clinically 
relevant variations highlight the significance of external validation in 
model assessments.

Figure 1 graphically depicts the discriminative capacities of 
various models using their receiver operating characteristic 
curves. The reference model exhibited a rather subdued 
performance, registering a C statistic of 0.575 (95% confidence 
interval [CI], 0.44–0.71). Surprisingly, not all machine learning 
models outperformed the reference. For instance, the RF and 
GBDT models manifested subpar performances with C statistics 
of 0.536 (95% CI, 0.42–0.653) and 0.436 (95% CI, 0.305–0.568), 
respectively (Table 2).

However, two machine learning models notably stood out: the 
logistic regression with lasso regularization and the MLP. The former 
displayed a prominent C statistic of 0.87 (95% CI, 0.79–0.95; p < 0.001), 
while the latter exhibited a C statistic of 0.766 (95% CI, 0.637–0.894; 
p = 0.04). When pitted against each other, the difference in AUC between 
the two was borderline significant at a value of p of 0.058, suggesting a 
potential edge for the logistic regression model, albeit not definitively so.

According to the DCA shown in Figure 2, only the SVM and MLP 
models demonstrated a net benefit. Notably, the MLP model displayed 
a broader range of threshold probabilities where it had a net benefit, 
outperforming other models. The remaining models did not exhibit 
discernible net benefits.

TABLE 1 Baseline features of included cohorts.

Characteristic Training 
cohort 

(N  =  6,369)

External 
validation 

cohort 
(N  =  1,921)

p-value

Gender 0.7

Male 4,507 (71%) 1,351 (70%)

Female 1,859 (29%) 570 (30%)

Unknown 3 0

Age, median (Q1, Q3), 

years

65 (57, 71) 65 (58, 72) 0.034

Unknown 3 0

Postawakening stroke 0.2

No 6,210 (98%) 1,882 (98%)

Yes 159 (2.5%) 39 (2.0%)

In-hospital stroke <0.001

No 6,039 (95%) 1,892 (98%)

Yes 330 (5.2%) 29 (1.5%)

BMI 24.2 (21.9, 26.3) 24.1 (22.1, 26.1) 0.9

Unknown 440 37

SBP (Q1, Q3), mmHg 157 (141, 169) 149 (138, 160) <0.001

DBP (Q1, Q3), mmHg 90 (80, 97) 85 (79, 93) <0.001

Admission mRS score

0 3,271 (53%) 546 (28%)

1 845 (14%) 386 (20%)

2 487 (7.9%) 535 (28%)

3 416 (6.7%) 195 (10%)

4 925 (15%) 191 (9.9%)

5 216 (3.5%) 67 (3.5%)

6 15 (0.2%) 1 (<0.1%)

Unknown 194 0

Admission NIHSS score 6 (4, 11) 3 (2, 6) <0.001

Swallowing function score <0.001

1 2,286 (45%) 1,131 (93%)

2 1,706 (34%) 82 (6.7%)

3 387 (7.7%) 1 (<0.1%)

4 351 (7.0%) 1 (<0.1%)

5 314 (6.2%) 1 (<0.1%)

Unknown 1,325 705

TOAST classification <0.001

LAA 3,345 (53%) 1,519 (79%)

CE 508 (8.0%) 94 (4.9%)

SAA 2,046 (32%) 282 (15%)

SOE 29 (0.5%) 3 (0.2%)

SUE 441 (6.9%) 23 (1.2%)

Thrombolytic drug <0.001

rt-PA 5,653 (89%) 1,211 (63%)

Urokinase 634 (10.0%) 663 (35%)

(Continued)

TABLE 1 (Continued)

Characteristic Training 
cohort 

(N  =  6,369)

External 
validation 

cohort 
(N  =  1,921)

p-value

Others 82 (1.3%) 47 (2.4%)

ONT, Median (Q1, Q3), 

min

170 (127, 227) 158 (113, 222) <0.001

Unknown 32 0

Antiplatelet therapy <0.001

No 688 (11%) 112 (5.8%)

Yes 5,437 (89%) 1,809 (94%)

Unknown 244 0

Anticoagulation therapy <0.001

No 5,730 (95%) 1,890 (99%)

Yes 318 (5.3%) 28 (1.5%)

Unknown 321 3

sICH, n (%) 99 (1.6%) 22 (1.1%) 0.2

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LAA, 
large-artery atherosclerosis stroke; CE, cardioembolic stroke; SAA, small artery occlusion or 
lacunar stroke; SOE, stroke of other determined etiology; SUE, stroke of undetermined 
etiology; ONT, onset-to-needle time; sICH, symptomatic intracerebral hemorrhage.
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In Figure 3, the importance of various features is depicted through 
their coefficients from the logistic regression with lasso regularization 
model. This model was specifically chosen for illustrating feature 
importance due to its highest AUC value, showcasing its superior 
discriminative capability among the evaluated models.

Anticoagulation therapy emerged as having the most 
pronounced negative effect on the outcome, as indicated by its 
coefficient of −2.0833, suggesting a decreasing likelihood of the 
outcome with an increase in this variable. On the contrary, rt-PA 
stands out as the feature having the most positive influence on the 
outcome, bearing a coefficient of 0.5082. Other influential positive 
predictors include TOAST Classification 1, SBP, and Admission 
mRS Score, with coefficients of 0.3033, 0.2668, and 0.1811, 
respectively. Meanwhile, features such as age and DBP present as 
detractors from the outcome due to their negative coefficients of 
−0.3456 and −0.3713, respectively. Interestingly, certain features 
such as TOAST Classification 4 exhibited negligible influence on 
the outcome, as signified by their coefficients hovering close to 
zero. This visualization aids in elucidating the varying extents to 
which different predictors influence the outcome, as interpreted 
from the logistic regression model.

Discussion

In this study, we  pinpointed readily available clinical and 
laboratory factors prior to thrombolysis and validated the effectiveness 

of machine learning techniques in forecasting sICH post-
thrombolysis. The machine learning workflow was formulated solely 
from real-world, multicenter patient databases. To the best of our 
understanding, this constitutes the most comprehensive multicenter 
study to develop and assess machine learning models with an 
unparalleled sample size and to subsequently examine their clinical 
applicability in independent datasets.

While the logistic regression with lasso regularization 
demonstrated a marginally higher AUC value compared to the MLP, 
a DeLong test comparison between the AUCs of both models yielded 
a value of p greater than 0.05, suggesting no statistically significant 
difference. More importantly, in the DCA evaluation, the MLP 
showcased superior performance over the logistic regression model 
with lasso regularization. This reinforces our recommendation of the 
MLP, emphasizing its potential for enhanced clinical applicability and 
overall patient benefit.

Our machine learning models achieved prediction accuracies 
exceeding 80% on the validation set, with a peak accuracy of 87%, 
thereby showcasing commendable predictive performance in practice 
when contrasted with the reference model. Compared to conventional 
models, machine learning models showed superior performance in 
forecasting sICH post-thrombolysis. Although a previous study 
utilized multicenter data for modeling and external validation, it was 
somewhat limited, only incorporating 136 cases in the external 
validation set to evaluate the model’s predictive performance in 
scenarios of low sICH incidence in real-world settings, which may not 
accurately reflect the model’s performance (16). These machine 

FIGURE 1

Receiver operating characteristic curves. The corresponding values of the area under the curve for each model are presented in Table 2.
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learning models also attained higher sensitivity and specificity in 
predicting sICH outcomes.

Moreover, our research utilized clinical decision curves (CDCs) 
to evaluate the model’s performance, offering a visual depiction of the 
sensitivity and specificity trade-off across varied threshold 
probabilities. CDCs are instrumental in identifying the optimal 
threshold for clinical decision-making and pinpointing the patient 
population where the model exhibits maximum effectiveness. They 
provide a succinct method of interpreting and applying prediction 
models and serve as a crucial tool in guiding clinical decision-making, 
particularly in scenarios that involve multiple prediction models or 
clinical strategies (15). The net benefit was also more substantial 
across a wide range of threshold probabilities in machine 
learning approaches.

Utilizing logistic regression with lasso regularization, 
we pinpointed anticoagulation therapy, antiplatelet therapy, other 
thrombolytic drugs, rt-PA, DBP, age, LAA, SUE, SBP, gender, and 
Admission mRS Score as significant predictors for the occurrence 
of sICH post-thrombolysis in patients. Notably, our identification 
of these predictors aligns well with the broader literature. 
Hypertension (17), diabetes (18), older age (19), higher body mass 
index (20), and cardioembolic stroke (CE) (5) emerged as the 
primary risk factors for hemorrhage in patients. This is further 
corroborated by previous studies that recognized hypertension, 
elevated blood pressure, and older age as risk factors for post-
thrombolysis hemorrhage (21, 22).

In the realm of our research, which primarily focuses on 
prediction, we  identified antiplatelet therapy, anticoagulation 
therapy, age, and gender as significant predictors of sICH. Notably, 
the female gender was negatively associated with increased sICH 
incidence. This finding aligns with certain past studies that have 
identified a similar protective attribute associated with female 
gender in the context of sICH (23). However, our results diverge 
from the conventional understanding where anticoagulation (24) 
and antiplatelet (25, 26) therapies have been historically linked 
with heightened hemorrhagic risks post-thrombolysis and the 
frequent association of older age (27) with sICH. However, it is 
pivotal to understand that our aim differed from traditional 
studies, as we were more oriented toward forecasting outcomes 
rather than dissecting risk factors. Thus, while we delineate the 
coefficients for these predictors, the directional values, especially 
in the absence of associated p-values, remain interpretative. They 
signify predictive relationships in our dataset, not necessarily 
causal connections. Such distinctions become essential when 
weighing our predictive findings against traditional studies 
aiming primarily at risk factor exploration. Moreover, variations 
in patient selection, treatments employed, dosages, and timing 
across studies could influence these disparities. Our data’s 
alternative trend emphasizes the critical need to consider the 
myriad of concurrent factors or co-morbidities potentially 
interacting with these predictors.

Studies have indicated that the onset of sICH is among the most 
severe complications post-thrombolysis, a typical treatment for 
ischemic stroke (28). Accurate sICH prediction can aid clinicians 
in formulating appropriate treatment strategies and enhancing 
patient outcomes. Traditional sICH prediction models bear 
limitations regarding accuracy and dependability due to the 
intricate interplay of numerous clinical and imaging factors. Hence, T

A
B

LE
 2

 P
re

d
ic

ti
ve

 a
b

ili
ty

 o
f 

th
e 

re
fe

re
n

ce
 m

o
d

el
 a

n
d

 fi
ve

 m
ac

h
in

e 
le

ar
n

in
g

 m
o

d
el

s 
fo

r 
sI

C
H

 in
 p

at
ie

n
ts

 w
it

h
 is

ch
em

ic
 s

tr
o

ke
 w

h
o

 r
ec

ei
ve

d
 t

h
ro

m
b

o
ly

si
s.

M
o

d
e

l
A

U
C

 w
it

h
 C

I
P

 v
al

u
e

Se
n

si
ti

vi
ty

 (
9

5
%

 C
I)

Sp
e

ci
fi

ci
ty

 (
9

5
%

 C
I)

P
P

V
 (

9
5

%
 C

I)
N

P
V

 (
9

5
%

 C
I)

P
LR

 (
9

5
%

 C
I)

N
LR

 (
9

5
%

 C
I)

Re
fe

re
nc

e 
m

od
el

0.
57

5 
(0

.4
4–

0.
71

)
[R

ef
er

en
ce

]
0.

56
1 

(0
.4

04
–0

.6
8)

0.
66

3 
(0

.0
22

–0
.8

25
)

0.
01

9 
(0

.0
12

–0
.0

28
)

0.
99

2 
(0

.9
89

–1
.0

)
1.

65
9 

(1
.0

22
–2

.4
57

)
0.

66
1 

(0
.0

–0
.9

2)

Lo
gi

st
ic

 re
gr

es
sio

n 
w

ith
 la

ss
o 

re
gu

la
riz

at
io

n

0.
87

 (0
.7

9–
0.

95
)

<0
.0

01
0.

78
1 

(0
.7

27
–0

.8
18

)
0.

87
6 

(0
.8

13
–0

.9
18

)
0.

65
7 

(0
.6

07
–0

.6
94

)
0.

79
8 

(0
.7

55
–0

.8
29

)
0.

21
1 

(0
.1

69
–0

.2
50

)
0.

11
1 

(0
.0

72
–0

.1
50

)

Ra
nd

om
 fo

re
st

0.
53

6 
(0

.4
2–

0.
65

3)
0.

71
2

0.
66

2 
(0

.5
00

–0
.7

73
)

0.
53

3 
(0

.4
00

–0
.6

87
)

0.
19

5 
(0

.1
45

–0
.2

58
)

0.
62

5 
(0

.5
29

–0
.6

68
)

0.
04

2 
(0

.0
31

–0
.0

57
)

0.
01

0 
(0

.0
06

–0
.0

16
)

G
BD

T
0.

43
6 

(0
.3

05
–0

.5
68

)
0.

23
5

0.
39

9 
(0

.0
45

–0
.9

11
)

0.
67

4 
(0

.1
00

–0
.9

88
)

0.
07

2 
(0

.0
07

–0
.1

60
)

0.
36

4 
(0

.0
56

–0
.6

05
)

0.
02

1 
(0

.0
04

–0
.0

52
)

0.
00

9 
(0

.0
00

–0
.0

40
)

M
LP

0.
76

6 
(0

.6
37

–0
.8

94
)

0.
04

0.
70

1 
(0

.5
91

–0
.8

18
)

0.
83

9 
(0

.7
07

–0
.9

27
)

0.
54

0 
(0

.4
51

–0
.6

19
)

0.
72

3 
(0

.6
31

–0
.8

03
)

0.
16

1 
(0

.1
11

–0
.2

22
)

0.
07

8 
(0

.0
36

–0
.1

40
)

SV
M

0.
58

2 
(0

.4
72

–0
.6

92
)

0.
94

0.
66

4 
(0

.3
64

–0
.8

18
)

0.
61

2 
(0

.4
87

–0
.8

30
)

0.
27

7 
(0

.1
82

–0
.3

75
)

0.
64

4 
(0

.4
11

–0
.7

44
)

0.
06

1 
(0

.0
43

–0
.0

82
)

0.
01

7 
(0

.0
11

–0
.0

30
)

https://doi.org/10.3389/fneur.2023.1247492
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wen et al. 10.3389/fneur.2023.1247492

Frontiers in Neurology 07 frontiersin.org

the application of machine learning models for predicting sICH in 
patients with AIS has garnered growing interest recently, given its 
potential clinical significance. While adding a larger set of predictive 
factors such as comprehensive disease history, continuous vital sign 
monitoring, and imaging data might enhance the model’s 
capabilities, acquiring such a vast array of predictors in practice is 

challenging due to constraints related to information, resources, 
and time, especially in multicenter datasets. An alternative strategy 
to aid clinical decision-making in predicting post-thrombolysis 
sICH involves the deployment of contemporary machine learning 
methods to navigate the complex non-linear interactions among 
predictive factors (6).

FIGURE 2

Decision curve analysis. The x-axis indicates the threshold probability for hospitalization outcome. The y-axis indicates the net benefit. The curves 
(decision curves) indicate the net benefit of models (the reference model and five machine learning models) as well as two clinical alternatives 
(classifying no patients as having sICH vs. classifying all patients as having sICH) over a specified range of threshold probabilities of outcome. Only the 
SVM and MLP models exhibited a positive net benefit.

FIGURE 3

Importance of features as determined by logistic regression with lasso regularization.
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Recent investigations have illuminated the potential of machine 
learning models in predicting various clinical outcomes, such as 
hemorrhagic transformation post-ischemic stroke (29), diabetic 
retinopathy (30), and small-bowel diseases via capsule endoscopy 
(31). These models are developed by leveraging intricate non-linear 
relationships between predictors and outcomes in extensive datasets, 
enabling the identification of clinically relevant predictors and 
enhancing prediction accuracy. Our study expands on previous 
reports, showcasing the superior capacity of modern machine learning 
methods in predicting clinical outcomes and guiding management 
through modeling and external validation with a large sample size of 
nearly 10,000 patients from 30 hospitals.

However, our study has some limitations. The study sample was 
primarily from hospitals in the northeast region of China, so our 
findings need to be validated and generalized to other regions to 
ensure their universality and applicability. Future studies should also 
expand the sample size to further validate our findings. While our 
machine learning algorithms exhibited commendable predictive 
acumen for sICH, they remain susceptible to the restrictions imposed 
by currently accessible data and may not invariably furnish accurate 
prognostications for individual patient outcomes. However, it 
certainly underscores the feasibility of a machine-learning model for 
crafting personalized risk prognostication. To mitigate these 
concerns, we advocate further exploration and enhancement of data 
dissemination and transparency. It merits highlighting that our 
investigation incorporated a circumscribed set of variables for the 
machine learning paradigms, and the inclusion of additional germane 
variables may bolster the model’s performance.

Notwithstanding these constraints, the creation of triage models 
predicated on machine learning principles continues to be a promising 
prospect for ameliorating the prognosis of stroke patients and 
augmenting clinical decision-making within the framework of 
thrombolytic treatment. Prospective studies should endeavor to tackle 
these constraints and unearth methods to refine these models further 
for optimal clinical utility. With the integration of a more expansive 
set of variables and ongoing refinement, these models could evolve 
into formidable instruments for clinicians managing AIS patients. By 
addressing these constraints, we  can persistently enhance these 
models’ precision and applicability, culminating in improved patient 
outcomes and refined clinical decision-making.

Conclusion

To summarize, our study highlights the efficacy of the MLP as a 
machine learning technique in prognosticating the risk of symptomatic 
hemorrhage following thrombolysis in patients with ischemic stroke. 
Based on DCA, the MLP was chosen, illuminating its strength as a 
predictive tool. Through this approach, we have been able to elucidate 
critical predictive determinants of hemorrhagic risk. Despite potential 
limitations, the MLP-based model presented here stands as a potent 

instrument for clinicians, offering insights into treatment planning and 
enabling more accurate forecasts of patient outcomes.
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