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Background: Stroke is a leading cause of lifelong disability worldwide, partially 
driven by a reduced ability to use the upper limb in daily life causing increased 
dependence on caregivers. However, post-stroke functional impairments have 
only been investigated using limited clinical scores, during short-term longitudinal 
studies in relatively small patient cohorts. With the addition of technology-
based assessments, we propose to complement clinical assessments with more 
sensitive and objective measures that could more holistically inform on upper 
limb impairment recovery after stroke, its impact on upper limb use in daily life, 
and on overall quality of life. This paper describes a pragmatic, longitudinal, 
observational study protocol aiming to gather a uniquely rich multimodal 
database to comprehensively describe the time course of upper limb recovery 
in a representative cohort of 400 Asian adults after stroke. Particularly, we will 
characterize the longitudinal relationship between upper limb recovery, common 
post-stroke impairments, functional independence and quality of life.

Methods: Participants with stroke will be tested at up to eight time points, from 
within a month to 3  years post-stroke, to capture the influence of transitioning 
from hospital to community settings. We  will perform a battery of established 
clinical assessments to describe the factors most likely to influence upper 
limb recovery. Further, we will gather digital health biomarkers from robotic or 
wearable sensing technology-assisted assessments to sensitively characterize 
motor and somatosensory impairments and upper limb use in daily life. We will 
also use both quantitative and qualitative measures to understand health-related 
quality of life. Lastly, we  will describe neurophysiological motor status using 
transcranial magnetic stimulation.
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Statistics: Descriptive analyses will be first performed to understand post-stroke 
upper limb impairments and recovery at various time points. The relationships 
between digital biomarkers and various domains will be explored to inform key 
aspects of upper limb recovery and its dynamics using correlation matrices. 
Multiple statistical models will be constructed to characterize the time course of 
upper limb recovery post-stroke. Subgroups of stroke survivors exhibiting distinct 
recovery profiles will be identified.

Conclusion: This is the first study complementing clinical assessments with 
technology-assisted digital biomarkers to investigate upper limb sensorimotor 
recovery in Asian stroke survivors. Overall, this study will yield a multimodal data 
set that longitudinally characterizes post-stroke upper limb recovery in functional 
impairments, daily-life upper limb use, and health-related quality of life in a large 
cohort of Asian stroke survivors. This data set generates valuable information on 
post-stroke upper limb recovery and potentially allows researchers to identify 
different recovery profiles of subgroups of Asian stroke survivors. This enables the 
comparisons between the characteristics and recovery profiles of stroke survivors 
in different regions. Thus, this study lays out the basis to identify early predictors 
for upper limb recovery, inform clinical decision-making in Asian stroke survivors 
and establish tailored therapy programs.

Clinical trial registration: ClinicalTrials.gov, identifier: NCT05322837.

KEYWORDS

stroke, neurorehabilitation, upper limb, assessment, recovery, sensorimotor 
impairments

1 Introduction

At least 50% of stroke survivors suffer from upper limb 
impairments in the acute stage (1, 2), and the variety of recovery 
profiles widely vary (3, 4). Gaining a better understanding of the 
neurophysiological, behavioral and contextual factors affecting 
recovery post-stroke is essential to developing more tailored and 
optimized upper limb rehabilitation approaches and reducing the risk 
of persistent upper limb impairments (5, 6), which are known to lead 
to poor self-efficacy (7) and low self-reported health-related quality of 
life (Hr-QOL) (8, 9). However, this relies on rich data sets tracking 
upper limb sensorimotor recovery with sufficient time resolution and 
for a sufficiently long time beyond the initial hospitalization, and 
considering the multi-dimensional nature of upper limb deficits and 
their impact on quality of life.

During the last few years, understanding the time course of 
recovery after stroke as well as its major determinants has received 
increasing attention (10–14). However, only few data sets have 
collected information (i) with a high temporal resolution (i.e., multiple 
time points during both acute/subacute and chronic phases), (ii) over 
a time period longer than 1 year [but see (14, 15)], (iii) in a large and 
representative patient sample, and (iv) through the lens of multiple 
domains of functioning, Hr-QOL and disability. First available data 
sets, particularly measuring the recovery of upper limb function (3, 4, 
16, 17), have revealed important new insights into predicting 
rehabilitation outcomes (3, 16) and, recently, also trajectories of 
recovery (4). Here, we  aim to investigate the added value of 
technology-assisted assessments in an Asian cohort longitudinally. 

“Digital biomarkers,” i.e., metrics derived from technology-assisted 
assessments (18–20), offer the advantage of providing validated (21–
23), objective and traceable descriptions of upper limb behavior on 
sensitive, continuous scales, often without ceiling effects (24). Digital 
biomarkers are helpful to complement clinical scores, uniquely inform 
on movement quality and allow for separating behavioral restitution 
from compensatory strategies (25), a key aspect that existing 
longitudinal studies on recovery failed to capture (10, 13).

To reach this aim, we designed a study protocol to gather a rich 
multimodal data set tracking the time course of upper limb recovery 
in a representative cohort of 400 Asian adults after ischemic or 
hemorrhagic stroke for up to 3 years and characterize the longitudinal 
relationship between upper limb recovery and independence/quality 
of life of post-stroke individuals. Compared to Caucasian stroke 
survivors, Asian stroke survivors have a higher incidence of 
intracerebral hemorrhages (ICH), lacunar ischemic strokes (IS) and 
strokes in the young (<45 years) as well as differential recovery 
patterns between ICH and IS strokes (26–28). However, there is scarce 
evidence on the profiles of the Asian stroke population. To answer 
this, we will employ a carefully selected battery of standardized clinical 
tests, technology-assisted assessments, neurophysiological 
assessments, tools for measuring Hr-QOL, as well as qualitative 
interviews with longitudinal follow-ups to uncover different recovery 
profiles in Asian stroke survivors. Our data set will, thus, assess 
multiple domains of upper limb recovery with a focus on 
sensorimotor function.

Such a longitudinal, comprehensive data set will yield clinically 
important information on key factors influencing post-stroke upper 

https://doi.org/10.3389/fneur.2023.1246888
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://ClinicalTrials.gov


Cheng et al. 10.3389/fneur.2023.1246888

Frontiers in Neurology 03 frontiersin.org

limb sensorimotor recovery trajectory, activity capacity, activity 
performance, real-world participation, and quality of life over time. 
We will use this data set to answer the following research questions: 
(i) Can digital biomarkers revealed by technology-based assessments 
and wearables deepen our understanding of post-stroke upper limb 
recovery when compared to neurophysiological measurements 
(transcranial magnetic stimulation, TMS), standardized clinical 
assessments, patient self-reports, and Hr-QOL? (ii) What is the 
interaction and interdependence between sensorimotor impairments, 
clinically assessed performance, neurophysiology, quality of life, and 
upper limb usage in daily life, for stroke survivors? (iii) What are the 
major determinants of recovery? This data set will provide a new 
means for quantifying the “natural course” of post-stroke recovery in 
accordance with the standard of care, providing a strong data-driven 
foundation on which future therapy could be potentially optimized.

2 Methods and analysis

2.1 Study design and participants

This study is a single-center, prospective longitudinal, 
observational cohort study. The study was registered on ClinicalTrials.
gov with the following registration number: NCT05322837.

In this study, we aim to recruit up to 400 stroke survivors from the 
Tan Tock Seng Hospital (TTSH) Rehabilitation Centre inpatient 
stroke rehabilitation unit. TTSH Rehabilitation Centre is the largest 
stroke rehabilitation hospital in Singapore with a catchment area 
covering roughly 1/3 of the country. It provides customized stroke 
upper limb management which includes one-to-one individualized 
training, upper limb group intensive training, self-directed upper limb 
therapy, robotic upper limb retraining and neuromuscular electrical 
stimulation. Our sample of stroke survivors and can be  deemed 
unselected. The inclusion criteria are as follows.

 • Stroke confirmed by neurologists, neurosurgeons, and brain 
imaging (computed tomography (CT), computed tomography 
angiogram, magnetic resonance imaging (MRI), magnetic 
resonance angiogram).

 • Asian ethnicity.
 • Age 21–90 years.
 • Montreal Cognitive Assessment (MoCA) scores 18/30 and above.
 • Admission to the inpatient stroke rehabilitation unit within 

8 weeks of stroke onset.
 • Admission Fugl–Meyer score <66.

For qualitative interviews at >6 months post-stroke:

 • Capacity to communicate.
 • MOCA >24/30 at 6 months.

The exclusion criteria are below.

 • Recurrent stroke with modified Rankin score (mRS) of >2 (i.e., 
recurrent stroke with mRS 0, 1, 2 can be included).

 • Upper limb impairment related to conditions of subarachnoid 
hemorrhage, traumatic brain injury or brain tumors.

 • Bilateral strokes leading to upper limb impairments.

 • Uncontrolled medical conditions such as hypertension, 
hypotension, diabetes mellitus, unstable angina, cardiac failure, 
or sepsis will be excluded.

 • Fractures or arthritis of upper limb joints/bones in the affected 
upper limb.

 • Visual Analogue Scale (VAS) pain >5/10  in the affected 
upper limb.

 • MoCA <18/30.
 • Severe behavioral disturbance or agitation or epilepsy or other 

contradictions preventing the study participation.
 • Life expectancy <6 months.
 • End organ failures on replacements (renal dialysis or renal 

replacement therapies).
 • Minimally responsive or unresponsive awareness 

(vegetative) states.
 • Pregnancy or lactation states.
 • Admission to the inpatient stroke rehabilitation unit later than 

8 weeks post-stroke.
 • (Related to TMS assessment only) a history of epilepsy or 

seizures, cranial surgeries, metal implants in the body or head, 
implanted electronics, metallic valves, skull fracture or brain 
injury, or head or brain surgeries.

For qualitative interviews only at >6 months post-stroke:

 • Inability to communicate (aphasia, apraxia and dysarthria).

All participants will undergo their routine care in the inpatient 
stroke rehabilitation unit. Participation in this study will not have an 
impact on their intervention plans over time. Depending on their 
conditions at the discharge time point, they will be discharged to 
discontinue rehabilitation or to continue their rehabilitation in a 
community hospital, nursing home, other facilities such as specialist 
rehabilitation clinics, day rehabilitation centers or at home. After they 
are discharged, they will be invited back to the same hospital but at a 
different study site—TTSH Clinic for Advanced Rehabilitation 
Therapeutics (CART) for follow-up assessments. All therapists in the 
TTSH Rehabilitation Centre inpatient stroke rehabilitation unit and 
CART were jointly trained for all clinical and technology-assisted 
assessments to ensure good reliability.

To better capture the time course of post-stroke upper limb 
recovery, we aim to conduct clinical, neurophysiological, Hr-QOL, 
and technology-assisted assessments at various time points arching 
early subacute, late subacute, and chronic stages following stroke. To 
further understand the environmental and personal factors in 
community-dwelling stroke survivors, qualitative data on Hr-QOL 
related specifically to upper limb recovery in the chronic stages of 
stroke will also be  collected in a subset of participants who have 
sufficient cognitive function and are willing to share their experience 
after stroke.

The fastest rate of neurological and functional recovery typically 
occurs during the first four to 6 weeks following the onset of stroke. 
As such, we will assess stroke survivors regularly from recruitment to 
discharge. To establish a baseline, we will collect comprehensive data 
covering motor, somatosensory and cognitive functions using 
standardized clinical, neurophysiological, and technology-assisted 
assessments as soon as patients are admitted to the inpatient stroke 
rehabilitation unit and recruited in our study (T0). This typically 
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occurs 2–4 weeks post-stroke, as patients are initially treated in the 
acute unit of the hospital where we  unfortunately are not able to 
perform any assessments. We then follow up on gains in motor and 
somatosensory function on a fortnightly basis (T1, 4–6 weeks post 
stroke). Close to expected discharge (T2, typically within 6–8 weeks 
post stroke), we will again assess motor and somatosensory functions 
using standardized clinical and technology-assisted assessments. If a 
participant is admitted later than 2–4 weeks (but no more than 
8 weeks) post-stroke, recruitment in the study will still be considered, 
and T0 will be administered. Following discharge, the time points 
commonly reported in the literature of 3, 6, and 12 months post-stroke 
are selected, in addition to further follow-up assessments at 2 and 
3 years post-stroke. Considering the change of living environment 
from bedside to the community, besides routine assessments on the 
motor, somatosensory, and cognitive functions, we additionally assess 
Hr-QOL to understand the impact of stroke-induced deficits on daily 
life. The overview of the assessment time points and assessment tools 
is described in Table 1.

As the nature of this study is explorative and as there is no 
generally accepted approach to estimate the sample size requirements 
for multivariate regression models (29), a classical sample size 
estimation was not possible. Instead, our target sample was based on 
previous studies aiming at understanding post-stroke upper limb 
recovery and logistical considerations. Existing studies have typically 
reported longitudinal data in samples between 150 to 450 participants 
(10, 11). Based on this benchmark and considering the annual number 
of stroke survivors referred to the TTSH inpatient stroke rehabilitation 
unit as well as a 20% rate of dropout or loss to follow-up, we targeted 
to enroll 400 participants in the study.

2.2 Data collection

At admission to the rehabilitation facility, the demographics, 
stroke characteristics, pertinent MRI or CT findings, important acute 
care data (Intensive Care Unit entry and duration), brain-related 
surgeries, acute hospital, and rehabilitation length of stay, and details 
about the prescribed rehabilitation program (therapy goals and 
content) will be  obtained via TTSH electronic medical records. 
During the study, clinical, neurophysiological, and technology-
assisted assessments as well as qualitative interviews will be performed 
to describe the multiple domains of post-stroke upper limb recovery 
(Table 1).

2.2.1 Clinical assessment

2.2.1.1 National Institute of Health Stroke Scale and 
Glasgow Coma Scale on admission

For ischemic stroke patients, the NIHSS will be used to objectively 
quantify the impairment caused by a stroke (30). The NIHSS (0–42) 
is composed of 11 items, each of which scores a specific ability 
between 0 and 4. For each item, a score of 0 typically indicates a 
normal function in that specific ability, while a higher score is 
indicative of some level of impairment. We will extract this admission 
data for ischemic strokes.

For hemorrhagic strokes, the GCS (total and subset eye opening, 
verbal and motor responses scores) which objectively describes the 
extent of impaired consciousness in all types of acute medical and 

trauma patients will be used (31). The scale assesses patients according 
to three aspects of responsiveness: eye-opening, motor, and verbal 
responses. Reporting each of these separately provides a clear, 
communicable picture of a patient. The findings in each component 
of the scale can aggregate into a total GCS which gives a less detailed 
description but can provide a useful summary of the overall severity. 
The GCS and its total score have since been incorporated into 
numerous clinical guidelines and scoring systems for victims of 
trauma or critical illness.

2.2.1.2 Global disability level
We will measure the global disability level of our participants at 

T4, T5, and T6, corresponding to the time points of qualitative 
interviews. For this purpose, we will use the recommended clinical 
instrument—the modified Rankin scale (mRS) (32) for measurement. 
The mRS is a simple scale from 0–6 that measures the degree of 
disability or dependence in the daily activities of people who have 
suffered a stroke or other causes of neurological disability (see Table 2 
for the scales of assessment tools).

2.2.1.3 Upper limb motor impairments
Upper limb motor impairments will be  measured with 

recommended clinical assessments (33, 34), including the Fugl–Meyer 
Assessment of the Upper Extremity (FMA-UE), shoulder abduction 
and finger extension (SAFE) scores, and grip strength.

The FMA-UE is a stroke-specific, performance-based impairment 
index (35). It is designed to assess motor functioning and 
coordination/speed in patients with post-stroke hemiplegia. It is 
applied clinically and in research to determine disease severity, 
describe motor recovery, and plan and assess treatment.

The SAFE score is commonly used in post-stroke recovery 
prediction models and is calculated by scoring shoulder abduction 
and finger extension separately, using the Medical Research Council 
grades, and summated to the SAFE score (36–38). The participant’s 
strength for each of these movements is scored between 0 and 5, where 
0 is no muscle activity and 5 is normal strength and range 
of movement.

Grip strength is measured using a hand-held DynEx digital grip 
dynamometer (Fabrication Enterprises, Inc., NY, United States). The 
participant squeezes the dynamometer with all of their strength three 
times and an average score is calculated.

2.2.1.4 Upper limb activity capacity
Upper limb activity capacity will be  measured by the Action 

Research Arm Test (ARAT) (39), which evaluates upper limb motor 
capacity in a standardized format using 19 tests of motor function 
across 4 subsets: grasp., pinch, grip, and gross movement, both distally 
and proximally, following a stroke.

2.2.1.5 Upper limb somatosensory impairment
Upper limb somatosensory impairment will be measured using 

the Erasmus version of the Nottingham Sensory Assessment (NSA) 
(40). The Erasmus NSA comprises assessments of tactile sensation 
(light pressure, pressure, and pinprick), sharp-blunt discrimination, 
two-point discrimination, and proprioception. For each item, a score 
of 0 denotes absent sensation, 1 denotes impaired sensation and 2 
denotes normal sensation. The higher the score the better the 
preservation of sensation after stroke.
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TABLE 1 Overview of the assessment time points and assessment tools.

Time point T0a T1a T2a T3 T4 T5 T6 T7

Time post-stroke 2–4  weeks 4–6  weeks 6–8  weeks 3  months 6  months 1  year 2  years 3  years

Description Assessment tool

Global disability level Modified Rankin Scale (mRS) × × ×

Upper limb motor impairments Fugl-Meyer Assessment of the Upper 

Extremity (FMA-UE)

× × × × × × × ×

Shoulder Abduction and Finger Extension 

(SAFE) score

×

Grip strength × × × × × × × ×

Upper limb activity capacity Action Research Arm Test (ARAT) × × × × × × × ×

Upper limb somatosensory impairments Erasmus version of the Nottingham Sensory 

Assessment (NSA)

× × × × × × × ×

Upper limb spasticity Modified Ashworth Scale (MAS) × × × × × × ×

Upper limb pain Visual Analogue Scale (VAS) × × × × × × × ×

Confidence in upper limb use Upper Limb Self-Efficacy Test (UPSET) × × × × × × ×

Neglect Bells Test ×

Trunk impairment Trunk Impairment Scale (TIS) ×

Functional Independence Functional Independence Measure (FIM) × ×

Cognitive impairments Montreal Cognitive Assessment (MoCA) × × × × ×

Quality of life EQ-5D × × × × × ×

Stroke Specific Quality of Life (SSQOL) × × × × ×

Neurophysiologyb Motor Evoked Potentials (MEPs) ×

Technology-assisted assessment Virtual Peg Insertion Test (VPIT) × × × × × × ×

ETH Motor Impairment and Kinesthetic 

Evaluation (MIKE)

× × × × × × ×

ZurichMove × × × × × × ×

Psychosocial questionnairesc × × ×

Qualitative interviewsc × × ×

aTime post-stroke may vary depending on the time admitted to the TTSH Rehabilitation Centre inpatient stroke rehabilitation unit. T1 will be 2 weeks after T0 and T2 will be 2 weeks after T1.
bNeurophysiological assessment will only be conducted in participants with SAFE score <5.
cPsychosocial questionnaires and qualitative interviews will be conducted in selected participants with sufficient cognitive function and willingness to share experiences coping with stroke.
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2.2.1.6 Upper limb spasticity
We will describe the level of spasticity using the Modified 

Ashworth Scale (MAS) (41) for shoulder adductors, biceps, wrist 
flexors, and finger flexors. MAS measures resistance during passive 
soft-tissue stretching and is used as a simple measure of spasticity. The 
MAS is performed when moving the participant’s limb within their 
maximal range of motion within a second. It is scored from 0 to 4, 
with “0” indicating no increase in muscle tone while “4” indicating the 
affected part(s) is rigid in flexion and extension.

2.2.1.7 Upper limb pain
We will describe the overall level of upper limb pain participants 

are experiencing using a visual analogue scale (VAS 0–10) (42). The 
VAS is a measurement instrument that tries to measure a characteristic 
or attitude that is believed to range across a continuum of values and 
cannot easily be directly measured. VAS pain is a unidimensional 
measure of pain intensity.

2.2.1.8 Confidence in upper limb use
The participant’s confidence in upper limb use after stroke will 

be assessed using the Upper Limb Self-Efficacy Test (UPSET) (43). 

The UPSET is a questionnaire comprised of 20 questions to assess how 
confident the stroke survivors are in using their paretic upper limbs 
after stroke. For each question that represents a daily functional 
activity, the participant is asked to rate their level of confidence in 
using their paretic hand for that particular activity on a Likert scale 
from 0 to 10 (i.e., 0: not at all confident, 10: very confident).

2.2.1.9 Neglect
The Bells Test will be used to assess the level of visual neglect in 

the participants with stroke (44). The participants will be asked to 
circle 35 black bells embedded among black distractors (i.e., pictures 
of houses and horses) on a page placed at the participant’s midline. 
The level of visual neglect is scored by how many bells have been 
omitted by the participant on a scoring sheet.

2.2.1.10 Trunk impairment
The Trunk Impairment Scale (TIS) will be used to evaluate the 

trunk control of the participants (45). The TIS assesses static and 
dynamic sitting balance and trunk coordination in a sitting position, 
generating a total score between 0 and 23, where a higher score 
indicates better trunk control. Static sitting balance (score range 0–7) 
evaluates the ability to remain in a seated position with both feet on 
the floor and with the legs crossed. The dynamic sitting balance 
subscale (score range 0–10) assesses lateral flexion of the trunk, 
initiated from the upper and lower part of the trunk. The trunk 
coordination subscale (score range 0–6) assesses rotation from the 
shoulder and pelvic girdle in the horizontal plane.

2.2.1.11 Functional independence in daily life
We will measure functional independence in daily life based on 

the Functional Independence Measure (FIM, score range 18–126) 
upon admission and discharge from the rehabilitation ward. The FIM 
includes measures of independence for self-care, including sphincter 
control, transfers, locomotion, communication, and social cognition 
(46). It is an 18-item, 7-level, ordinal scale intended to be sensitive to 
changes over the course of a comprehensive inpatient medical 
rehabilitation program.

2.2.1.12 Cognitive impairments
Cognitive impairments will be rated by the Montreal Cognitive 

Assessment (MoCA) (47), which consists of simple tasks such as 
drawing, object naming, memory recall, reading, and mathematical 
operations (0, worst score, 30: best score).

2.2.1.13 Quality of life
We will rely on EQ-5D and Stroke Specific Quality of Life 

(SSQOL) to measure the quality of life after stroke. EQ-5D is a generic 
quality-of-life measure and it includes mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression (48). The SSQOL 
measures 12 domains including mobility, energy, upper extremity 
function, work/productivity, mood, self-care, social & family roles, 
vision, language, thinking, and personality (49).

2.2.2 Neurophysiological assessment (for 
participants with SAFE score <5 and without 
medical contraindications)

Transcranial magnetic stimulation (TMS) will be applied over the 
motor cortex to depolarize neurons and lead to motor evoked 

TABLE 2 The scales of clinical assessment tools.

Description Assessment tool Scale

Global disability level Modified Rankin Scale 

(mRS)

0–5

Upper limb motor 

impairments

Fugl-Meyer Assessment of 

the Upper Extremity (FMA-

UE)

0–66

Shoulder abduction and 

finger extension (SAFE) 

score

0–10

Upper limb activity capacity Action Research Arm Test 

(ARAT)

0–57

Upper limb somatosensory 

impairments

Erasmus version of the 

Nottingham Sensory 

Assessment (NSA)

0–40

Upper limb spasticity Modified Ashworth Scale 

(MAS)

0–4

Upper limb pain Visual Analogue Scale 

(VAS)

0–10

Confidence in upper limb 

use

Upper Limb Self-Efficacy 

Test (UPSET)

0–200

Neglect Bells Test 0–35

Trunk impairment Trunk Impairment Scale 

(TIS)

0–23

Functional Independence Functional Independence 

Measure (FIM)

18–126

Cognitive impairments Montreal Cognitive 

Assessment (MoCA)

0–30

Quality of life EQ-5D Index score 0–1

VAS score 0–100

Stroke Specific Quality of 

Life (SSQOL)

49–245
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potentials (MEPs) for assessing the cortico-spinal excitability as well 
as resting motor threshold values (RMT) (50). MEPs are the electrical 
signals recorded from muscles following stimulation of motor 
pathways within the brain. Surface electromyography (EMG) 
electrodes are attached to the extensor carpi radialis (ECR) and first 
dorsal interosseous (FDI) for EMG recording. The “hot spot” of the 
MEP from ECR and FDI will be first identified in the contralesional 
(less affected) hemisphere, followed by the ipsilesional (more affected) 
hemisphere. TMS will be carried out using MagPro R30 (MagVenture, 
Inc., Denmark).

The main outcome measure of the TMS assessment is a patient’s 
MEP status, i.e., whether or not MEPs with consistent latencies can 
be evoked from the ipsilesional hemisphere.

Participants will be  considered MEP positive if MEP of any 
amplitude but with consistent latency can be elicited while the ECR/
FDI muscle is either at rest or is preactivated. If this criterion is not 
met even when stimuli are delivered at maximal intensity, the 
participant will be considered MEP negative.

For participants who are unable to achieve a RMT, an active 
motor threshold will be examined. The participant will perform an 
active wrist extension/make a fist with the less affected hand and hold 
it there during stimulation, while the investigator looks for a MEP in 
the ECR or FDI. For active motor threshold, the participant will 
be considered MEP positive if any amplitude of consistent latency can 
be elicited in 50% of at least 8 trials while the muscle is active.

Inspired by the PREP2 algorithm (36, 38), TMS measurements 
will only be formed at T0 and for patients with SAFE scores less than 
five. This may aid in the understanding of subgroups with good, 
limited, and poor recovery potential.

2.2.3 Technology-assisted assessment

2.2.3.1 Virtual Peg Insertion Test (VPIT)
The VPIT is a technology-assisted assessment that provides 10 

sensitive and validated metrics describing upper limb movement 
patterns and hand grip forces (21, 22, 51, 52) (Figure 1). The VPIT 
consists of a virtual goal-directed pick-and-place task that requires 
coordinated arm and hand movements. It allows for gathering 3D 
upper limb endpoint kinematic and kinetic data in persons with mild 
to moderate upper limb impairments. The participant is instructed to 
squeeze and hold a commercial haptic device to pick up a peg and 
then insert it into one of the holes on the other side of the virtual 
board by releasing the force on the handle. The collected raw 
kinematic and kinetic data is transformed through a signal processing 
framework into 10 sensor-based digital biomarkers that provide 
information on different aspects of task performance, including for 
example movement smoothness, accuracy, and speed (21). These 
digital biomarkers and their clinimetric properties were previously 
validated in different neurological population (21, 22, 53). The data 
provide an objective, robust, and clinically feasible way to assess 
functionally relevant sensorimotor impairments in the arm and hand 
in chronic post-stroke individuals with mild to moderate 
sensorimotor deficits.

2.2.3.2 ETH motor impairment and kinesthetic evaluation 
(MIKE)

The ETH MIKE is a one-degree-of-freedom end-effector device, 
that can be used to measure impairment of proprioception, motor and 

sensorimotor function in the metacarpophalangeal joint of the index 
finger (23, 54, 55). The ETH MIKE provides well-controlled stimuli to 
the index finger and sensitively measures the kinematic and kinetic 
responses, and has been shown to be safe and feasible in post-stroke 
individuals with mild to severe disability levels (23). Specifically, there 
is one task for proprioception assessment (gauge position matching 
(56)), with the absolute position matching error as the main outcome 
measure. Further, there are three tasks focused on motor impairments 
(active and passive range of motion, maximum force generation, and 
fast target reaching), providing as main outcomes active and passive 
range of motion, maximum finger force, and maximum movement 
speed for both flexion and extension. Additionally, one task is 
designed to evaluate the ability to integrate proprioceptive information 
during the execution of a complex movement, i.e., to assess 
sensorimotor impairments (trajectory following), providing the root 
means square tracking error as the main outcome measure. Thus, ETH 
MIKE is able to provide sensitive and objective measures of 
proprioception, motor impairments, and sensorimotor impairments 
that could inform the evolution of somatosensory and sensorimotor 
functions during recovery. Similar to the VPIT, the digital biomarkers 
used as outcome measures for the ETH MIKE were previously 
validated in different neurological population (23, 57, 58).

2.2.3.3 ZurichMove
The ZurichMove sensors are custom-made wearable sensors 

developed by ETH Zurich (59) that allow unobtrusively monitoring 
the usage of the upper limb in the context of daily life activities.1 These 
sensors incorporate a 3-axis accelerometer, a 3-axis gyroscope and a 
3-axis magnetometer. They can continuously record for approximately 
3 days with a sampling frequency of 50 Hz. In this study, participants 
have to wear 5 ZurichMove sensors on both wrists, ankles and chest 
continuously for 48 h while performing all normal daily activities (in 
the clinic or at home for later time points). These sensors are attached 
to the body with non-gripping elastic bands by research staff or a 
caregiver and can be  removed for showers and re-strapped by 
caregivers. Participants will record activities performed during the 
48 h of wearing the sensors in a diary. Previously, the safety and 
usability of the wearable sensors have been established and the 
following outcome measures were defined and validated (60, 61). 
We aim to extract the duration of arms use in the clinical setting and 
during daily living by computing metrics such as upper limb activity 
counts as an approximation for the amount of limb usage (62), the 
gross movement score with an aim to identify functional relevant 
activities (60) and the GMAC (a fusion of both activity count and 
gross movement score) (63). The laterality ratio can be derived from 
these metrics to compare activity levels from both arms (64). These 
wearable sensors will provide digital biomarkers reflecting the usage 
of the more versus less affected upper limb in daily life.

2.2.4 Psychosocial questionnaires and qualitative 
interviews

We will rely on repeated standardized questionnaires and 
qualitative interviews conducted in English, Mandarin, and Malay, in 
order to gain knowledge about the perspectives of individuals with 

1 www.zurichmove.com
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stroke at 6, 12, and 24 months post-stroke. We  will not conduct 
interviews at 3 months post-stroke as some stroke survivors may have 
not returned to the community in the Singaporean healthcare system. 
We also will not conduct interviews at 36 months post-stroke as the 
post-stroke experience may not have significantly changed after 
2 years since stroke onset. The main aim is to explore stroke survivors’ 
experiences in the community qualitatively and quantitatively. 
Questions related to qualitative interviews focus on participants’ 
perception related to identity, impairments and the rehabilitation 
journey (see Supplementary Material). Additionally, we will delve into 
their perspectives on mental health, spirituality and social support 
with the following questionnaires: Beck Depression Inventory (65), 
Generalized Anxiety Disorder Scale (66), Modified Fatigue Impact 
Scale (67), Insomnia Severity Index (68), Social Support Survey (69), 

Life Balance Inventory (70) and Mindful Attention Awareness Scale 
(71). With regards to sample size calculation, guidelines recommended 
for qualitative samples have been relatively small, ranging from 20–40, 
to account for the complexity of the analysis. Given the longitudinal 
nature, the qualitative component of the study will include 30 
participants or fewer, if data saturation is reached earlier, with 
sufficient cognitive function and willingness to share experiences 
coping with stroke. Interviews will be  recorded and transcribed 
verbatim followed by thematic analyses.

2.2.5 Data collection and management
Data from standardized clinical assessments will be collected by 

TTSH therapists and will be stored on the National Healthcare Group 
(NHG) REDcap platform electronically. Technology-assisted and 

FIGURE 1

Technology-assisted assessments used in this study. Virtual Peg Insertion Test (VPIT, top), ETH MIKE (middle), and ZurichMove sensors (bottom).
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neurophysiological outcomes will be collected by TTSH therapists 
and/or researchers from the Future Health Technologies (FHT) 
Programme and will be stored on the FHT data infrastructure SECure. 
Qualitative interviews will be  conducted by researchers from the 
Rehabilitation Research Institute of Singapore, Nanyang Technological 
University (NTU).

Participants who withdraw from the study will not be replaced. 
All collected data will be used for analysis. We will also maintain 
contact with participants between time points to minimize the 
number of dropouts. In case of missing data, we will consider using 
controlled multiple imputation (72) to handle the missing data. 
Controlled multiple imputation is based on the assumption of 
missing at random and can be used as sensitivity analysis to evaluate 
the impact of missing data. Missing data will first be  imputed 
following the Bayesian paradigm under the assumption of 
ignorability (i.e., missing at random). Each imputed dataset will 
then be analyzed using the substantive analysis model of interest. 
Finally, Rubin’s rules (73) are applied to give a single multiple 
imputation estimate for inference.

Regarding the data sharing plan, pseudonymized data will 
be shared in an access-controlled manner between research teams on 
a biweekly basis. Only anonymized or aggregated data will be shared 
with the general public such as researchers from other institutes or 
government agencies upon reasonable request.

2.2.6 Statistical analysis
To understand post-stroke upper limb impairments and recovery, 

we will perform descriptive analyses for each outcome measure and 
various time points. Next, we will explore how different domains are 
interrelated and how the addition of digital biomarkers can inform key 
aspects of motor recovery and its dynamics using correlation matrices. 
We will investigate the relationship between movement quality (e.g., 
smoothness) and motor recovery, the relationship between 
somatosensory impairment and motor recovery, the relationship 
between upper limb use in activities of daily living and motor/
somatosensory recovery, and whether these aspects present different 
time courses, or interact with each other.

To characterize upper limb recovery after stroke longitudinally, 
we  will construct separate statistical models (e.g., mixed-effects 
models) that characterize the time course of upper limb impairments 
(FMA-UE) (3), activity capacity (ARAT) (4), activity performance 
(outcomes of wearable sensors), and quality of life (EQ-5D) post-
stroke. We will then construct multivariate mixed models, leveraging 
on the uniqueness of the rich data set to probe the interaction and 
interdependence between various outcome measures and identify key 
determinants of recovery.

A mixture model based on a Bayesian approach (3), a clustering 
or subgroup identification analysis (74, 75) will then be  used to 
identify subgroups of patients that exhibit distinct, clinically relevant 
recovery patterns based on a specific subset of variables identified in 
the above explorative analyses and their dynamics.

3 Discussion

To characterize longitudinal post-stroke upper limb recovery in 
sensorimotor function, functional independence, and quality of life in 
an Asian population, we designed a study protocol to gather rich 
information via clinical, technology-assisted, and neurophysiological 

assessments together with qualitative interviews at multiple time 
points from within 1 month until up to 3 years post-stroke. Our 
multimodal data set promises to deepen the understanding of the 
prevalence and relevance of specific upper limb impairments and their 
recovery trajectories on individual and group levels in stroke 
survivors. Based on these insights, refined clinical decision-making 
and tailored therapy programs could be established.

The uniqueness of our study includes (i) the use of technology-
assisted assessments with multimodal assessments including clinical, 
neurophysiological, and qualitative assessments to understand post-
stroke upper limb recovery, (ii) a relatively large Asian stroke 
population, and (iii) longitudinal follow-up for over 3 years. Clinical 
assessments are limited in their sensitivity due to ceiling effects and 
the use of ordinal scales (76). Questionnaires used to capture the usage 
of the upper limb in daily life have limited reliability and suffer from 
recollection bias (58). Here, we supplement clinical assessments with 
already validated assessment technologies including robotic devices, 
namely VPIT and ETH MIKE, as well as wearable sensors. The 
promise of digital biomarkers is that this approach will enable 
healthcare practitioners to objectively quantify recovery with 
substantially higher resolution, better sensitivity, and over a much 
longer period than currently available methods (77–79), adding 
credence to assessing real-world upper limb use from the acute to 
chronic stages of recovery. Kinematic-based measures may provide 
unique insights to describe movement quality and how this relates to 
upper limb impairment, functional ability and ultimately arm use in 
daily life. Furthermore, wearable sensor-based assessments can 
be  done in the real-world natural environment during everyday 
activities, both in the hospital or at home, since they capture what 
stroke survivors actually do (performance) and not only what they 
could do (capacity) or wish to do (intention), as is the case in clinical 
assessments (60, 80, 81). Such applications in quantifying recovery 
over time are needed as they hold the potential to derive new outcome 
metrics, potentially supporting clinical decision-making and 
evaluating the efficacy of rehabilitation training.

However, previous post-stroke upper limb recovery studies were 
predominantly conducted in Caucasian populations with IS (14, 16, 
17, 82). Asian stroke survivors have been found to have varied profiles 
compared to Caucasian populations (19–21), such as a high incidence 
rate of ICH, lacunar stroke, and young age potentially related to the 
high prevalence of uncontrolled hypertension and diabetes mellitus 
(26, 27). Given the difference between the Asian and Caucasian 
profiles, it is important to fill this knowledge gap by establishing a 
multimodal data set for monitoring upper limb recovery in Asian 
stroke survivors.

Additionally, studies that followed upper limb motor recovery 
post-stroke have found that recovery occurs at the greatest rate during 
the first 3 to 6 weeks post-stroke (14, 17, 82, 83). Although functional 
gains are largest during the first 3 months post-stroke and thereafter 
the recovery curve starts to flatten (16, 17, 82), recovery still occurs till 
12 to 18 months post-stroke with some individuals experiencing 
recovery up to 24 months post-stroke (14) and possibly beyond. It is 
therefore important to observe and fully understand sensorimotor 
recovery longitudinally post-stroke in order to optimize 
neurorehabilitation outcomes even at a later stage after stroke. For 
these reasons, our study aims to establish longitudinal follow-ups for 
up to 3 years post-stroke to document how profiles of residual 
functions evolve, and whether interactions with Hr-QOL and self-
efficacy may improve over a longer time frame. As such, the collected 
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data could deepen our understanding of post-stroke upper limb 
recovery and potentially help reveal major determinants of recovery.

Importantly, our multimodal data set comprises variables that are 
highly relevant to post-stroke upper limb recovery, such as 
somatosensory function, self-efficacy, qualitative self-reported measures, 
Hr-QOL, MEP, and post-stroke experience. The somatosensory function 
is known to be of high importance in achieving full motor recovery, as 
recent studies highlighted that stroke survivors who had full motor 
recovery did not exhibit any impaired somatosensory function (84, 85). 
It suggests that somatosensory function could be an essential factor that 
may contribute to refining the resolution of prediction models, especially 
when it comes to fine functional ability. Nevertheless, there are limited 
research studies investigating post-stroke upper limb somatosensory 
recovery, primarily due to a lack of suitable clinical scales to reliably 
assess these. Upper limb somatosensory recovery, similar to motor 
recovery was shown to significantly occur 3–4 months post-stroke at the 
group level, while recovery continued to occur till 6 months post-stroke 
at the individual level (84). To our knowledge, studies looking into upper 
limb somatosensory recovery did not follow beyond 6 months post-
stroke, hence the long-term trajectory of somatosensory recovery 
remains mostly unknown (84, 86, 87). These findings show that 
underlying interactions between motor and somatosensory recovery 
after stroke warrant further investigation to develop a greater 
understanding and insight into upper limb somatosensory recovery and 
its possible interactions with other modalities after stroke. The 
technology-assisted assessments included in this study will help collect 
a first data set to more objectively characterize somatosensory function 
and recovery.

Besides examining upper limb motor and somatosensory recovery 
after stroke, it is also important to investigate how these physical 
changes and recovery influence self-efficacy in upper limb use, 
qualitative self-reported outcomes, and Hr-QOL after stroke. To date, 
there is still a dearth of information in this area. It has been reported 
that chronic stroke survivors expressed the loss of their upper limb 
function as an “enormous loss” (88). It can be  seen that physical 
impairments may possibly give rise to other related problems in self-
efficacy, qualitative self-reported measures, and Hr-QOL. Thus, it is 
important to longitudinally track these parameters beyond 1 year to 
understand how physical upper limb recovery impacts other aspects 
of stroke survivors’ lives. Complemented with qualitative interviews, 
information on post-stroke experiences such as coping strategies and 
difficulties in daily life could be obtained. It allows researchers to 
construct a holistic viewpoint of stroke consequences in stroke 
survivors and gain knowledge about the associations between 
functional recovery, daily activities, participation, environmental 
factors, and personal factors. Hence it is the aim of our study to 
establish a comprehensive database of not only physical recovery but 
also other factors such as self-efficacy, qualitative self-reported 
measures, and Hr-QOL to yield information on important factors 
influencing upper limb sensorimotor recovery trajectory across time. 
Nevertheless, gathering self-reported outcomes would require 
sufficient cognitive function from the responders and this might limit 
the generalizability of our findings.

Additionally, evaluating the integrity of the corticospinal tract 
with TMS has been used for predicting the upper limb recovery 
potential of stroke patients as formalized by the PREP2 algorithm 
(38). However, there has been some debate as to whether MEP 
measures improve prediction over and above the information 
provided by clinical tests (89–91), particularly, when the MEP status 

cannot be  tested within the first 7 days post-stroke (37, 38). The 
current center’s acute stroke unit and rehabilitation unit are in separate 
physical locations with differential access to TMS machines, hence the 
predictive power of an early MEP status is limited (36). We  will 
investigate whether MEP-negative stroke survivors have a bad 
prognosis for recovering upper limb function and whether this 
information sheds light on the recovery trajectory of individual 
patients with poor function early after stroke and whether obtaining 
MEP status would benefit clinical decision-making.

In conclusion, this study aims to develop and implement a 
technology-assisted digital biomarker (TAILOR) platform for 
describing upper limb sensorimotor recovery in Asian stroke 
survivors. Digital biomarkers could reduce measurement errors and 
improve the accuracy of outcome measures to complement clinical, 
neurophysiological, and qualitative assessments and could further 
offer therapeutic and prognostic value in stroke neurorehabilitation. 
With a gathered multimodal database, it is advantageous to 
characterize the pattern of upper limb recovery and to identify 
subgroups of stroke survivors that exhibit distinct, clinically relevant 
recovery patterns. This data set can consequently be used in the future 
to establish prediction models of upper limb recovery in stroke 
survivors receiving conventional rehabilitation training. This will aid 
clinical decision-making, therapeutic planning, and the development 
of tailored interventions.
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