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Background: Prognostic prediction and the identification of prognostic factors 
are critical during the early period of atrial-fibrillation (AF)-related strokes as AF is 
associated with poor outcomes in stroke patients.

Methods: Two independent datasets, namely, the Korean Atrial Fibrillation 
Evaluation Registry in Ischemic Stroke Patients (K-ATTENTION) and the Korea 
University Stroke Registry (KUSR), were used for internal and external validation, 
respectively. These datasets include common variables such as demographic, 
laboratory, and imaging findings during early hospitalization. Outcomes were 
unfavorable functional status with modified Rankin scores of 3 or higher and 
mortality at 3  months. We  developed two machine learning models, namely, 
a tree-based model and a multi-layer perceptron (MLP), along with a baseline 
logistic regression model. The area under the receiver operating characteristic 
curve (AUROC) was used as the outcome metric. The Shapley additive explanation 
(SHAP) method was used to evaluate the contributions of variables.

Results: Machine learning models outperformed logistic regression in predicting both 
outcomes. For 3-month unfavorable outcomes, MLP exhibited significantly higher 
AUROC values of 0.890 and 0.859 in internal and external validation sets, respectively, 
than those of logistic regression. For 3-month mortality, both machine learning 
models exhibited significantly higher AUROC values than the logistic regression for 
internal validation but not for external validation. The most significant predictor for 
both outcomes was the initial National Institute of Health and Stroke Scale.

Conclusion: The explainable machine learning model can reliably predict short-
term outcomes and identify high-risk patients with AF-related strokes.
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1. Introduction

Atrial fibrillation (AF) is a common cause of ischemic stroke, and AF-related strokes are 
associated with higher mortality and poorer functional outcomes than other ischemic stroke 
subtypes (1). The early identification of high-risk patients with poor functional outcomes is 
critical for maintaining a focus on available healthcare resources and improving outcomes in 
terms of prevention and early management. Accordingly, numerous studies have been conducted 
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FIGURE 1

Flowchart of study subjects.

to predict vascular events, mortality, and functional outcomes in 
patients experiencing AF-related stroke events. Although originally 
used for thromboembolic risk assessment in AF outpatients, the 
CHADS2 score and its updated version, CHA2DS2VASc, can be used 
to effectively predict the prognosis of an AF-related stroke event (2–6). 
However, these models are simplified and do not incorporate clinical 
and laboratory parameters such as the severity of stroke symptoms at 
admission, serum inflammatory markers, and image-based features 
derived from the early stages of stroke. Furthermore, the clinical 
implications of these scores remain controversial in stroke patients 
(7–9), and it may be  challenging to interpret features and values 
extracted from other studies for practical clinical applications (10).

Clinical risk scoring systems such as CHADS2, CHA2DS2-VASc, 
and ATRIA were originally developed for AF. However, their 
validation in stroke patients with AF, particularly in real-world 
settings with new oral anticoagulants (NOACs), has been rarely 
conducted. A nationwide multicenter study evaluated the scoring 
systems and presented unsatisfactory performance of the systems (9). 
This highlights the need for a new risk stratification approach tailored 
to secondary stroke prevention in AF patients.

Machine learning models offer various advantages over traditional 
parametric methods owing to their improved flexibility, capability to 
capture complex patterns, and good performance on large and high-
dimensional datasets. All of these advantages are achieved without 
relying on strong assumptions, enabling machine learning to 
be  utilized as a valuable tool in clinical practice. Therefore, it is 
desirable to develop novel prognostic methods that are easily 
interpretable and can improve risk stratification during the early 
stages of AF-related stroke.

Outcome prediction following ischemic stroke is generally 
performed using logistic regression as a statistical model using clinical 
and/or image-based features. However, the prediction results represent 
only the importance and linear directionality of the selected variables 
without any direct information regarding their priority. To overcome 
the limitations of conventional statistical and machine learning 

models, more accurate high-level machine learning techniques must 
be  developed and applied (11). The machine-learning-based 
prediction of outcomes using information obtained during the early 
period after hospital arrival—including clinical, laboratory, and 
imaging findings—is a feasible method of formulating therapeutic 
plans and prognoses (11, 12). In this study, machine learning models 
were constructed and validated for the prediction of short-term 
outcomes in AF-related stroke patients based on various features 
acquired during early hospitalization using two independent 
multicenter prospective hospital-based registries.

2. Methods

2.1. Study population

The internal and external validation sets used in this study are 
overviewed in Figure 1. One dataset was based on the Korean Atrial 
Fibrillation Evaluation Registry in Ischemic Stroke Patients 
(K-ATTENTION), which compiled medical information from 
AF-related stroke patients admitted within 7 days of symptom onset at 11 
tertiary stroke centers in South Korea. K-ATTENTION has previously 
been used for model training, variable selection, and internal validation. 
The other dataset, used for external validation, comprised patients with 
AF-related stroke events extracted from the Korea University Stroke 
Registry (KUSR), collected from three Korean university hospitals 
(Anam, Ansan, and Guro branches). Common features among clinical, 
radiological, and laboratory findings acquired during early hospitalization 
were extracted from the two datasets to develop the models (11). Features 
with a loss of information pertaining to 3-month functional outcomes 
measured using the modified Rankin Scale (mRS) were excluded.

Approval was obtained from the institutional review boards of all 
participating centers. This study complied with the transparent 
reporting of a multivariable prediction model for individual prognosis 
or diagnosis reporting guidelines (13).
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2.2. Definition of outcomes

The outcomes of interest were short-term outcomes following 
90 days of the index stroke. Primary outcomes were defined as 
unfavorable functional outcomes with an mRS ≥ 3. The secondary 
outcome was mortality, defined as all-cause death within the 
90-day period.

2.3. Data splitting and preprocessing

Approximately 40% of the patients from the K-ATTENTION 
registry were randomly selected and stratified by outcomes and 
variable subgroups (Figure 1). These data were used as the internal 
validation set, whereas the remaining data were allocated for training. 
Models were trained using a 10-fold cross-validation strategy.

Variables with a missing rate exceeding 20% were excluded, and 
missing values were imputed using multivariate imputation by 
chained equations (MICE) (14). Outliers were detected using an 
isolation forest (15) and replaced with the closest normal values  
from the training set. Supplementary Table S1 from the 
Supplementary Information lists all variables included in the analysis 
along with their missing rates.

2.4. Importance of variables and feature 
selection

The contribution of each variable to model prediction was 
evaluated using the Shapley additive explanations (SHAP) method 
(16). Positive and negative SHAP values indicate positive and negative 
effects, respectively, on the prediction score. A greedy backward 
selection method, namely, recursive feature elimination (17), was used 
to select the best feature set to maximize cross-validation performance 
by evaluating SHAP in every recursion. The mean absolute SHAP 
value for each variable was calculated as a ranking criterion 
representing the importance of each variable. The light gradient 
boosting machine (LightGBM) (18), a gradient-boosted tree-based 
model that can handle categorical variables, was used for 
SHAP evaluation.

The SHAP method was used to investigate the local interpretability 
of the developed LightGBM model. Model predictions were visualized 
for true-positive, true-negative, false-positive, and false-negative cases.

2.5. Model development

A logistic regression with L2 regularization was used as the 
baseline comparator. We tested two representative machine learning 
models, namely, LightGBM and the multi-layer perceptron (MLP). 
MLP is a feedforward neural network with fully connected layers. 
Hyperparameters were tuned using Bayesian optimization (19) to 
maximize the predictive performance of cross-validation. All details 
pertaining to hyperparameter settings are described in the 
Supplementary Methods and Supplementary Table S2. Models were 
calibrated using isotonic regression on the validation data during 
cross-validation. All methods used in this study were implemented in 
Python version 3.9.7 using Scikit-learn version 1.1.2.

2.6. Internal validation in different 
subgroup cohorts

The model performance of internal validation was evaluated in 
different subgroup cohorts. Age (≤64, 65–74, and ≥ 75 years), sex, 
hypertension, diabetes mellitus, type of AF (sustained and paroxysmal 
AF), and stroke recurrence (first-ever and recurrent stroke) were 
defined as subgroups.

2.7. Statistical analysis

Descriptive statistics were expressed as numbers (percentages), 
means (standard deviations), or medians (interquartile ranges). The 
Shapiro–Wilk test was used for normality, and Levene’s test was used 
for homoscedasticity. The chi-squared test, independent t-test, or 
Mann–Whitney U-test was used for comparison.

The area under the receiver operating characteristic curve 
(AUROC) was used as the primary outcome metric, as well as a 
guiding metric in all model training processes, including variable 
selection (recursive feature elimination) and hyperparameter tuning 
(Bayesian optimization). The AUROC was calculated and compared 
between models using the DeLong method (20). Furthermore, 
we evaluated the area under the precision–recall curve (AUPRC) of 
the models as an overall performance measure.

The detailed performance of each model was evaluated in terms 
of sensitivity, positive predictive value, and negative predictive value 
with net reclassification improvement (NRI) at low false positive rates 
(FPRs) of 5, 10, and 20%. A positive NRI value indicates superior 
reclassification performance by the new model compared to that of 
the reference model (21). We evaluated sensitivity at fixed FPR levels 
in the subgroups using the model that exhibited the best overall 
performance. Calibration errors were evaluated before and after 
calibration using the calibration curve and Brier score, which is the 
mean-squared error of predicted probability (22). We evaluated the 
model’s capability of risk stratification for the prediction of 3-month 
mortality. Four quartile strata were obtained from the prediction 
scores of the best-performing model, and survival curves were plotted 
using Kaplan–Meier estimation and compared using the log-rank test. 
The cutoff thresholds for investigating local interpretability were 
determined at an FPR level of 20%.

p-values were adjusted using the Benjamini–Hochberg method 
for multiple comparisons. The significance level was set at a p-value 
of <0.05.

3. Results

3.1. Baseline characteristics of study 
subjects

A total of 2,307 and 898 patients were included in the 
K-ATTENTION and KUSR groups, respectively (Figure 1). Table 1 
presents a comparison between the two registries, including the 
general characteristics of the study participants, revealing an 
unfavorable functional outcome rate of 49.8% and the mortality rate 
of 11.6% 3 months following the index stroke. These results are 
compatible with unfavorable functional outcomes at 3 months 
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TABLE 1 General characteristics of study participants.

Variable All (n =  3,125) K-ATTENTION (n =  2,307) KUSR (n  =  818) p valuea

Demographics

Age, years 75.0 [67.0–80.0] 74.0 [67.0–80.0] 76.0 [67.0–82.0] < 0.001***

Male sex, n (%) 1,628 (53.0%) 1,222 (53.0%) 406 (53.0%) 1.000

BMI, kg/m2 23.4 (3.4) 23.3 (3.4) 23.8 (3.5) < 0.001***

Initial clinical status

Initial DBP, mmHg 85.5 (15.7) 84.7 (14.9) 87.8 (17.6) < 0.001***

Initial SBP, mmHg 145.5 (27.7) 144.3 (27.7) 148.9 (27.4) < 0.001***

Initial pulse rate, beats per min 83.7 (21.4) 83.4 (21.4) 84.6 (21.4) 0.168

Initial NIHSS 7.0 [2.0–15.0] 7.0 [2.0–15.0] 6.0 [2.0–15.0] 0.412

Pre-existing clinical status

Pre-stroke mRS 0 [0–1] 0 [0–1] 0 [0–3] < 0.001***

CHADS2 2 [1–3] 2 [1–3] 2 [1–4] < 0.001***

CHA2DS2VASc 3 [2–5] 3 [2–4] 4 [3–5] < 0.001***

Stroke onset time, h 14.4 (18.0) 13.2 (6.3) 17.7 (33.8) < 0.001***

Pre-existing comorbidities

Stroke 916 (29.8%) 749 (32.5%) 167 (21.8%) < 0.001***

Sustained AF 1,599 (52.0%) 1,174 (50.9%) 425 (55.5%) 0.030*

CHF 173 (5.6%) 95 (4.1%) 78 (10.2%) < 0.001***

HTN 2,121 (69.0%) 1,587 (68.8%) 534 (69.7%) 0.665

DM 843 (27.4%) 603 (26.1%) 240 (31.3%) 0.006**

CAD 454 (14.8%) 332 (14.4%) 122 (15.9%) 0.327

PAD 41 (1.3%) 33 (1.4%) 8 (1.0%) 0.532

Initial image findings

Lesion lateralization < 0.001***

Rt. anterior 904 (29.4%) 817 (35.4%) 87 (11.4%)

Lt. anterior 1,038 (33.8%) 798 (34.6%) 240 (31.3%)

Posterior 670 (21.8%) 385 (16.7%) 285 (37.2%)

Bilateral or diffuse multifocal 461 (15.0%) 307 (13.3%) 154 (20.1%)

DWI lesion pattern < 0.001***

  Single corticosubcortical 669 (21.8%) 552 (23.9%) 117 (15.3%)

  Cortical 289 (9.4%) 201 (8.7%) 88 (11.5%)

  Subcortical (≥15 mm) 185 (6.0%) 152 (6.6%) 33 (4.3%)

  Subcortical (<15 mm) 190 (6.2%) 115 (5.0%) 75 (9.8%)

  Small scattered lesion in one 

vascular territory
330 (10.7%) 221 (9.6%) 109 (14.2%)

  Confluent and an additional 

lesion in one vascular territory
521 (17.0%) 405 (17.6%) 116 (15.1%)

  Multiple lesions in multiple 

vascular territories
646 (21.0%) 418 (18.1%) 228 (29.8%)

Concomitant ICAS 1,466 (47.9%) 1,235 (53.5%) 231 (30.2%) < 0.001***

Concomitant ECAS 611 (20.1%) 548 (23.8%) 63 (8.2%) < 0.001***

Laboratory findings

WBC, 103/μL 8.3 (3.2) 8.3 (3.1) 8.3 (3.4) 0.903

Hb, g/dL 13.5 (2.0) 13.5 (2.0) 13.5 (2.0) 0.876

PLT, 103/mcL 205.0 (72.9) 205.0 (76.5) 204.8 (60.9) 0.929

(Continued)
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poststroke (p > 0.05), whereas the models significantly differed in 
terms of 3-month mortality (p < 0.05). The patients in the two 
registries were comparable in terms of sex, initial National Institute 
of Health and Stroke Scale (NIHSS) score, hypertension, and history 
of vascular diseases, including coronary and peripheral artery 
diseases. However, patients in the KUSR group were generally older 
and had higher initial blood pressure and body mass index (BMI) 
values than those in the K-ATTENTION group. Furthermore, 
patients in the KUSR group were more likely to exhibit a severe 
pre-stroke functional status, persistent AF, and a history of congestive 
heart failure and diabetes mellitus, whereas they had a lower previous 
history of stroke. The initial imaging findings revealed significant 
differences in lesion lateralization, diffusion-weighted imaging 
(DWI) lesion patterns, and concomitant intracranial and extracranial 
artery stenosis.

3.2. Model performance

An evaluation of model performance is presented in Figure 2, 
indicating that the machine learning models outperform logistic 
regression in predicting both outcomes. In the prediction of 
unfavorable functional outcomes, MLP obtained an AUROC value of 
0.890 on the internal validation set, representing a significant 
improvement over the AUROC value of 0.874 obtained by logistic 
regression. In the external validation set, both LightGBM (0.873) and 
MLP (0.859) achieved significantly higher AUROC values than those 
of logistic regression (0.834).

In the prediction of mortality, both LightGBM (0.839) and 
MLP (0.842) attained significantly higher AUROC values than 
logistic regression (0.803) on the internal validation set. On the 
external validation set, the AUROC values of LightGBM (0.805) 

TABLE 1 (Continued)

Variable All (n =  3,125) K-ATTENTION (n =  2,307) KUSR (n  =  818) p valuea

hs-CRP, mg/L 4.3 (16.0) 2.8 (11.3) 8.6 (24.6) < 0.001***

Initial glucose, mg/dL 142.8 (72.5) 141.2 (76.6) 147.3 (58.8) 0.047*

Fasting glucose, mg/dL 122.4 (43.9) 121.9 (43.6) 123.7 (44.7) 0.335

HbA1c, % 6.1 (2.5) 6.1 (2.1) 6.3 (3.2) 0.018*

Total cholesterol, mg/dL 162.0 (38.9) 162.8 (37.8) 159.7 (41.6) 0.071

TG, mg/dL 100.0 (65.2) 97.6 (61.8) 106.5 (73.4) 0.001**

HDL, mg/dL 46.6 (14.5) 46.9 (14.9) 46.0 (13.3) 0.148

LDL, mg/dL 99.4 (33.6) 100.7 (33.2) 95.8 (34.7) < 0.001***

AST, U/L 26.0 [21.0–33.0] 26.0 [21.0–33.0] 26.0 [21.0–33.0] 0.908

ALT, U/L 19.0 [14.0–27.0] 18.0 [14.0–26.0] 19.0 [14.0–28.0] 0.546

ALP, IU/L 93.4 (65.1) 99.0 (73.0) 79.6 (35.2) < 0.001***

Total bilirubin, mg/dL 0.9 (0.5) 0.9 (0.5) 0.8 (0.5) < 0.001***

Uric acid, mg/dL 5.4 (2.6) 5.5 (2.8) 5.1 (1.7) 0.003**

Serum creatinine, mg/dL 0.9 [0.7–1.1] 0.9 [0.7–1.1] 0.9 [0.8–1.2] < 0.001***

CrCl, mL/min 64.8 [46.2–85.4] 61.4 [42.7–81.2] 75.5 [57.4–91.2] < 0.001***

Fibrinogen, mg/dL 321.3 (120.9) 316.9 (125.0) 337.9 (102.9) < 0.001***

Homocysteine, μmol/L 12.7 (36.8) 13.2 (43.4) 11.6 (6.0) 0.348

CK-MB, ng/mL 3.6 (6.4) 3.5 (6.4) 3.9 (6.4) 0.163

FFA, μEq/L 866.1 (467.7) 894.2 (557.1) 848.6 (401.2) 0.129

Thrombolytic treatment

Recanalization therapy < 0.001***

  None 2,162 (70.4%) 1,641 (71.1%) 521 (68.0%)

  IV 505 (16.4%) 393 (17.0%) 112 (14.6%)

  IA 195 (6.3%) 133 (5.8%) 62 (8.1%)

  IV + IA 201 (6.5%) 140 (6.1%) 61 (8.0%)

3-month outcomes

Mortality 355 (11.6%) 294 (12.7%) 61 (8.0%) < 0.001***

Unfavorable outcomes 1,530 (49.8%) 1,136 (49.2%) 394 (51.4%) 0.312

ap-value of the chi-squared test, independent t-test, or Mann–Whitney U test for comparing the difference between the internal validation set (K-ATTENTION) and the external validation set 
(KUSR). *p < 0.05, **p < 0.01, ***p < 0.001. 
Values are represented as n (%), mean (SD), or median [95% CIs]. BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; NIHSS, National Institute of Health and 
Stroke Scale; mRS, modified Rankin Scale; AF, atrial fibrillation; CHF, congestive heart failure; DM, diabetes mellitus; CAD, coronary artery disease; PAD, peripheral artery disease; DWI, 
diffusion-weighted image; ICAS, intracranial artery stenosis; ECAS, extracranial artery stenosis; WBC, white blood cell; PLT, platelet; TG, triglyceride; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; CrCl, creatinine clearance; FFA, free fatty acid; IV, intravenous; IA, intra-arterial.

https://doi.org/10.3389/fneur.2023.1243700
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Jeon et al. 10.3389/fneur.2023.1243700

Frontiers in Neurology 06 frontiersin.org

and MLP (0.797) were also higher than that of logistic regression 
(0.790) although not significantly so. Furthermore, the machine 
learning models exhibited higher AUPRC values than those of 
logistic regression for predicting both outcomes in each 
validation set.

The cross-validation performance and calibration curves  
with the Brier scores of the models are presented in 
Supplementary Table S3 and Supplementary Figure S1, respectively. 
MLP was used to obtain four quartile strata, and mortality risk 
stratification was evaluated with pairwise comparisons between the 
survival curves of the strata using the log-rank test 
(Supplementary Figure S2). For the internal validation set, all 
p-values for pairwise comparisons were less than 0.0001, except for 
those between the first and second quartiles. For the external 
validation set, p-values for the pairwise comparisons were 0.0002 
or less, except for those between adjacent quartiles.

3.3. Performance comparison according to 
subgroup

Model performance in predicting unfavorable functional 
outcomes was consistent across all subgroups, with the lowest AUROC 
and AUPRC values in patients with recurrent stroke and those aged 
<65 years, respectively. Both machine learning models exhibited 
comparable or superior performance to that of logistic regression, 
with MLP significantly outperforming logistic regression in most 
subgroups (p < 0.05) except for patients aged <65 and > 74 years and 
those with recurrent strokes. No significant differences were observed 
between the two machine learning models or between logistic 
regression and LightGBM.

Supplementary Figure S3 shows the results of a performance 
comparison in the prediction of 3-month mortality across subgroups. 
Performance was also consistent across subgroups, with machine 
learning models exhibiting superior performance for all subgroups 
except patients aged <65 years.

Low-FPR sensitivity results in the subgroup cohorts for predicting 
unfavorable functional outcomes and mortality are presented in 
Supplementary Figures S4, S5, respectively. Detailed performance and 
NRI at low FPRs for the prediction of unfavorable functional outcomes 
and mortality are presented in Supplementary Tables S4, S5, 
respectively (see Figure 3).

3.4. Importance of variables for prediction 
of unfavorable outcomes

Out of the 43 variables, 34 were selected in the variable selection 
process, with the 10 most important variables summarized in 
Figure 4A. The most important variables were the initial NIHSS score, 
followed by DWI lesion pattern, pre-stroke mRS, and hs-CRP.

Partial SHAP dependence plots for the four representative 
variables among the top 10 are displayed in Figure 4B, with those for 
the other six variables presented in Supplementary Figure S6. Thus,  
≥ 7.4 points in the initial NIHSS score, having a specific pattern of 
lesion, including single corticosubcortical lesion, confluent and an 
additional lesion in one vascular territory, or multiple lesions in 
multiple vascular territories, ≥ 8,700 cells/μL in white blood cell 
(WBC) count, ≥ 318.3 mg/dL in fibrinogen, ≤ 22.5 kg/m2 in BMI,  
≥ 3  in pre-stroke mRS, bilateral or diffuse multifocal lesion 
lateralization, ≤ 12.9 g/dL in hemoglobin, ≥ 74.3 years in age, 
and ≤ 51.8 mL/min in creatine clearance contributed to a higher risk 
of the unfavorable functional outcome. The SHAP values associated 
with the 10 most important variables exhibited a pattern comparable 
to linear association. WBC revealed a sigmoid pattern, fibrinogen 
displayed a J-shaped pattern, and other variables revealed complex 
linear, sigmoid, and J-shaped patterns.

Supplementary Figure S7 presents the local interpretability of 
LightGBM for the prediction of unfavorable outcomes with individual 
cases on an external validation set.

3.5. Importance of variables for prediction 
of mortality

Out of the 16 selected variables, the 10 most important are 
summarized in Figure 4C. The most important variable was the initial 

FIGURE 2

Receiver operating characteristics curves and precision–recall curves 
illustrating model performance. Solid lines and shades represent 
mean curves and 95% confidence interval areas, respectively. For the 
baseline model (logistic regression, “LogReg”), confidence intervals 
are represented with a polka dot pattern. An asterisk (*) indicates 
significantly higher AUROC than the baseline model (p  <  0.05, 
Benjamini–Hochberg corrected).
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NIHSS score, followed by age, concomitant intracranial/extracranial 
steno-occlusion, fasting glucose, and creatinine clearance.

Partial SHAP dependence plots for four representative variables 
are displayed in Figure  4D, with those for the other six variables 
presented in Supplementary Figure S8. In summary, ≥ 8.2 in the initial 
NIHSS score, ≥ 74.5 years in age, ≤ 56.6 mg/dL or ≥ 122.6 mg/dL in 
fasting glucose, and ≤ 22.1 or ≥ 30.3 kg/m2 in BMI, ≥ 4 in pre-stroke 
mRS, ≥ 87.2 IU/L in ALP, ≤ 4.0 mg/dL, or ≥ 7.0 mg/dL in uric acid, 
multiple lesions in multiple vascular territories, presence of 
concomitant intracranial or extracranial stenosis, and ≥ 8,300 cells/μl 
in WBC count predicted mortality. Most association patterns between 
SHAP values and variables were near-linear, sigmoid, J-shaped, or 

combinations of the three. BMI and uric acid levels revealed 
U-shaped patterns.

The local interpretability of LightGBM for the prediction of 
mortality is demonstrated in Supplementary Figure S9 by presenting 
individual cases through model prediction on the external 
validation set.

4. Discussion

We trained MLP and LightGBM machine learning models to 
predict unfavorable outcomes and mortality in AF-related stroke 

FIGURE 3

AUROC and precision–recall curves representing performance on different subgroup cohorts for the prediction of unfavorable functional outcomes. 
The (n  =  A, B%) notation for each subgroup indicates the number of samples in the test set (A) and prevalence rate of the outcome (B) of the subgroup. 
Box plots are plotted with whiskers of 1.5 times the interquartile ranges. AUPRC, area under the precision–recall curve; AUROC, area under the receiver 
operating characteristics curve; DM, diabetic mellitus; HTN, hypertension; PAF, paroxysmal atrial fibrillation (AF); PeAF, persistent atrial fibrillation (AF).
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patients over a 3-month period using two separate datasets. All 
models were validated internally and externally, with the machine 
learning models exhibiting higher predictive power than logistic 
regression for both outcomes. Similar trends were consistently 
observed across pre-specified subgroups, including age, sex, 
hypertension, diabetes mellitus, type of AF, and stroke recurrence. 
Overall, the machine learning models reliably predicted unfavorable 
outcomes and mortality in AF-related stroke patients. We identified 
influential variables through SHAP values to improve model 
explainability and identify high-risk patients with poor outcomes.

The initial NIHSS score, which reflects initial stroke severity, was 
the most influential variable with the highest SHAP value in 
determining short-term prognoses (unfavorable outcomes and 
mortality) following AF-related stroke. This finding is consistent with 
those of previous studies, which demonstrated an association between 
the initial NIHSS score and poor outcomes (10, 23) and mortality (8, 
24) after the occurrence of stroke. Similarly, we  observed linear 
associations between the initial NIHSS score and both poor functional 
outcomes and mortality, with cutoff values of 7.4 and 8.2, respectively. 

Thus, the risk of mortality increased linearly with an initial NIHSS 
score exceeding 8.2.

Patient age was the second most significant variable affecting 
mortality, with a J-shaped association pattern. Patients aged 74.5 years 
and older exhibited a higher risk of mortality, which increased linearly 
with age. However, the magnitude of negative association decreased 
in patients aged 52 years and younger. The DWI lesion pattern was the 
second most influential variable for unfavorable functional outcomes. 
AF-related stroke patients exhibited a higher risk of poor functional 
outcomes when they had infarct patterns with single cortico-
subcortical lesions, confluent and additional lesions in one vascular 
territory, or multiple lesions in different vascular territories. The size 
and number of ischemic lesions may indicate the burden of embolus, 
suggesting an association with functional outcomes.

Concomitant vascular diseases are frequently observed in AF 
patients because they share several risk factors and pathophysiological 
features with atherosclerosis (25, 26). Concomitant carotid 
atherosclerosis was identified as an important risk factor for short-
term outcomes in this study. This result is consistent with previous 

FIGURE 4

Importance of selected variables for prediction of unfavorable functional outcomes (A,B) and mortality (C,D). (A,C) Individual influences of every value 
and overall contributions to the model prediction of the top 10 variables are represented as a dot on the right and bar on the left, respectively. In the 
plot on the right, red dots indicate high values in continuous/ordinal variables. Positive and negative SHAp values indicate positive contributions 
resulting in higher prediction scores and negative contributions resulting in lower prediction scores, respectively. (B,D) Partial SHAP dependence plots 
for four representative variables. Histograms on the right and the top axes of each plot indicate SHAP distributions and variable values, respectively. The 
original labels of the numeric codes are as follows: 1, single corticosubcortical; 2, cortical; 3, subcortical (≥ 15  mm); 4, subcortical (< 15  mm); 5, small 
scattered lesion in one vascular territory; 6, confluent and an additional lesion in one vascular territory; and 7, multiple lesions in multiple vascular 
territories. BMI, body mass index; CrCl, creatinine clearance; NIHSS, National Institute of Health Stroke Scale; DWI, diffusion-weighted imaging; WBC, 
white blood cell; hs-CRP, highly sensitive C-reactive protein; ECA, extracranial artery; ICA, intracranial artery.
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results, demonstrating that carotid atherosclerosis predicts recurrent 
vascular events and mortality in AF-related stroke patients (26). 
However, this study is the first to determine an association with poor 
functional outcomes. The pre-stroke mRS score, representing the 
degree of functional disability prior to the index stroke, is a well-
known robust predictor of prognosis following stroke (27). 
We observed that a pre-stroke mRS of 3 or higher is associated with 
poor short-term functional outcomes, whereas the association with 
mortality increased almost linearly for each single-point increase in 
pre-stroke mRS of 4 or higher.

WBC and fibrinogen levels exhibited sigmoid patterns according 
to SHAP values. The leukocyte count, a marker of inflammatory 
response, is associated with short-and long-term clinical outcomes 
following acute strokes (28, 29). Fibrinogens play crucial roles in the 
coagulation cascade and inflammation. Increased fibrinogen levels are 
associated with functional outcomes (30, 31). Notably, the cutoff 
values for poor prognosis in this study were similar to those discovered 
previously. The association between fasting glucose levels revealed a 
J-shaped sigmoidal pattern. An association with lower mortality rates 
was also observed with glucose levels ranging from 56.6 to 122.6 mg/
dL. The lower and upper cutoff values were comparable to the blood 
glucose levels for hypoglycemia and diagnostic criteria for diabetes 
mellitus, respectively. Hyperglycemia may contribute to poor 
outcomes in stroke patients through several mechanisms, including 
an increased risk of cerebral edema (32, 33), impaired blood flow 
regulation (34), and increased oxidative stress (35). Hypoglycemia 
may also result in poor outcomes owing to impaired brain function as 
the brain requires a constant supply of glucose. Additionally, 
hypoglycemia can induce ischemic stroke by increasing the levels of 
inflammatory markers, platelet activation, and fibrinogen formation 
(36, 37).

Machine learning may provide significant advantages in medical 
practice by uncovering complex non-linear patterns within medical 
data and enhancing predictive accuracy vital for optimizing patient 
care. Machine learning models are also adept at tailoring predictions 
to individual patient profiles, aligning with the principles of 
personalized medicine. Moreover, they serve as powerful clinical 
decision support tools, providing data-driven insights that enhance 
the decision-making capabilities of healthcare practitioners, ultimately 
improving patient outcomes.

The machine learning models achieved robustness through 
internal and external validation sets based on two separate datasets 
with distinct patient characteristics. However, this study had some 
limitations. First, our models may have been overfitted to the Korean 
population, which would present a challenge in generalizability. The 
enrolled population was Asian, and most patients were treated under 
the Korean medical system covered by national health insurance, 
which improved the accessibility of medical services and 
standardization of treatment processes. Asian populations have been 
associated with a higher bleeding tendency than thrombotic risk 
compared to Western populations (38). Ethnic differences in 
fibrinogen levels, one of the 10 highest SHAP variables, have also been 
reported (39, 40). However, these national and ethnic differences 
cannot be considered by machine learning models. Second, some 
variables associated with outcomes in AF-related stroke (41, 42), 
including D-dimer and N-terminal pro-B-type natriuretic peptides, 
were not considered, owing to an excessive number of missing values. 
To improve model interpretability, we  used categorized ischemic 

lesion patterns in place of raw brain magnetic scans. However, this 
approach may limit the utilization of potential information embedded 
in magnetic resonance images. Finally, although the machine learning 
models exhibited higher predictive power than logistic regression, a 
comparison in terms of AUROC and AUPRC did not reveal marked 
differences and these differences were statistically significant. Small 
differences were observed in terms of sensitivity at low FPR levels as 
each of the three models assumed the same number of variables. As 
displayed in Figure  4, most of the association patterns revealed 
roughly linear contributions. Generally, linear regression is a simple 
and powerful tool for modeling linear relations, whereas machine 
learning models can capture complex non-linear relationships 
between variables. Consequently, if the relationship between variables 
is primarily linear, the additional complexity of a machine learning 
model might not be conducive in terms of predictive accuracy. To 
improve model performance, artificial data generation techniques, 
such as synthetic minority oversampling, may be useful (43). The 
prevalence of outcomes for future model applications was not 
artificially increased, instead allowing the class imbalance to remain 
unmodified. To ensure that comparable performance can be expected 
when the models are applied to other independent datasets, 
we handled outliers using a popular automated method. Furthermore, 
we verified model performance in terms of AUPRC, with a more 
accurate reflection of practical performance than the AUROC (44).

Machine learning models can be  used to predict short-term 
outcomes, including unfavorable outcomes and mortality over a 
3-month period, and identify high-risk patients with poor outcomes 
in AF-related stroke. The initial NIHSS score was the most important 
factor influencing short-term prognosis. Because our results are 
restricted to Korean stroke patients, further validation is necessary to 
ensure that the models and selected features can be applied to all 
AF-related stroke patients.
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