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Objective: Cerebral white matter hyperintensity can lead to cerebral small

vessel disease, MRI images in the brain are used to assess the degree of

pathological changes in white matter regions. In this paper, we propose a

framework for automatic 3D segmentation of brain white matter hyperintensity

based on MRI images to address the problems of low accuracy and segmentation

inhomogeneity in 3D segmentation. We explored correlation analyses of

cognitive assessment parameters and multiple comparison analyses to investigate

di�erences in brain white matter hyperintensity volume among three cognitive

states, Dementia, MCI and NCI. The study explored the correlation between

cognitive assessment coe�cients and brain white matter hyperintensity volume.

Methods: This paper proposes an automatic 3D segmentation framework

for white matter hyperintensity using a deep multi-mapping encoder-decoder

structure. Themethod introduces a 3D residual mapping structure for the encoder

and decoder. Multi-layer Cross-connected Residual Mapping Module (MCRCM)

is proposed in the encoding stage to enhance the expressiveness of model and

perception of detailed features. Spatial Attention Weighted Enhanced Supervision

Module (SAWESM) is proposed in the decoding stage to adjust the supervision

strategy through a spatial attention weighting mechanism. This helps guide the

decoder to perform feature reconstruction and detail recovery more e�ectively.

Result: Experimental data was obtained from a privately owned independent brain

white matter dataset. The results of the automatic 3D segmentation framework

showed a higher segmentation accuracy compared to nnunet and nnunet-resnet,

with a p-value of <0.001 for the two cognitive assessment parameters MMSE

and MoCA. This indicates that larger brain white matter are associated with lower

scores of MMSE and MoCA, which in turn indicates poorer cognitive function. The

order of volume size of whitematter hyperintensity in the three groups of cognitive

states is dementia, MCI and NCI, respectively.

Conclusion: The paper proposes an automatic 3D segmentation framework for

brain white matter that achieves high-precision segmentation. The experimental

results show that larger volumes of segmented regions have a negative correlation

with lower scoring coe�cients of MMSE and MoCA. This correlation analysis

provides promising treatment prospects for the treatment of cerebral small vessel

diseases in the brain through 3D segmentation analysis of brain white matter. The
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di�erences in the volume of white matter hyperintensity regions in subjects with

three di�erent cognitive states can help to better understand the mechanism of

cognitive decline in clinical research.

KEYWORDS

cerebral small vessel disease, white matter hyperintensity, deep encoder-decoder

structure, medical 3D segmentation, correlation analysis

1. Introduction

Cerebral small vessel disease of the brain refers to blood vessels

affecting the arteries or veins of the cerebellum. This type of disease

causes dysfunction of the tiny circulation from the small vessels

to the small vessels, which can cause neurological dysfunction

and impaire brain function and cognitive impairment. The white

matter is made up of nerve fibers and neuronal axons responsible

for transmitting information between different brain regions (1).

The white matter requires a steady supply of blood through

small blood vessels to maintain normal physiological functions (2).

Cerebrovascular disease can cause a reduction or interruption of

blood flow to these vessels, leading to the development of white

matter hyperintensities that can be diagnosed through MRI image

(3, 4).

The current clinical tools for detecting white matter

abnormalities include observing MRI images (5), using neural

networks to automatically segment and classify MRI images

to determine the presence of abnormalities, analyzing the

chemical composition of brain regions using magnetic resonance

spectroscopy (6, 7). The use of 3D medical images can enhance

clinical visualization during patient treatment (8), deep learning

segmentation algorithms have demonstrated superior performance

in segmenting large collections of data. In recent years, 3D image

segmentation algorithms based on deep learning have shown

superior performance in clinical medicine in recent years (9, 10).

In order to help physicians diagnose small vessel diseases

more accurately in clinical work, automatic 3D segmentation of

cerebral white matter hyperintensities provides a scientific basis

for clinical treatment of small vessel diseases by analyzing white

matter morphology. In order to enhance the detection of cerebral

white matter hyperintensities, this paper proposes an automatic 3D

segmentation framework, which avoids incomplete segmentation

and over-segmentation in the process of segmenting cerebral

white matter. In order to more comprehensively understand the

difference of cerebral white matter hyperintensities volume in

three cognitive states, this paper explores the correlation between

cerebral white matter hyperintensities volume and cognitive

assessment coefficient.

For brain white matter hyperintensities segmentation, we

propose a deep multi-mapping encoder-decoder structure as an

automatic 3D segmentation framework for brain white matter.

A 3D residual mapping function is introduced in the overall

segmentation framework. The residual function is widely used

in image segmentation algorithms, which is known for its

ability to solve the address information loss and ambiguity

problem in image segmentation algorithms. The encoder-decoder

structure is composed of multiple convolutional and pooling

layers, which can result in missing image information due

to layer-by-layer compression and downsampling, it leads to

efficiency degradation and gradient explosion, due to the network’s

increased depth. To avoid this situation, this paper proposes

an automatic 3D segmentation framework adapted to the white

matter hyperintensities.

In this paper, we propose a three-dimensional Multi-layer

Cross-connected Residual Mapping Module (MCRCM) in the

encoding stage. The MCRCM Module can enhance the feature

depth and width in the encoder stage, by adding multiple cross-

connected residual structures, features at different levels can be

cross-connected and fused, it enhances the feature representation

capability and feature discriminability of the brain white matter

hyperintensities. The 3D Spatial Attention Weighted Enhanced

Supervision Module (SAWESM) is introduced in the decoding

stage to upsample and reconstruct the features extracted by the

3D encoder, adding 3D spatial attention enhanced structures,

which can adaptively adjust the feature weights and responses

according to the spatial distribution of the features. The addition

of a 3D spatial attention enhancement structure allows for adaptive

adjustment of feature weights and responses according to the

spatial distribution of the features, it enhances the supervisory

hyperintensities through the 3D spatial attention mechanism,

facilitating the convergence and generalization of the network.

The contributions of this paper are as follows:

1. The 3D automatic segmentation framework proposed in

this paper achieves accurate segmentation of white matter

hyperintensities, which helps to identify brain changes

associated with cerebrovascular diseases and cognitive

impairment.

2. The proposed MCRCM model enhances the medical feature

representation capability of the model by extracting feature

semantic information at different levels, while the proposed

SAWESM model improves the medical segmentation accuracy

of the model by capturing image boundary information and

detail information during reconstruction.

3. Through correlation analysis and multiple comparisons of

cognitive function coefficients, we found that the cognitive

function coefficients in the three cognitive states showed strong

significance, MMSE and MoCA showed negative correlation

with brain white matter hyperintensities.
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FIGURE 1

Visualization of white matter hyperintensity coverage. Rows (A, C, E) represent MRI visualizations of the brain not covered by cerebral white matter

hyperintensity, rows (B, D, F) represent MRI images of cerebral white matter hyperintensity in brain regions that have produced a certain regional

volume.

2. Related work

An adaptive fully dense (AFD) neural network is proposed

for CT image segmentation (11). A hybrid 3D residual network

with squeeze and excitation modules is proposed for volume

segmentation in computerized tomography (CT) scans (12).

3D visual explanations using extended post-hoc interpretability

techniques is analyzed for 3D brain tumor segmentation models

(13). Wu proposed a new frame interpolation-based slice

interpolation method to improve the segmentation accuracy of

anisotropic 3Dmedical images (14). An improved template of fuzzy

c-means (FCM) is proposed for 3D medical volume segmentation

and suggested parallel implementation using image processing

units (15).
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FIGURE 2

Deep encoder decoder module.

A method based on 2D registration is proposed to gradually

propagate labels between consecutive 2D slices and used 3D

UNet to leverage volume information, to alleviate the burden of

manual annotation (16). A novel multi-path densely connected

convolutional neural network is proposed to automatically segment

gliomas of unknown size, shape, and position (17). An automatic

segmentation method based on deep learning is proposed to

solve the problem of developing target localization pipelines

in DBS surgery (18). A comprehensive system is proposed for

detecting, measuring, analyzing the location of aneurysms on three-

dimensional DS images (19). 3D contextual residual network is

proposed for precise segmentation of 3D medical images, which

consists of an encoder, segmental decoder, and contextual residual

decoder (20).

Dilated Transformer is proposed to enlarge the receptive field

without involving patches (21). Neuroevolution is proposed to

develop deep attention convolutional neural networks for 2D and

3D medical image segmentation (22). A spatially weighted 3D

network is proposed for single-modality segmentation of MRI

brain tissue and extended it using multi-modality MRI data (23).

3D convolutional neural network based on 3D UNet and used

rendering methods in computer graphics is proposed for 3D

medical image segmentation (24). an Attention VNet module

that uses 3D Attention Gate modules is proposed and applied

to a semi-supervised learning-based left atrium segmentation

framework (25).

An advanced deep learning network is proposed for 3D

medical image segmentation (26). 3D ASPP module is proposed

with a 3D DenseNet network (27). A new 3D medical image

segmentation algorithm is proposed that defines the 3D brain

tumor semantic segmentation task as a sequence-to-sequence

prediction challenge in their study (28). An improved network

based on 3D UNet is proposed to address the problem of low

segmentation accuracy in the original 3D UNet network (29).

Autopath, a more efficient image-specific inference method is

proposed for 3D segmentation (30).

The method is proposed to achieve competitive accuracy from

“weakly annotated" images, where weak annotations are obtained

by representing the 3D boundary of the object of interest (31).

A reinforcement learning-based 3D multimodal medical image

segmentation algorithm is proposed with big data analysis (32).

An interactive image segmentation tool is proposed that provides

effective segmentation with multiple labels for both 2D and 3D

medical images (33). A multi-agent approach for 3Dmedical image

segmentation based on a group of autonomous interactive agents

is proposed (34). The development of 3D network structures and

the possibility of developing 3D networks is proposed for volume

segmentation using 2D neural networks (35).

3. Methods

3.1. Automatic 3D segmentation
framework of hyperintensities

MRI was performed with a 3T MRI scanner (Prisma, Siemens)

using a 64-channel head coil. T2-fluid attenuated inversion
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FIGURE 3

Multi-layer cross-connected residual mapping module.

recovery (FLAIR) images were acquired with the following

parameters: TE = 150 ms, TR = 9,075 ms, TI = 2,250 ms, FOV =

256–256 mm2, matrix = 128–128, slice thickness = 2 mm, number

of slices = 66. The visualization of the hyperintensities in the white

matter of the brain is shown in Figure 1. In this paper, we propose

a deep encoder-decoder module for 3D segmentation of brain

whitematter, as illustrated in Figure 2.Multi-layer Cross-connected

Residual Mapping Module is proposed in the encoder stage

to propose a three-dimensional multi-layer residual connectivity

structure, as shown in Figure 3. In the decoder stage, Spatial

Attention Weighted Enhanced Supervision Module is proposed,

which proposes to enhance the depth supervision mechanism by

the three-dimensional spatial attention mechanism, as shown in

Figure 4.

3.1.1. Multi-layer cross-connected residual
mapping module

The three-dimensional residual structure with multi-level

cross-connected proposed in the encoder stage can deepen

the extraction of network ability for three-dimensional features

by introducing the residual structure, which can effectively

alleviate the problems such as gradient disappearance because

of the network depth problem and adjust the weights of the

previous neural network layers by learning the residual mapping

function, the network can better adjust the input and output

relationships of three-dimensional features. It is proposed that

adding multi-level cross-connected to the three-dimensional

residual structure can improve the nonlinear learning ability of

the network and enhance the information exchange between

different layers. The multi-level three-dimensional residual cross-

connected structure incorporates multiple residual blocks and

cross-connected structures in the encoder stage to achieve three-

dimensional feature extraction and information exchange between

the multi-level structures of the three-dimensional network. As is

shown in Figure 3.

The encoder of the proposed model consists of multiple

convolutional blocks, each of which followed by batch

normalization and ELU activation. The cross-level residual

connections are introduced by adding shortcut connections

between the different levels of feature maps in the encoder. The

cross-level residual connections enable information flow across

different levels of feature maps, which helps to capture both

low-level and high-level features for more accurate segmentation.

This is achieved by adding the output of the previous block to the

input of the current block, which allows the model to learn the

residual features that are not captured by the previous block.

Regarding the calculation formulas of the Cross-Level Residual

Connections Module, as shown in the Appendix, there are formula

(1), formula (2), formula (3), formula (4), formula (5), formula (6),
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FIGURE 4

Spatial attention weighted enhanced supervision module.

FIGURE 5

Visualization of cognitive assessment factors. The horizontal axis

represents the range of values for the cognitive assessment

coe�cients, the vertical axis represents the density of cognitive

assessment coe�cient points within the range of values changed,

each peak represents a peak in the cognitive assessment coe�cient,

the height of the peak represents the cognitive assessment

coe�cient density.

formula (7). In these formulas, y represents the computation result

of each group convolution block, α and γ represent the coefficients

of the cross-level connections,K represents the convolution kernels

of the blocks, b represents the normalization coefficients, Elu

represents the activation function.

3.1.2. Spatial attention weighted enhanced
supervision module

The module of deep supervision mechanism with spatial

attention enhancement is proposed in the decoder stage, the

spatial attention enhancement supervision function is proposed

in the deep 3D residual network, which makes the network

pay more attention to the important information in the

input sequence to improve the performance of the model in

the feature conversion stage, the spatial attention makes the

network pay more attention to the important regions of the

3D data to improve the network perception in the decoder

stage, the deep supervision mechanism can better learn the

mapping relationship between the input 3D data to enhance

the robustness of the model and improve the robustness in

generative tasks.

The decoder of the proposed model also consists of

multiple convolutional blocks, each of which followed by batch

normalization and ELU activation. The spatial attention module
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FIGURE 6

Segmentation results of three-dimensional white matter hyperintensity of Dementia. Columns (A, E) represent the white matter MRI of the brain

ready for inference, columns (B, F) represent the brain white matter hyperintensity results of nnunet segmentation, columns (C, G) represent the

brain white matter hyperintensity results of nnunet-resnet segmentation, columns (D, H) represent the brain white matter hyperintensity

segmentation results of the automatic 3D segmentation framework proposed in this paper. The volumes of the brain white matter hyperintensity

volume corresponding to Dementia obtained under the three segmentation algorithms are shown in Table 3. It can be seen that the brain white

matter hyperintensity volume obtained by nnunet and nnunet-resnet segmentation has incomplete segmentation and over-segmentation, the

volume obtained by the algorithm proposed in this paper is closest to the original brain white matter hyperintensity volume.

is incorporated in the decoder to provide additional guidance

for the model to focus on the most informative regions of

the feature maps. The spatial attention module is designed

to assign different weights to different regions of the feature

maps based on their importance for the segmentation task.

The attention module takes the feature maps of the previous

layer as input and produces a spatial attention map, which is

multiplied element-wise with the feature maps to obtain the

attended feature maps. The attended feature maps highlight

the most informative regions of the feature maps, which can

improve the accuracy and robustness of the segmentation

results. The spatial attention-guided supervision is introduced by

incorporating the attended feature maps into the loss function

as an additional term. This term encourages the model to focus

on the most informative regions of the feature maps during

training and helps to reduce the influence of the irrelevant regions

(Figure 4).

Regarding the calculation formulas of the Spatial Attention

Guided Supervision module, as shown in the Appendix, there

are formula (8), formula (9), formula (10), formula (11), formula

(12). In these formulas, Is represents the computation result

of the spatial attention, Ic represents the result of the shallow

skip mapping, I represents the result of the enhanced spatial

attention, L represents the result of the deep supervision,
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FIGURE 7

Segmentation results of three-dimensional white matter hyperintensity of MCI. Columns (A, E) represent the white matter MRI of the brain ready for

inference, columns (B, F) represent the brain white matter hyperintensity results of nnunet segmentation, columns (C, G) represent the brain white

matter hyperintensity results of nnunet-resnet segmentation, columns (D, H) represent the brain white matter hyperintensity segmentation results of

the automatic 3D segmentation framework proposed in this paper. The volumes of the brain white matter hyperintensity volume corresponding to

MCI obtained under the three segmentation algorithms are shown in Table 4. It can be seen that the brain white matter hyperintensity volume

obtained by nnunet and nnunet-resnet segmentation has incomplete segmentation and over-segmentation, the volume obtained by the algorithm

proposed in this paper is closest to the original brain white matter hyperintensity volume.

Z represents the result of the enhanced spatial attention

and shallow residual connection, Relu and Elu represent the

activation functions.

3.2. Correlation analysis of white matter
hyperintensity cognitive assessment

Cognitive function assessment coefficients are measures

of people’s cognitive abilities, including attention, memory,

language, and spatial expression. Correlation analysis and multiple

comparison analysis of cognitive function coefficients related to

brain white matter can reveal the relationship between these

indicators. Correlation analysis is a method to measure the strength

of the relationship used for variables, usually using positive

or negative correlation to determine the correlation, multiple

comparison is a method used for differences between multiple

variables. This paper uses SPSS software to conduct correlation

analysis and multiple comparisons of cognitive coefficients in three

cognitive states. The cognitive function coefficients involved in
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FIGURE 8

Segmentation results of three-dimensional white matter hyperintensity of NCI. Columns (A, E) represent the white matter MRI of the brain ready for

inference, columns (B, F) represent the brain white matter hyperintensity results of nnunet segmentation, columns (C, G) represent the brain white

matter hyperintensity results of nnunet-resnet segmentation, columns (D, H) represent the brain white matter hyperintensity segmentation results of

the automatic 3D segmentation framework proposed in this paper. The volumes of the brain white matter hyperintensity volume corresponding to

NCI obtained under the three segmentation algorithms are shown in Table 5. It can be seen that the brain white matter hyperintensity volume

obtained by nnunet and nnunet-resnet segmentation has incomplete segmentation and over-segmentation, the volume obtained by the algorithm

proposed in this paper is closest to the original brain white matter hyperintensity volume.

this paper are MMSE, MoCA, TMT-A, TMT-B, Stroop C-T, VFT,

AVLT4, AVLT5, Rey-O, and BNT, with gender, age and education

as covariates. Figure 5 summarizes the statistical data and factors

related to cerebrovascular diseases.

The cognitive function assessment coefficients and their

meanings in the statistics of this paper are as follows, MMSE:

Mini-Mental State Examination, a standardized measurement

tool to assess cognitive function, is commonly used to test the

cognitive function of older adults. MoCA: Montreal Cognitive

Assessment, a standardized measure of cognitive function, is

also commonly used to test cognitive function in older adults.

TMT-A and TMT-B: Trail Making Test A and B, a standardized

measure to assess cognitive function, is also commonly used

to test cognitive flexibility and executive function. TMT-A test

requires subjects to connect numbers and TMT-B test requires

subjects to connect numbers and letters alternately. Stroop C-

T: The Stroop Color-Word Test, a standardized measure of

cognitive function and inhibitory control, is a C-T task that

requires subjects to quickly identify colors and inhibit word

information that contradicts them. The VFT: Verbal Fluency Test,

a standardized measure that assesses cognitive functioning and

language ability, consists of two tasks: semantic category and letter

category. AVLT4 and AVLT5: California Verbal Learning Test

4th and 5th Trials, a standardized measure to assess memory
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TABLE 1 Demographics and test performance of the study.

Variable Controlsa Patients with MCIa Patients with dementiaa P-valueb

N 44 82 8 N/A

Sex (female) 7 15 6 0.006

Age 75.875± 5.988 67.127± 7.205 65.75± 7.574 <0.001

Education 8.5± 4.242 10.178± 7.205 11.636± 2.805 <0.001

Mini-Mental State Examination (MMSE) 20.25± 3.767 27.165± 1.945 28.818± 1.093 <0.001

Montreal Cognitive Assessment (MoCA) 14.25± 2.817 21.608± 3.328 25.773± 2.575 <0.001

Trail making A (TMT-A) 145.5± 56.622 93.063± 44.844 61.432± 23.903 <0.001

Trail making B (TMT-B) 319± 72.856 223.101± 80.342 147.296± 37.690 <0.001

Stroop C-T 143.875± 38.908 121± 44.727 80.068± 15.623 <0.001

Verbal Fluency Test (VFT) 9.625± 1.867 13.747± 4.211 16.955± 3.219 <0.001

Auditory Verbal Learning Test4 (AVLT4) 1.75± 1.561 3.848± 2.129 6.773± 1.941 <0.001

Auditory Verbal Learning Test5 (AVLT5) 0.625± 0.857 2.848± 2.159 6.477± 2.169 <0.001

Rey-O 24.5± 5.523 32.911± 4.032 34.341± 3.819 <0.001

Boston Naming Test (BNT) 17.5± 4.770 22.532± 3.697 25.386± 2.90 <0.001

Correlation analysis of the cognitive function coefficients associated with high brain white matter signals showed that the p-value of all the function coefficients were <0.001, which indicated

that the statistical results were significant.
aMean± standard deviation (SD).
bp-values from three-sample t-tests between the three groups.

function. Rey-O: It represents Complex Figure Test, a standardized

measure assessing visuospatial and memory functions. The BNT:

Boston Naming Test, a standardized measure of verbal and

lexical ability.

This study visualized cognitive assessment parameters

associated with brain white matter hyperintensity while

considering gender, age and education level as covariates. The

remaining 10 cognitive function coefficients were analyzed and

presented, providing a clearer understanding of the distribution of

cognitive assessment parameters among subjects. This information

can serve as a reference for subsequent analysis and decision

making regarding cognitive assessment parameters closely related

to brain white matter hyperintensity. The cognitive assessment

coefficients corresponding to the white matter high-signal dataset

were first visualized with gender, age and education as covariates

among the subjects, the remaining 10 variables were visualized

with numerical density. As is shown in Figure 5.

4. Result

We evaluated the proposed the automatic 3D segmentation

framework on a large public dataset for brain white matter

hyperintensity segmentation, which contains MRI scans from

patients with Alzheimer’s disease, cognitive impairment and

normal cognition. The dataset consists of 254 FLAIR images

with manual annotations of brain white matter regions. Our

experiments showed that the proposed the automatic 3D

segmentation framework with cross-level residual connections in

the encoder and spatial attention-guided supervision in the decoder

achieved state of the art performance in terms of Segmentation

accuracy. This dataset contains three kinds of data with different

cognitive functions, dementia, MCI, NCI. The three automatic

segmentation framework proposed in this paper is used to segment

each of the three datasets. The segmentation results of dementia

are shown in Figure 6, the segmentation results of MCI are

shown in Figure 7, the segmentation results of NCI are shown in

Figure 8.

The above standardized measurement tools and

tests can assess multiple domains of cognitive function,

including attention, memory, orientation, computational

skills, language skills, executive function and visuospatial

abilities. In clinical and research settings, these tools can

be used to assess impairment or improvement in cognitive

function, diagnose cognitive dysfunction or neurodegenerative

disorders and develop individualized rehabilitation plans and

treatment protocols.

In conducting the correlation experiment part, the correlation

analysis was first performed on the cognitive function score

coefficients related to cerebral white matter hyperintensity.

The gender, age and education level of the subjects were

used as covariates in the correlation analysis. In terms of

gender, women would have better performance results than

men on some cognitive assessments, age would also affect the

decline in cognitive function, the level of education would also

affect cognitive ability, these three factors would interfere with

the study results and affect the accurate assessment of the

relationship between cerebral white matter hyperintensity and

cognitive function.

After the correlation analysis of the cognitive assessment

coefficients, the results are presented as demonstrated in Table 1,

from which it can be seen that the calculated p-values for MMSE

and MoCA are <0.001, which indicates a significant association
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between the volume of white matter hyperintensity regions and

cognitive function, p-values corresponding to these two cognitive

assessment coefficients are <0.001 implying that the probability of

observing a correlation as strong as the one found by chance in the

study is <0.1%.

The probability of observing a correlation as strong as the

one found by chance in the study is <0.1%. That is the

greater the white matter region of the brain in the subject,

the smaller the corresponding MMSE and MoCA values, the

two showed a negative correlation, suggesting an association

between cognitive decline, neurodegenerative disorders and white

matter hyperintensity, which clinically suggests the need for

further examination and treatment, identifying which cognitive

functions are affected in the patient, a more targeted approach

to rehabilitation can be developed treatment approach. In the 3D

segmentation experiments of three groups of brain white matter

hyperintensity, the segmentation results of brain white matter

hyperintensity obtained by training prediction of the automatic

3D segmentation framework proposed in this paper are shown in

Figures 6–8. nnunet and nnunet-resnet is selected as the control

experiment for the segmentation results, which is also shown in

Figures 6–8.

Table 2 shows the multiple comparisons between the relevant

influencing factors for Dementia, NCI and MCI. It shows the

significance between the relevant factors. Figure 9 represents the

accuracy ratio of brain white matter volume obtained by the

three segmentation algorithms, it can be seen that the automatic

brain white matter 3D segmentation algorithm proposed in this

paper outperforms the other two segmentation algorithms in

terms of the accuracy of brain white matter segmentation in

Demntia, NCI and MCI. The horizontal axis represents the

number of experiments, the vertical axis represents the white

matter volume accuracy ratio obtained by algorithm segmentation.

The correlation between cerebral white matter hyperintensity

volume, MoCA and MMSE scores is shown in Figure 10, from

which it can be seen that there is a negative correlation between

cerebral white matter hyperintensity volume and MoCA and

MMSE scores, as the volume of the three cognitive states

dementia, MCI, and NCI corresponding to cerebral white matter

hyperintensity decreases in the state, the values of MoCA and

MMSE subsequently increase.

We propose an automatic 3D segmentation framework for

white matter hyperintensity using a deep multi-mapping encoder-

decoder structure. The segmentation method proposed in this

paper was compared with nnunet and nnunet-resnet for 3D

segmentation volume of cerebral white matter as demonstrated in

Tables 3–5. The first column indicates the subject’s serial number,

the second column indicates the volume of the subject’s original

brain white matter hyperintensity, the third column indicates the

volume of the brain white matter hyperintensity obtained after

the nnunet predictive inference segmentation, the fourth column

indicates the volume of the brain white matter hyperintensity

obtained after the nnunet-resnet predictive inference segmentation,

the fifth column indicates the volume of the brain white matter

hyperintensity obtained after the predictive inference segmentation

by the automatic 3D segmentation framework proposed in this

paper, the sixth column represents the ratio of the volume

FIGURE 9

(A–C) Represent three di�erent states of white matter

hyperintensity. Dementia, MCI and NCI, corresponding to the

comparison of white matter volume obtained by the three

segmentation algorithms.

of the brain white matter hyperintensity obtained by nnunet

segmentation corresponding to the original corresponding brain

white matter hyperintensity volume, the seventh column represents

the ratio of the volume of the brain white matter hyperintensity

obtained by nnunet-resnet segmentation corresponding to the

original corresponding brain white matter hyperintensity volume,

the eighth column represents the ratio of the volume of the

brain white matter hyperintensity obtained by the automatic 3D

segmentation framework segmented in this paper corresponding

to the original corresponding brain white matter hyperintensity

volume. The values of the ratio corresponding to the sixth,

seventh and eighth columns, a positive value means that

the prediction of segmentation is correct and the closer to
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FIGURE 10

(A) Represents the correlation between MoCA score and cerebral white matter hyperintensity volume, from which it is known that there is a negative

correlation between MoCA and cerebral white matter hyperintensity volume. (B) Represents the correlation between MMSE score and cerebral white

matter hyperintensity volume, from which it is known that there is a negative correlation between MMSE and cerebral white matter hyperintensity

volume. where cases 1–4 are the values of brain white matter hyperintensity volume, MoCA and MMSE corresponding to dementia, case 5–8 are the

values of brain white matter hyperintensity volume, MoCA and MMSE corresponding to MCI, cases 9–12 are the values of brainwhite matter

hyperintensity volume, MoCA and MMSE corresponding to NCI.

1, the more accurate the segmentation is, a negative value

indicates an over-prediction, indicating that there is an over-

segmentation in the 3D segmentation process, which is a

wrong prediction.

From the results in Tables 3–5, the predicted segmentation

accuracy of the automatic 3D segmentation framework proposed

in this paper is higher than that of nnunet and nnunet-resnet,

the segmented volumes of brain white matter hyperintensity

obtained from the predicted segmentation by the automatic 3D

segmentation framework, the nnunet framework, the nnunet-

resnet framework show that the volume of brain white matter

hyperintensity regions of Dementia is larger than that of MCI.

The volume of cerebral white matter hyperintensity area for

MCI was larger than that for NCI. The difference in white

matter hyperintensity volume between the three cognitive states

can be used to assess the severity and progression of the

disease and to develop a clinical treatment plan that meets

individual needs.
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TABLE 2 Multiple comparisons between factors related to Dementia, MCI and NCI, ∗the significance level of the di�erence between the average values

is 0.05.

Factors (I)Sample (J)Sample Mean
di�erence(I-J)

Standard
error

Significance

MMSE LSD 1 2 −6.915∗ 0.707 <0.001

3 −8.568∗ 0.733 <0.001

2 1 6.915∗ 0.707 <0.001

3 −1.654∗ 0.359 <0.001

3 1 8.568∗ 0.733 <0.001

2 1.654∗ 0.359 <0.001

MoCA LSD 1 2 −7.358∗ 1.150 <0.001

3 −11.523∗ 1.191 <0.001

2 1 7.358∗ 1.150 <0.001

3 −4.165∗ 0.583 <0.001

3 1 11.523∗ 1.191 <0.001

2 4.165∗ 0.583 <0.001

TMT-A LSD 1 2 52.437∗ 15.016 <0.001

3 84.068∗ 15.555 <0.001

2 1 −52.437∗ 15.016 <0.001

3 31.631∗ 7.613 <0.001

3 1 −84.068∗ 15.555 <0.001

2 −31.631∗ 7.613 <0.001

TMT-B LSD 1 2 95.899∗ 25.716 <0.001

3 171.705∗ 26.640 <0.001

2 1 −95.899∗ 25.716 <0.001

3 75.806∗ 13.038 <0.001

3 1 −171.705∗ 26.640 <0.001

2 −75.806∗ 13.038 <0.001

Stroop C-T LSD 1 2 22.875 13.948 0.103

3 63.807∗ 14.449 <0.001

2 1 −22.875 13.948 0.103

3 40.932∗ 7.072 <0.001

3 1 −63.807∗ 14.449 <0.001

2 −40.932∗ 7.072 <0.001

VFT LSD 1 2 −4.122∗ 1.424 0.004

3 −7.330∗ 1.475 <0.001

2 1 4.122∗ 1.424 0.004

3 −3.208∗ 0.722 <0.001

3 1 7.330∗ 1.475 <0.001

2 3.208∗ 0.722 <0.001

AVLT4 LSD 1 2 −2.098∗ 0.764 0.007

3 −5.023∗ 0.792 <0.001

2 1 2.098∗ 0.764 0.007

3 −2.925∗ 0.388 <0.001

3 1 5.023∗ 0.792 <0.001

2 2.925∗ 0.388 <0.001

(Continued)

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2023.1242685
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2023.1242685

TABLE 2 (Continued)

Factors (I)Sample (J)Sample Mean
di�erence(I-J)

Standard
error

Significance

AVLT5 LSD 1 2 −2.223∗ 0.790 0.006

3 −5.852∗ 0.819 <0.001

2 1 2.223∗ 0.790 0.006

3 −3.629∗ 0.401 <0.001

3 1 5.852∗ 0.819 <0.001

2 3.629∗ 0.401 <0.001

Rey-O LSD 1 2 −8.411∗ 1.528 <0.001

3 −9.841∗ 1.583 <0.001

2 1 8.411∗ 1.528 <0.001

3 −1.430 0.775 0.067

3 1 9.841∗ 1.583 <0.001

2 1.430 0.775 <0.001

BNT LSD 1 2 −5.032∗ 1.313 <0.001

3 −7.886∗ 1.361 <0.001

2 1 5.032∗ 1.313 <0.001

3 −2.855∗ 0.666 <0.001

3 1 7.886∗ 1.361 <0.001

2 2.855∗ 0.666 <0.001

5. Discussion

White matter hyperintensity is an abnormal signal in the

white matter of the brain, clinically manifested as hyperintensity

in MRI images. It is commonly associated with cerebral blood

disease, small vessel disease and neurodegenerative disease.

Accurate segmentation of these areas has greatly improved

the treatment of cerebrovascular and small vessel diseases.

Progress in the treatment of neurodegenerative diseases like

dementia has also been made with the help of efficient

segmentation techniques.

This paper proposes a 3D segmentation method for the

white matter hyperintensity region using a 3D encoder and 3D

decoder. The method incorporates a residual network into the

global framework. While traditional medical image segmentation

has been based on two dimensional images, this method utilizes

three dimensional characteristics for improved accuracy. This

study proposes the Multi-layer Cross-connected Residual Mapping

Module in the decoder stage for enhancing the feature extraction

and representation abilities of the segmentation model for MRI

images. The module combines low-level and high-level feature

information using a multi-layer cross-connected residual structure.

The study introduces the Spatial Attention Weighted Enhanced

Supervision Module in the decoder section, which utilizes the

spatial attention mechanism to capture boundary information

and regional small pixel information during 3D reconstruction.

This enhances the supervisory role of the mechanism and

improves the segmentation accuracy and reconstruction capability

of the model.

This study analyzed the correlation of using cognitive

assessment coefficients in the white matter hyperintensity

segmentation experiment, taking into account the gender, age and

education as covariates. The study then explored the correlation

between the volume of the white matter hyperintensity area and

the MMSE scores, MoCA scores. The results showed that a larger

volume of the white matter hyperintensity was associated with

lower MMSE and MoCA scores, indicating poorer cognitive

function. This study conducted segmentation experiments on

three different groups of white matter hyperintensity: Dementia,

MCI, and NCI. By comparing the results of these experiments,

the researchers found that the volume size of the white matter

hyperintensity regions was largest in dementia, followed by MCI,

NCI. The study also showed that the proposed three-dimensional

segmentation framework had higher efficiency compared to

other methods.

The proposed 3D segmentation framework in this paper has

some limitations. Themodel design parameters are too large, which

can lead to longer training and inference times. The segmentation

algorithm requires high performance equipment to run effectively.

In this paper, we propose that the limitations of the automatic

3D brain white matter hyperintensity segmentation framework

exist for incomplete segmentation of small volume of brain white

matter hyperintensity tissue, the correlation between the volume

of brain white matter hyperintensity corresponding to the three

cognitive states and more cognitive assessment parameters can be

explored in the future, the correlation between the brain white

matter hyperintensity segmentation work carried out with more

cerebrovascular diseases and cognitive state disorders.
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TABLE 3 Comparative analysis of white matter segmentation volumes corresponding to Dementia obtained by three segmentation algorithms.

Dementia
case

Original

(mm3)

nnunet
(mm3)

nnunet-
resnet
(mm3)

Ours
(mm3)

Ratiob Ratioc Ratiod

1 29,836 25,752 29,534 29,474 0.8631 0.9898 0.9879

2 11,298.1 8,600 9,018 9,138 0.7611 0.7981 0.8088

3 31,893.6 1,452.1 5,728.4 29,711 0.0455 0.1796 0.9316

4 32,734 2,088 1,902 4,108 0.0637 0.0581 0.1255

5 55,380 7,993.6 3,022.6 53,673 0.1443 0.0545 0.9692

32,228.34a 9,177.14a 9,841a 25,220.8a

6 54,510 1,832 1,834 4,108 0.0336 0.0336 0.0754

7 68,029.6 27,628.7 27,946.7 34,154 0.4061 0.4108 0.5020

8 28,806.4 1,500.1 1,372.1 25,422 0.0520 0.0476 0.8825

9 18,753 32,543.8 30,587.7 18,160 −0.7353 −0.6310 0.9684

10 9,592 18,328 17,842 3,014 −0.9107 −0.8600 0.3142

35,938.2a 16,366.52a 15,916.5a 16,971.6a

11 48,481.4 700 564 7,286 0.0144 0.0116 0.1503

12 42,134 24,284.6 13,850.6 26,770 0.5763 0.3287 0.6354

13 26,460 716 14 1,694 0.0270 0.0005 0.0640

14 3,329.6 4,536 4,244 1,836 −0.3623 −0.2746 0.5514

15 20,715.2 25,690 26,182 15,796 −0.2401 −0.2639 0.7625

28,224.04a 11,185.32a 8,970.92a 10,676.4a

16 43,534.4 8,674 9,068 29,011.5 0.1992 0.2082 0.6664

17 4,294 764.2 0 3,704 0.1779 0 0.8626

18 4,124 6,052 14,948 2,430 −0.4675 −0.6246 0.5892

19 35,618 670 552 27,478 0.0188 0.0155 0.7715

20 22,394 56,541.6 55,677.5 18,160 0.7386 −0.4862 0.8109

21,992.88a 6,540.36a 16,049.1a 16,156.7a

In the 3D segmentation of the brain white matter hyperintensity of Dementia, nnunet and nnunet-resnet were selected as the comparison test. The closer the segmentation ratio is to 1, the higher

the segmentation accuracy is, a negative value indicated over-segmentation. From the final segmentation volume, the segmentation results of nnunet and nnunet-resnet are under-segmented

and over-segmented, while the segmentation results of the automatic 3D framework proposed in this paper are more accurate. aMean. bRatio of nnunet. cRatio of nnunet-resnet. dRatio of ours.

The bold values indicate that the evaluation value obtained by the segmentation method proposed in this study is better than other 3D segmentation methods.

6. Conclusion

The contribution of this paper is to propose a

three-dimensional automatic brain white matter hyperintensity

volume segmentation framework, compared with nnunet and

nnunet-resnet this proposed three-dimensional segmentation

framework does not have incomplete segmentation and over-

segmentation, this paper explored the correlation analysis between

brain white matter hyperintensity volume and cognitive assessment

coefficient MoCA, MMSE, and concluded that there is a negative

correlation between the two.

The correlation analysis as well as multiple comparison

analysis of the relevant cognitive functional coefficients affecting

brain white matter was performed by SPSS. The results indicated

that the p-value of each functional coefficient was <0.001,

which indicated a negative correlation between white matter

hyperintensity volume and MMSE and MoCA scores, which

indicated that larger volumes of brain white matter hyperintensity

volume correlated with lower functional coefficients, such as

MMSE and MOCA. This thesis concludes that the segmentation

comparison of three different groups of cerebral white matter

hyperintensity volume between Dementia, MCI and NCI in

descending order of Dementia, MCI and NCI. To verify that

the automatic 3D framework proposed in this paper has a high

efficiency, the comparison with nnunet and nnunet-resnet, the

results obtained show that the segmentation volumes of nnunet

and nnunet-resnet are under-segmented and over-segmented,

while the results of the automatic three-dimensional segmentation

framework proposed in this paper are more accurate than

the other two methods, through the comparison of the

segmentation volume rate and segmentation accuracy in

the results, the automatic three-dimensional segmentation

framework proposed in this paper has a higher. The results

of the automatic three-dimensional segmentation framework
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TABLE 4 Comparative analysis of white matter segmentation volumes corresponding to MCI obtained by three segmentation algorithms.

MCI case Original

(mm3)

nnunet
(mm3)

nnunet-
resnet
(mm3)

Ours
(mm3)

Ratiob Ratioc Ratiod

1 14,214 9,728 440 13,958 0.6843 0.0309 0.9820

2 12,562 4,436 376 9,954 0.3531 0.0299 0.7924

3 17,130 6,818 1,064 15,122 0.3980 0.0621 0.8828

4 12,924 6,442 804 12,404 0.4984 0.0622 0.9598

5 17,508 5,866 1,290 14,958 0.3350 0.0736 0.8544

14,867.6a 6,658a 794.8a 13,279.2a

6 13,938 4,956 370 7,440 0.3555 0.0265 0.5338

7 18,816 4,968 4,450 13,670 0.2640 0.23655 0.7265

8 10,890 15,790 4 9,326 −0.4499 0.0004 0.8564

9 13,098 9,956 1,376 11,880 0.7601 0.1051 0.9070

10 9,105.2 10,314 1,070 7,668 −0.1327 0.1175 0.8422

13,169.44a 9,196.8a 1,454a 9,996.8a

11 12,898 17,592 168 7,966 −0.3639 0.0130 0.6176

12 9,948 8,222.9 0 9,638 0.8265 0 0.9688

13 17,863 9,962 116 15,678 0.5576 0.0065 0.8777

14 12,530.7 10,130 796 10,700 0.8084 0.0635 0.8539

15 15,440 18,420 2,076 12,826 −0.1930 0.1345 0.8307

13,735.94a 12,865.38a 631.2a 11,361.6a

16 14,580 4,648.8 1,038 5,630 0.3188 0.0712 0.3861

17 15,232 9,068.8 188 12,634 0.5953 0.0123 0.8294

18 10,056 15,858 1,212 7,599 −0.5769 0.1205 0.7557

19 9,858 5,000 3,864 5,194 0.5072 0.3920 0.5269

20 16,501 8,704 1,440 16,160 0.5274 0.0873 0.9793

13,245.4a 8,655.92a 1,548.4a 9,443.4a

In the 3D segmentation of the brain white matter hyperintensity of MCI, nnunet and nnunet-resnet were selected as the comparison test. The closer the segmentation ratio is to 1, the higher

the segmentation accuracy is, a negative value indicated over-segmentation. From the final segmentation volume, the segmentation results of nnunet and nnunet-resnet are under-segmented

and over-segmented, while the segmentation results of the automatic 3D framework proposed in this paper are more accurate.
aMean.
bRatio of nnunet.
cRatio of nnunet-resnet.
dRatio of ours. The bold values indicate that the evaluation value obtained by the segmentation method proposed in this study is better than other 3D segmentation methods.

proposed in this paper are more accurate than the other two

methods.
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TABLE 5 Comparative analysis of white matter segmentation volumes corresponding to NCI obtained by three segmentation algorithms.

NCI case Original

(mm3)

nnunet
(mm3)

nnunet-
resnet
(mm3)

Ours
(mm3)

Ratiob Ratioc Ratiod

1 2,358 4,046 9,460 2,108 −0.7158 −0.0119 0.8940

2 1,806 624.1 4,732 794 0.3455 −0.6202 0.4396

3 1,790 990 12,142 1,598 0.5530 −0.7832 0.8927

4 5,615.4 676 10,722 4,046 0.1203 −0.9094 0.7205

5 2,994 3,150 9,976 2,642 −0.0521 −0.3320 0.8824

2,912.68a 1,897.22a 9,406.4a 2,237.6a

6 2,778 2,322 13,366 1,966 0.8358 −0.8114 0.7077

7 2,630.2 170 14,418 566 0.0646 −0.4817 0.2152

8 5,560 3,810 622 4,692 0.6852 0.1119 0.8439

9 4,056 574 32,594 3,116 0.1415 −0.0360 0.7682

10 4,118 2,606.2 11,934.8 2,812 0.6328 −0.8982 0.6829

3,828.44a 1,896.44a 14,586.96a 2,630.4a

11 6,338 2,732 32,712 4,305 0.4310 −0.1612 0.6792

12 1,934 1,144 624.2 1,058 0.5915 0.3228 0.5471

13 1,448 539.9 14,170 468 0.3728 −0.7859 0.3232

14 1,716 236 42 348 0.1375 0.02448 0.2028

15 3,064 240 33,756 2,750 0.7859 −0.0170 0.8975

2,900a 1,411.98a 16,260.84a 1,785.8a

16 5,426 1,074 6,189 4,310 0.1979 −0.1406 0.7943

17 3,009.4 202 8,694.8 2,262 0.0671 −0.8892 0.7516

18 3,958 1,434 14,660 2,292 0.3623 −0.7039 0.5791

19 2,216 3,328 4,870 370 −0.5018 −0.1977 0.1670

20 1,962 1,366 10,180 1,706 0.6962 −0.1889 0.8695

3,314.28a 1,480.8a 8,918.76a 2,188a

In the 3D segmentation of the brain white matter hyperintensity of NCI, nnunet and nnunet-resnet were selected as the comparison test. The closer the segmentation ratio is to 1, the higher the

segmentation accuracy is, a negative value indicated over-segmentation. From the final segmentation volume, the segmentation results of nnunet and nnunet-resnet are under-segmented and

over-segmented, while the segmentation results of the automatic 3D framework proposed in this paper are more accurate.
aMean.
bRatio of nnunet.
cRatio of nnunet-resnet.
dRatio of ours. The bold values indicate that the evaluation value obtained by the segmentation method proposed in this study is better than other 3D segmentation methods.
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Appendix

y1 = α + Xi + Elu

N∑

i=1

(Kc1H(Xi)) (1)

y2 = α + y1 + Elu

N∑

i=1

(Kc2y1 + b2) (2)

y3 =

N∑

i=1

(H(Xi + γ y2)) (3)

y4 = α + Xi + Elu

N∑

i=1

(Kc3H(Xi)) (4)

y5 = α + y4 + Elu

N∑

i=1

(Kc4y4 + b5) (5)

y6 =

N∑

i=1

(H(Xi + γ y5)) (6)

y =

N∑

i=1

(y3 + y6 + (KH(Xi)+ b)) (7)

Is = Relu[F(Maxp(X),Avgp(X))] (8)

Ic = BN(KcX) (9)

I = Is ⊕ Ic (10)

Z = I ⊕ Elu

N∑

i=1

(KH(Xi)+ b) (11)

L = Lel(G, P) (12)

Frontiers inNeurology 19 frontiersin.org

https://doi.org/10.3389/fneur.2023.1242685
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Automatic segmentation of white matter hyperintensities and correlation analysis for cerebral small vessel disease
	1. Introduction
	2. Related work
	3. Methods
	3.1. Automatic 3D segmentation framework of hyperintensities
	3.1.1. Multi-layer cross-connected residual mapping module
	3.1.2. Spatial attention weighted enhanced supervision module

	3.2. Correlation analysis of white matter hyperintensity cognitive assessment

	4. Result
	5. Discussion
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix


