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Introduction: Dual diagnosis (DD) with traumatic brain injury (TBI) and spinal 
cord injury (SCI) poses clinical and rehabilitation challenges. While comorbid 
TBI is common among adults with SCI, little is known about the epidemiology 
in the pediatric population. The primary objective of this study was to evaluate 
the prevalence of TBI among children in the United States hospitalized with SCI. 
Secondary objectives were to compare children hospitalized with DD with those 
with isolated SCI with regards to age, gender, race, hospital length of stay, and 
hospital charges.

Methods: A retrospective analysis of hospital discharges among children aged 
0–18  years occurring between 2016–2018 from U.S. hospitals participating in the 
Kids’ Inpatient Database. ICD-10 codes were used to identify cases of SCI, which 
were then categorized by the presence or absence of comorbid TBI.

Results: 38.8% of children hospitalized with SCI had a co-occurring TBI. While 
DD disproportionately occurred among male children (67% of cases), when 
compared with children with isolated SCI, those with DD were not significantly 
more likely to be male. They were more likely to be Caucasian. The mean age of 
children with DD (13.2  ±  5.6  years) was significantly less than that of children with 
isolated SCI (14.4  ±  4.3  years). DD was associated with longer average lengths of 
stay (6 versus 4  days) and increased mean total hospital charges ($124,198 versus 
$98,089) when compared to isolated SCI.

Conclusion: Comorbid TBI is prevalent among U.S. children hospitalized with 
SCI. Future research is needed to better delineate the impact of DD on mortality, 
quality of life, and functional outcomes.
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Introduction

Neurological insults are a significant pediatric health issue, both nationally and 
internationally (1). While traumatic brain injuries (TBIs) are relatively common, traumatic 
spinal cord injuries (SCIs) are an uncommon cause of morbidity and mortality in children. 
However, when they occur, they represent a different challenge than SCI in adults (2, 3). 
Co-morbid traumatic brain injury (TBI) with spinal cord injury (SCI) may greatly impact 
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patients’ rehabilitation courses and functional outcomes (4). 
Unfortunately, there remains a dearth of literature addressing the 
implications of these dual diagnoses (DD) in pediatric patients.

Prior retrospective reviews using large datasets, including the 
Kids’ Inpatient Database (KID), have elucidated demographic 
information regarding children who have sustained (isolated) TBIs 
and spinal injuries and have provided information regarding 
in-hospital mortality rates. Using the KID, Lu et.al identified 220,771 
pediatric cases of TBI between 2006 and 2012, 66% of which occurred 
among boys. They reported a mean hospital length of stay of 5 days 
and an in-hospital mortality rate of 4% (5). Piatt used the KID to 
determine that the incidence of hospital admission for SCI among 
individuals aged 21 or younger was 24 per 1 million in 2009. That year, 
there were 2,139 cases of SCI identified in the dataset. 2.8% of those 
cases reportedly resulted in death during the hospitalization (6).

Prior research has also yielded information about the 
epidemiology of DD, though this has been better studied in adult 
populations. It is well-recognized that adults with SCI commonly have 
comorbid TBIs. The incidence of SCI in comatose patients is higher 
than the general trauma population (7). While there has been 
considerable variability in the estimated prevalence of DD, studies 
suggest a prevalence of TBI as high as 60 percent among adults with 
SCI (8, 9). In a single-center study, 31.6% of children with SCI had a 
concomitant brain injury (10). Other retrospective studies evaluating 
DD among patients with SCI who received inpatient rehabilitation 
excluded individuals under the age of 18 (8, 11, 12).

Co-occurring TBI and SCI can have considerable implications for 
a patient’s rehabilitation progress, speed of recovery, and prognosis 
(13). For example, it may impact one’s adjustment to disability, ability 
to learn new skills, motivation, tolerance of potentially sedating 
medications, and risk for complications. Moreover, the presence of 
DD may affect the speed of and the degree to which one recovers 
function after injury (4). Prior studies have demonstrated that adults 
with DD are more likely to require transfer from acute inpatient 
rehabilitation facilities to acute care facilities, more likely to suffer 
severe medical complications, and less likely to be discharged home 
as compared to those with SCI alone (11, 13). When compared to 
those with isolated TBI, adults with comorbid SCI demonstrate lower 
gains in cognitive domains during their courses of inpatient 
rehabilitation, particularly with problem solving and comprehension 
(12). When compared to adults with SCI without co-morbid TBI, 
those with DD are discharged from inpatient rehabilitation with 
greater cognitive impairment and having achieved less improvement 
in their motor Functional Independence Measure (FIM™) scores (14).

Anatomical factors contribute to the risk of DD in the pediatric 
population (15). Childrens’ heads are often disproportionately large 
and heavy relative to their bodies and are poorly supported by weak 
muscles and ligaments as well as unfused epiphyses (10). They also 
have increased water content within their intervertebral discs and 
shallow facet joints. All of these aspects contribute to a more malleable 
spine, increasing the risk of neurological injury even without bony 
injuries. Studies have shown that most spinal injuries in children 
occur at a higher location in the cervical spine, particularly at the 
C0-C2 level (16). These high cervical SCI levels are more likely to 
be associated with brain injury (17, 18).

Children’s skulls are thin and pliable in early development, 
providing less protection to the underlying brain (19, 20). As such, 
brain injuries can occur with or without an actual bony fracture; 

however, it has been suggested that the presence of skull fractures 
increases the possibility of underlying intracranial injury (21). 
Additionally, and uniquely to the pediatric population, as children’s 
heads grow, existing fractures subsequently grow and can result in 
delayed neurological deficits.

Key physiological differences exist between children and adults 
that may also have important implications for their risk for and 
recovery from DD. Blood volume is small by comparison, and cerebral 
blood flow varies with age. It is usually lowest at birth, peaks between 
ages 3 and 7, and progressively decreases to adult levels. Cerebral 
metabolism also changes with age. It starts at around 60% of adult 
values at birth and then it rapidly increases to values significantly 
greater than adult values by age 5. It subsequently slowly decreases to 
adult levels through adolescence. This is important for progressive 
myelination and synaptogenesis (22).

Pediatric DD also poses challenges due to the ongoing brain 
development that occurs in childhood. Cognitive impairments in 
children with brain injury may not be immediately evident after the 
injury, and may only become apparent as the child gets older (23). It 
may be  particularly difficult to recognize mild TBI in younger 
children, though formal comprehensive testing may facilitate earlier 
detection of impairments in the cognitive domains (24).

This study was undertaken to better understand the epidemiology 
of DD in children in the United  States. The primary aim was to 
establish the prevalence of DD with SCI and TBI in the pediatric 
population with secondary outcomes evaluating demographic data, 
length of stay, total hospital charges, and insurance status. Such 
analyses are critical to help better understand the needs of children 
with these injuries.

Materials and methods

Database

This study analyzed data from the KID Database, which consists 
of a compilation of de-identified discharge data from a sample of all 
hospital discharges of patients younger than 21 years of age, from 
4,000 community, non-rehabilitation hospitals in the United States. It 
currently includes sites from 48 states and the District of Columbia. It 
is prepared every 3 years by the Healthcare Utilization Project (HCUP) 
of the Agency for Healthcare Research and Quality (25). It is used to 
identify, track, and analyze national trends in healthcare utilization, 
access, charges, quality, and outcomes. KID data elements include 
primary and secondary diagnoses and procedures, discharge status, 
patient demographics, hospital characteristics, expected payment 
source, total charges (Tot charge), length of stay (LOS), as well as 
severity and comorbidity measures (25). This study used de-identified 
data and was exempt from the University of Miami IRB review.

Study design

A descriptive, retrospective, cross-sectional study was performed 
to assess the period prevalence (2016–2018) and epidemiology of SCI 
and combined SCI with TBI in pediatric groups. Age limit was set 
from 0 to 18 years. The International Classification of Diseases Version 
10 (ICD-10) codes for SCI and TBI were included (see Appendix).
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Inclusion/exclusion criteria

All individuals in the database aged 0–18 years with a diagnosis 
of SCI made between 2016–2018 were included. Those with comorbid 
TBI were considered separately from those with isolated SCI.

Statistical analysis

Normally distributed continuous variables (age) were compared 
with mean and standard deviation using independent sample t-tests. 
Initially, the LOS and Tot charge data sets were analyzed as normally 
distributed continuous variables, however, variances demonstrated 
that these sets were, in fact, not normally distributed (skewness values 
of 3.8 and 10.4, respectively). Thus, these non-normally distributed 
continuous variables (LOS, Tot charge) were compared with median 
and interquartile range using Wilcoxon signed-rank sum tests. 
Descriptive statistics for demographics and insurance status were 
generated. Categorical variables (race, gender, and insurance) were 
described with numbers and percentages and assessed using χ2 test.

Chi-Square test and t-test were conducted to examine differences 
in demographic characteristics by injury types to identify possible 
confounders. The Wilcoxon rank sums test was used to report the 
associations between specific injury and LOS or the respective total 
charge using a 2 tailed t approximation approach. Tot charges data 
were analyzed using a linear regression, adjusting for age, gender, race, 
and insurance status, to evaluate for the potential association of 
different types of injuries (SCI vs. DD). Data analysis was performed 
using Statistical Analysis System (SAS) version 9.4 and an α ≤ 0.05 was 
considered statistically significant.

Results

Prevalence

The database contained data on 1,286 children hospitalized with 
SCI during the time period of interest: 2016–2018. Utilizing the 
aforementioned ICD-10 codes for SCI and TBI, we identified 787 
individuals with isolated SCI and 499 individuals with both SCI and 
TBI (Table 1). Thus, the prevalence of DD among children with SCI 
was 38.8% (95% CI 36.14,41.46%).

Age

In the isolated SCI group, 75% of individuals were aged 13–17 (half 
of those were ages 16–17) and 25% between 0–13. In the DD group, 
75% were 6–17 (half of those were ages 15–17) and 25% between the 
ages of 0–6. While the DD group demonstrated greater variability in 
the spread of ages, as indicated by an interquartile spread of 10 years 
(age 6–16) compared to 4 years (age 13–17) in the SCI group, both 
groups demonstrated a median age (16 and 15, respectively) in the 
upper quartile. This showed a clustering in the older teenage years 
(≥15) in both groups. The DD group also showed a clustering in the 
younger ages (<6 years), which was not observed in the isolated SCI 
group. As seen in Figure, those with SCI alone had a higher average age 
than DD and that difference was statistically significant (see Figure 1).

Gender

In both groups, males comprised the largest demographic group, 
representing 64% and 67% of SCI and DD, respectively. The gender 
distribution between the two groups was not statistically significant 
(Table 1).

Race

White people comprised the largest demographic population in both 
groups, representing 50% of the SCI and 58% of the DD group. This was 
followed by Black people and Hispanic people representing 26% and 16% 
of the SCI and 15% and 17% of the DD group, respectively. The race 
distribution between the two groups was statistically significant (Figure 2).

Insurance

In the SCI group, 46% had Medicaid, 44% had private insurance, 
and 10% were listed as “other.” In the DD group, 42% had Medicaid, 
48% had private insurance, and 10% were listed as “other.” We did not 
find any statistically significant differences in the type of insurance 
between the SCI alone group and DD group (Table 1).

Length of stay and total charges

The average hospital LOS in the SCI group was 4 days, compared 
to 6 days in the DD group. The average total charge in the SCI group 
was $98,089 compared to the $124, 198 in the DD group. Two extra 
days of stay and approximately $25,000 extra charges per child in the 
DD group, compared to the SCI alone group, were statistically 
significant (Figures 3, 4). The same association and difference in extra 
charge persisted in the adjusted model.

TABLE 1 Characteristics of pediatric patients with spinal cord injury alone 
and dual diagnosis.

SCI alone 
(n =  787)

DD 
(N =  499)

p-value

Age (mean ± SD) 14.4 ± 4.3 13.2 ± 5.6 <0.0001

Gender (female; n, %) 288 (36.56) 166 (33.37) 0.22

Race, (n, %) <0.0001

  White 397 (50.44) 290 (58.12)

  Black 204 (25.92) 75 (15.03)

  Hispanic 125 (15.88) 87 (17.43)

  Other 61 (7.75) 47 (9.42)

Insurance, (n, %) 0.44

Medicare/medicaid 359 (45.62) 212 (42.48)

  Private 350 (44.47) 240 (48.10)

  Other 78 (9.91) 47 (9.42)

LOS (day), median (IQR) 4 (9) 6 (13) 0.0002

Total charges ($), Median 

(IQR)

$98.089 

(186,215)

$124,198 

(262,014)

0.0012

SCI, spinal cord injury; DD, dual diagnosis; LOS, length of stay; IQR, interquartile range.
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Discussion

While prior studies have highlighted the burden of traumatic SCI 
among US children and adolescents (26), published data on the 
prevalence of dual diagnosis in this population was previously limited 
to a single-center study (10).

To the best of our knowledge, this report represents the first 
epidemiological study comparing the two groups, SCI alone versus DD 
(i.e., SCI and TBI), in the pediatric population using a large 
representative national database. This study confirms the key finding of 

Vova et al. of a high prevalence of comorbid TBI among children with 
SCI. Accordingly, there is good reason to adopt practice guidelines that 
include assessment for TBI among all children hospitalized with SCI.

Another interesting finding of this study pertains to the 
distribution of age among children with SCI, both with and without 
comorbid TBI. Both groups demonstrated a clustering in the older 
teenage years. However, the DD group also showed greater variability 
in the younger ages and a small cluster in ages 6 and younger which 
was not seen in the isolated SCI group. SCI is relatively rare in children 
15 years of age and younger; in fact, of the almost 2.4 million children 
identified through the KID Database in a 3-year span, SCI accounted 
for only 0.02% of the national data number. In contrast to the rare 
nature of SCI in the pediatric population, the 2015 Center for Disease 
Control (CDC) Report to Congress on TBI identified children aged 
0–4 and adolescents aged 15–19 as a high-risk group for TBI (27). Our 
study also demonstrates that a younger population group is affected 
by concomitant TBI, in addition to the teenage population.

Race differences were observed in our study, with Caucasians 
comprising the largest demographic group and a greater percentage 
of the DD group than the isolated SCI group. This is similar to other 
pediatric studies which demonstrate that from 0–15  years of age, 
White people are more commonly found to have these injuries than 
Non-White people, with all modes of injury, except firearms (6). 
However, this differs from adult studies, which suggest that 
Non-White people make up the majority of SCI cases, due in large 
part to the elevated incidence among African-Americans.

Males represented a higher percentage than females 
(approximately 3:1 ratio) in both the isolated SCI and DD groups. 
However, amongst those with SCI, neither gender was statistically 
more likely to have comorbid TBI. According to the 2011 National 
Spinal Cord Injury Statistical Center, Birmingham, Alabama data, the 
ratio of males to females in the SCI population alone is approximately 
4:1 (28). There is limited data on the ratio of males to females in the 

FIGURE 1

Age of pediatric patients with spinal cord injury alone and dual diagnosis. SCI, spinal cord injury; DD, dual diagnosis.

FIGURE 2

Race of pediatric patients with spinal cord injury alone and dual 
diagnosis. SCI, spinal cord injury; DD, dual diagnosis.
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DD population, with one study finding approximately a 1.8:1 M:F 
ratio (12). While males comprise the majority in both the adult and 
pediatric SCI and DD population, in the pediatric population, the gap 
between the genders is narrowed.

This study also revealed that pediatric DD is associated with 
longer hospital lengths of stay and higher health expenditures when 
compared to the same population with isolated SCI. According to 
Zonfrillo et al., children hospitalized with severe TBI and SCI did not 

demonstrate a difference in standardized hospital costs relative to 
their home zip code level median annual household income (29). In 
this study, the type of insurance was similar between the SCI alone 
group and DD group. In both groups, there were a relatively equal 
percentage of those with Medicaid and those with private insurance. 
However, we observed that the length of stay and total hospital cost 
in the DD group was longer and costlier than in the SCI alone group. 
Consequently, having a DD places a higher burden on the healthcare 

FIGURE 3

Length of stay of pediatric patients with spinal cord injury alone and dual diagnosis. LOS, length of stay; SCI, spinal cord injury; DD, dual diagnosis.

FIGURE 4

Total charges of pediatric patients with spinal cord injury alone and dual diagnosis. SCI, spinal cord injury; DD, dual diagnosis.
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system. Identifying these increased healthcare costs helps to suggest 
improvement in allocation of resources.

Among the limitations of this study is the potential for information 
bias. Similar to what Sikka et al. observed in 2019, in attempting to 
determine prevalence of TBI from acute care records, documentation 
variability exists among physicians and advanced practitioners (30). 
Additionally, the analysis relies on administrative billing data for the 
identification of cases where the accuracy of the codes may be unreliable. 
This likely results in under-representation of cases, suggesting that the 
percentage of dual diagnosis is probably higher than found. Moreover, 
ICD-10 codes do not reflect or capture the degree of brain injury 
severity. Also, only data pertaining to the acute hospitalization was 
available, and there was no information on rehabilitation nor any 
outcomes after hospital discharge. Additionally, because the data 
excluded deaths prior to admission, we could not evaluate the prevalence 
of DD among those with injuries resulting in death at the scene.

A final limitation concerns its generalizability to a global pediatric 
population. While some demographic data (e.g., gender and age) is 
likely widely generalizable, we do not believe one can appropriately 
extrapolate U.S. data regarding insurance status, race, hospital charges, 
or hospital lengths of stay to draw conclusions about these variables 
among injured children in other countries.

Conclusion

This study has demonstrated that more than a third of 
U.S. children hospitalized with SCI have comorbid TBI. DD among 
children contributes to longer hospital lengths of stay and greater 
health care expenditures when compared to SCI alone. Greater 
awareness of DD in children is needed to ensure appropriate screening 
for TBI in pediatric patients with SCI.

To better identify the true prevalence of dual diagnosis in children, 
it would be beneficial to prospectively collect data in those with SCI 
that includes comprehensive evaluation for TBI. Such evaluations 
would need to include neurological imaging reports, Glasgow Coma 
Scale scores, the presence and/or duration of loss of consciousness and 
post-traumatic amnesia, and the results of neuropsychological testing. 
Further research is also necessary to identify the impact of DD on the 
functional outcomes and quality of life of affected children, as well as 
their risks for mortality and long-term complications.
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