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Although neurocognitive models have been proposed to explain anosognosia in 
Alzheimer’s disease (AD), the neural cascade responsible for its origin in the human 
brain remains unknown. Here, we build on a mechanistic dual-path hypothesis 
that brings error-monitoring and emotional processing systems as key elements 
for self-awareness, with distinct impacts on the emergence of anosognosia in AD. 
Proceeding from the notion of anosognosia as a dimensional syndrome, varying 
between a lack of concern about one’s own deficits (i.e., anosodiaphoria) and a 
complete lack of awareness of deficits, our hypothesis states that (i) unawareness 
of deficits would result from primary damage to the error-monitoring system, 
whereas (ii) anosodiaphoria would more likely result from an imbalance between 
emotional processing and error-monitoring. In the first case, a synaptic failure in 
the error-monitoring system, in which the anterior and posterior cingulate cortices 
play a major role, would have a negative impact on error (or deficits) awareness, 
preventing patients from becoming aware of their condition. In the second case, 
an impairment in the emotional processing system, in which the amygdala and the 
orbitofrontal cortex play a major role, would prevent patients from monitoring the 
internal milieu for relevant errors (or deficits) and assigning appropriate value to 
them, thus biasing their impact on the error-monitoring system. Our hypothesis 
stems on two scientific premises. One comes from preliminary results in AD 
patients showing a synaptic failure in the error-monitoring system along with a 
decline of awareness for cognitive difficulties at the time of diagnosis. Another 
comes from the somatic marker hypothesis, which proposes that emotional 
signals are critical to adaptive behavior. Further exploration of these premises will 
be of great interest to illuminate the foundations of self-awareness and improve 
our knowledge of the underlying paths of anosognosia in AD and other brain 
disorders.
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1. Introduction

Anosognosia – a term derived from the Greek: “a,” absence; 
“nosos,” disease; “gnosis,” knowledge – was introduced more than a 
century ago by the French neurologist Joseph Babinski to describe the 
lack of awareness of a motor deficit resulting from right hemisphere 
damage (1). Since then, accumulating evidence has shown that 
anosognosia may affect any type of brain deficits or loss of function 
(2–4). For instance, it is now well established that unawareness for 
memory deficits is frequent from the early stages of Alzheimer’s 
disease (AD) (5), with evidence that it may have a predictive value for 
worsening of cognition over the disease course (6–8). Moreover, 
anosognosia typically delays AD diagnosis and causes resistance to 
treatment and rehabilitation efforts (9, 10), increasing the burden of 
care (11).

Interestingly, sometimes patients appear aware of their deficits in 
explicit verbal reports, but show a lack of emotional concern about the 
deficits and act inappropriately given their condition. This behavior, 
called anosodiaphoria, has been related to anosognosia in a putative 
continuum that suggests a dimensional rather than a categorical 
syndrome, ranging from the lack of concern for the deficits (with 
implicit unawareness, probably depending on a pre-conscious 
mechanism) to the complete lack of awareness with explicit denial of 
the deficits (that is, an explicit unawareness) (12). Note, however, that 
AD patients may also have preserved emotional reactivity to failure 
(implicit awareness) despite reduced awareness of performance 
(explicit unawareness) (13). This double dissociation between implicit 
and explicit awareness suggests instead a bidirectional unawareness 
continuum, with two poles, each following its own path, which 
constitutes the strongest pillar of our dual-path hypothesis. Like 
anosognosia, anosodiaphoria seems to increase with AD progression 
(12). Importantly, apathy – a motivational disorder characterized by 
loss of initiative and lack of emotional reactivity – has been associated 
with unawareness in AD, but unlike depression, greater apathy seems 
to correlate with higher levels of anosognosia (4, 14, 15). Additionally, 
an association between unawareness of deficits and executive 
dysfunctions in AD has been observed (16–18). More recently, using 
different neuroimaging techniques, researchers have found metabolic 
changes, namely reduced glucose metabolism in the posterior 
cingulate cortex (PCC) and the hippocampus (19), and/or functional 
disconnections within cortical midline structures involved in self-
referential processes, including the medial orbitofrontal cortex (OFC) 
and the PCC, as well as disconnections between these regions and the 
medial temporal lobe in prodromal AD patients with anosognosia for 
memory deficits (20). In other cognitive domains unrelated to 
memory, anosognosia of deficits has been associated with structural 
lesions in the anterior cingulate cortex (ACC) (21), a brain region also 
involved in self-referential processing (22). Nevertheless, though the 
generation of new hypotheses explaining anosognosia has progressed 
in recent decades, the neural mechanistic cascade responsible for the 
emergence of anosognosia in the human brain remains 
largely unknown.

The Cognitive Awareness Model (CAM) (23), probably the most 
influential model of anosognosia in AD, is based on a modular 
framework that accounts for multiple levels at which unawareness 
phenomena can be  generated, including sensory levels and 
differentiated levels within a hierarchy of memory consolidation 
processes. Specifically, the CAM predicts that various dissociations 

can be found in the relationship between awareness and memory (2), 
which would result in three main types of anosognosia: (1) Mnemonic 
anosognosia, reflecting a deficit in the consolidation of new 
information in the personal data base, which is at the origin of the 
metaphorical “Petrified Self” concept (24, 25); (2) Executive 
anosognosia, reflecting an impairment in the mechanism that 
normally allows for comparison between the actual performance and 
the stored past information; and (3) Primary anosognosia, reflecting 
the inability of patients to update their knowledge on their own 
cognitive functioning due to a dysfunction in the metacognitive 
awareness system (MAS). Specifically, the MAS is anchored in a 
comparator system that operates in tandem with a personal data base 
containing semantic representations of the self. Later research 
integrated the role of emotional processes in the CAM (26), building 
upon earlier work (27). For more information on this model, see also 
Tagai et al. (28) and Lenzoni et al. (25).

Our hypothesis derives from a distinct perspective: the core of our 
rationale is that anosognosia in AD, rather than being modular or 
domain-specific, would emerge from a critical breakdown in the 
system responsible for error detection and awareness, not necessarily 
tied to declarative memory processes (as in the case of the MAS). 
These errors could be committed in the context of any type of deficits, 
depending on their level of impairment. Specifically, we predict that 
AD patients with anosognosia would have a synaptic failure in the 
error-monitoring system, while AD patients without anosognosia 
would have this system still intact or, at least, able to compensate for 
a possible dysfunction through a “more firing, less wiring” mechanism 
(29) as part of a synaptic plasticity process (30, 31). In particular, this 
concept refers to the ability of synapses to modify their structure and/
or function after persistent electrical activity, which seems the primary 
mechanism for learning and memory formation (32). Moreover, 
synaptic failure, resulting from alterations in intrinsic molecular 
mechanisms or from changes in biochemical reactions in the 
surrounding neural environment, is a common feature of several 
neurological and psychiatric disorders (33). Notably, it is one of the 
earliest pathological events to occur in AD (34–36), even before 
neuronal loss (37). This is of utmost relevance because it might be at 
the origin of cognitive deficits (38) and behavioral phenomena, like 
anosognosia (5), which characterize the prodromal stage of this 
devastating disorder. As such, cognitive event-related potentials 
(ERPs) may constitute a valuable biomarker for studying these clinical 
manifestations (39).

Hence, anosognosia would emerge from a necessary synaptic 
failure in the error-monitoring system, affecting patients’ awareness 
for any type of deficits, according to their proneness to produce errors 
in the concerned domains, as a consequence of (1) direct or (2) indirect 
damage to that system, as detailed below.

2. The dual-path hypothesis for the 
emergence of anosognosia in AD

The dual-path hypothesis predicts that the lack of awareness, with 
explicit denial of deficits (i.e., anosognosia, or explicit unawareness; 
first case) would result from direct damage to the error-monitoring 
system; whereas the lack of concern of deficits (i.e., anosodiaphoria, 
or implicit unawareness; second case) would more likely result from a 
disturbance in the emotional processing system, with indirect impact 
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on error-monitoring. These (1) direct and/or (2) indirect paths would 
be at the origin of a neural mechanistic cascade leading to a critical 
synaptic failure in the error-monitoring system, and would eventually 
result in the inability of subjects to perceive (explicitly and/or 
implicitly) their own deficits in any domain (i.e., cognitive, behavioral, 
functional, etc.).

2.1. Three mechanistic predictions

Specifically, our mechanistic predictions are the following:
In the first case, a failure in the error-monitoring system would 

have a direct impact on error (or deficit) awareness, thus preventing 
patients from becoming aware of their condition. Such a failure 
would reflect local damage to the cingulate cortex, with particular 
focus on its anterior (ACC) and posterior (PCC) parts, which are the 
brain generators of ERPs associated with error monitoring, namely 
the error-related negativity (ERN) for preconscious error detection, 
and the positivity error (Pe) for error awareness (40) (Figure 1A). It 
is worth noting that, in AD, the interaction of oligomeric amyloid-β 
or misfolded tau protein with cell surface receptors might lead to 
changes in membrane/ion channel activity from its very early stages. 
This, in turn, could trigger a deterioration in synaptic structure and/
or function with negative impact on network connectivity and 
information processing (47, 48). Remarkably, there is evidence of 
amyloid-β accumulation (49) and reduced number of synapses (50) 
in the PCC from the earliest stages of this neurodegenerative 
disorder. Yet, even in the case of a failure in the error-monitoring 
system, a preserved emotional processing system would assure some 
implicit awareness, with possible benefits on implicit learning and 
behavioral adjustment. In line with this view, recent evidence has 
found some implicit recognition of difficulties in AD patients despite 

their inability to explicitly estimate their own cognitive 
functioning (51).

In the second case, an impairment in the emotional processing 
system, in which the amygdala (Amy) and OFC play a major role (52, 
53), would have an indirect impact on error-monitoring by rendering 
patients unable to detect relevant errors (or deficits) in the internal 
milieu, and to assign appropriate value to them. More precisely, such 
an impairment would bias the impact of deficits on the error-
monitoring system, thus possibly affecting the generation of ERPs, and 
particularly the ERN, a preconscious error detection biomarker, 
whose amplitude appears modulated by motivational and emotional 
factors (54). Patients would therefore suffer from an implicit rather 
than explicit unawareness, being able to identify their own deficits 
though unable to understand their consequences and adapt their 
behavior. As such, localized impairment to the Amy and the OFC, 
along with potential structural and functional disconnections between 
these regions and critical nodes of the error-monitoring system, could 
underlie this implicit unawareness. In particular, these disconnections 
could result from (i) impairments in the integrity of two critical white 
matter pathways — the uncinate fasciculus (54, 55), which connects 
the OFC (a central hub for multisensory integration and the 
generation of somatic markers based on secondary emotions, 
especially in its medial part and in the adjacent ventromedial 
prefrontal cortex) to the Amy (which generates somatic markers from 
primary emotions, particularly involved in emotional arousal 
processes); and the cingulate bundle (56), an intricate network 
containing both lengthy fibers linking the cingulate cortex 
(encompassing the ACC and PCC, integral to error-monitoring); and/
or (ii) a functional imbalance within and between two resting state 
brain networks, namely the Salience Network (SN) (55), anchored in 
the ACC, the Amy and other limbic structures, critically involved in 
the detection and response to relevant stimuli, and the Default Mode 

FIGURE 1

Schematic representation of the Dual-path hypothesis for the emergence of anosognosia in AD. (A, Direct path) Synaptic failure in the error-
monitoring system, due to direct damage to the ACC and/or the PCC, the brain generators of the ERN and the Pe (40), with negative impact on explicit 
awareness. Note, reduced metabolism has been reported in the PCC from the early stages of AD (41), with further evidence of accentuated 
hypometabolism in AD patients whose the onset of symptoms was before 65  years old (42). (B, Indirect path) Structural and/or functional 
disconnections between the emotional processing and the error-monitoring systems, with negative impact on implicit awareness. The schematic 
diagram illustrates the cingulate fibers that travel along the anterior–posterior axis of the cingulum bundle (in blue) to reach various brain regions, 
including the medial temporal lobe, the Amy, and the OFC (43). The Amy and OFC are further interconnected via the uncinate fasciculus (in red) (44). 
Note, these two major white matter tracts have been shown to be impaired in the early stage of Alzheimer’s disease (45). Further illustrated are the 
ACC and the Amy, which constitute key brain areas of the SN; and the PCC, which constitutes a key region of the DMN [see Menon (46) for literature 
review on large-scale brain networks in psychopathology, highlighting potential parallels across neurological and psychiatric disorders].
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Network (DMN) (56), whose brain core is the PCC (57), principally 
involved in self-referential processes (58) (Figure 1B). Remarkably, the 
bases of impaired self-awareness and anosognosia have been closely 
linked to DMN functioning in AD (59, 60). In addition to the PCC, 
other DMN regions include the precuneus, medial prefrontal cortex, 
and bilateral temporoparietal junction (61). Interestingly, structural-
functional connectivity impairments between the precuneus and the 
PCC, but also beyond the cingulate cortex, seem to play a central role 
in modeling AD as well as other neurodegenerative and psychiatric 
disorders (62). We further hypothesize that these disruptions may in 
part, albeit indirectly, impact the error-monitoring system.

A third prediction, following a synergistic A plus B mechanism 
(Figures 1A,B), would result in the most severe case of anosognosia, 
affecting both explicit and implicit awareness, with pronounced 
consequences, up to and including a full inability of patients to learn 
from their errors (or deficits) and to adapt their behavior.

3. Scientific premises and evaluation 
of the hypothesis

3.1. Two scientific premises

Our hypothesis stems on two scientific premises: the one comes 
from our preliminary results on ERPs showing a synaptic failure in the 
error-monitoring system of AD patients at the time of their diagnosis 
(63). In particular, by studying ERPs elicited by errors during a word 
memory recognition task in two groups of cognitively normal 
amyloid-positive individuals at baseline, we  have recently shown 
direct evidence of an error-monitoring failure, along with a cognitive 
awareness decline, only in subjects who progressed to AD during the 
five-year study period. Specifically, we measured the ERN, mainly 
related to error detection, and the Pe, mainly related to error 
awareness, in 51 amyloid positive individuals who presented only 
subjective memory complaints at study entry, while they performed a 
word memory recognition task. Of these, 15 individuals progressed to 
AD within the five-year study period (PROG group), and 36 remained 
cognitively normal (CTRL group). We observed opposite longitudinal 
effects for the PROG and CTRL groups. Notably, we found a reduction 
of the Pe amplitude for the PROG group over time, in contrast with 
the increase of the Pe amplitude for the CTRL group. Moreover, 
contrary to the CTRL group, subjects who progressed to AD showed 
a cognitive awareness decline, with signs of anosognosia for their 
cognitive deficits at the moment of AD diagnosis (63). Importantly, 
there is evidence that error-monitoring impairments in AD patients, 
and consequent unawareness of errors (including errors committed as 
a consequence of memory recognition deficits), are not merely a 
byproduct of their typical memory impairment (64).

The second premise comes from the “somatic marker hypothesis,” 
proposed by Damasio (65, 66). In fact, our rationale converges to 
some extent with that hypothesis, which states that one must “feel” the 
consequences of one’s own actions, assigning them an affective value, 
in order to make the right decisions. In particular, Damasio proposes 
that decision-making (like self-awareness in the case of our dual-path 
hypothesis) requires the interplay between two specific brain systems: 
the executive and the emotional processing systems, in which the OFC 
(67) and particularly the amygdala (68) are necessary for triggering 

somatic states (53). Specifically, Damasio argues that autonomic 
reactions, such as electrodermal responses (EDR; see Sequeira et al. 
(69) for literature review on electrical autonomic correlates of 
emotion) to stimuli, might prepare the subject to adapt attentionally 
and physically to changes in the environment (66). Other researchers 
have also pointed to an important role for emotional dysregulation in 
producing unawareness, as errors may require an affective signature 
to motivate self-monitoring (27). Supporting evidence exists for severe 
AD pathology in autonomic-related cortices, such as the OFC, which 
suggests that it could contribute to the emotional and autonomic 
dysregulations that often accompany this neurodegenerative 
disorder (70).

In line with these premises, anosognosia of memory deficits has 
been associated with either hypoperfusion or hypometabolism in the 
PCC (7, 20, 71), the ACC (71), and the OFC (20, 71). Congruently, 
additional research has shown reduced within- and between-network 
connectivity in the DMN in AD patients with anosognosia (60, 72), 
with a pertinent association between hypometabolism in this network 
and an increased risk of progression to dementia in anosognosic 
patients (73).

Interestingly, evidence from another study found an association 
between memory monitoring and motor monitoring in AD patients, 
but observed that anosognosia for memory deficits was associated 
only with memory monitoring, not motor monitoring (74). The 
authors interpreted their results within a hierarchical model of 
awareness, suggesting that local self-monitoring processes (based on 
domain specific monitors) were associated across different domains, 
but only contributed to overall levels of awareness in a domain-specific 
manner. We  interpret their results in a new light. Our rationale 
proposes that anosognosia is not domain-specific and can occur in 
any domain that is conducive to error. In early stages of AD, with a 
typical amnestic presentation, a dysfunction in error-monitoring 
would largely concern memory deficits, rather than other less affected 
or even unaffected functions, explaining why overall unawareness (or 
anosognosia for memory deficits as assessed through an offline, 
clinical interview method in that study) would be related to a failure 
in memory monitoring, but not to motor monitoring. Or, to put it 
another way, we postulate that if there were no errors, there would 
be no anosognosia. Therefore, a failure in the error-monitoring system 
would explain why anosognosia tends to worsen during the course of 
AD, following the level of impairment (and, consequently, the 
probability of making errors) in various cognitive, behavioral and 
functional domains, beyond memory.

3.2. Evaluation of the hypothesis

A new line of research is thus needed to explore the dual-path 
hypothesis for the emergence of anosognosia. We aim at investigating 
this hypothesis by studying a group of AD patients, at distinct stages 
of the disease, presenting different levels of anosognosia, versus a 
group of healthy elderly controls, while performing a computer-based 
error-monitoring task. To characterize our study population, we will 
use a comprehensive neuropsychological battery, including several 
cognitive tests to assess global cognition, memory, executive and 
instrumental functions, as well as both online performance 
discrepancy measures (based on our computerized task) and the 
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offline Healthy Aging Brain Care Monitor questionnaire to detect 
anosognosia in distinct cognitive, psychological/behavioral and 
functional domains (63, 75, 76). In addition, standard scales will 
be used to evaluate depression, anxiety and apathy, which is highly 
relevant because these neuropsychiatric conditions can have an impact 
on the amplitude of our electrophysiological biomarkers of interest 
(54, 77, 78), and so must be  taken into account in the statistical 
models. Specifically, we  will focus our research on the study of 
erroneous responses and their possible correlations with the level of 
anosognosia and both central (i.e., the ERN and the Pe) and peripheral 
(i.e., the EDR) biomarkers of error awareness and emotional arousal, 
measured simultaneously during the computer-based task. Because of 
their extremely high temporal resolution, cognitive ERPs, such as 
ERN and Pe, are a valuable, non-invasive tool for assessment of 
synaptic dysfunction (39, 79). Also, we will investigate to what extent 
the level of anosognosia can be correlated with the amplitudes of these 
electrophysiological biomarkers, as well as with our hypothesis’ main 
regions (as illustrated in Figure 1: the PCC, the ACC, the OFC and the 
Amy), which have been associated with neural mechanisms of 
autonomic, emotional, and cognitive integration (67, 68, 80), and their 
interconnections, through structural and functional 
neuroimaging methods.

4. Discussion

While new hypotheses have been put forward over the last 
decades to explain anosognosia, there is still no evidence of a neural 
mechanistic understanding of this phenomenon. Here, we hypothesize 
that anosognosia might emerge from a critical synaptic failure in the 
error-monitoring system, thus preventing patients from detecting 
(explicitly and/or implicitly) their own errors (or deficits). This failure 
could result from either (i) direct damage to the error-monitoring 
system (i.e., Direct path, Figure 1A) or from (ii) the lack of emotional 
feedback on errors arriving to that system (i.e., Indirect path, 
Figure 1B), reflecting, in this case, local impairment in key structures 
of the emotional processing system and/or a disconnection between 
this system and the error-monitoring system.

We have focused our hypothesis on AD as a pathological model, 
but our rationale implies that it can be applied to any other brain 
condition in which anosognosia occurs. Indeed, anosognosia is prone 
to main deficits, according to their level of impairment, in several 
brain disorders. As it is well known, in chronic, progressive disorders, 
like AD, anosognosia tends to worsen over the course of the disease. 
We interpret this association in a particular way. We propose that 
anosognosia probably follows the appearance of errors committed in 
the context of a given deficit, such as deficits in episodic memory and 
the consequent forgetfulness (that is, the error), which generally occur 
from the early stages in AD patients. Since errors would become more 
frequent as the disease progresses, the level of anosognosia would 
correspondingly increase. On the contrary, in non-progressive 
disorders such as acute stroke, anosognosia is often a transient 
phenomenon, probably benefiting from a cascade of mechanisms 
leading to synaptic plasticity as frequently observed within the first 
hours after the onset of cerebral ischemia (81). To provide a few 
examples, anosognosia is mostly related to episodic memory deficits 
in the early stages of AD, but it can also affect other deficits following 

the severity of the disease (82); as it is also mostly related to personality 
changes in the behavioral variant of frontotemporal dementia (83); or 
to hemiplegia, particularly in the acute phase after a right-hemisphere 
stroke (84); etc. Altogether, this strongly suggests that a common 
inability to monitor errors (committed in the context of a given 
deficit), more than a specific memory consolidation impairment 
typical of AD, may be  at the origin of this intriguing syndrome. 
Importantly, this would hold true regardless of the type of deficits 
(cognitive, behavioral, motor, etc.) or the neurological condition 
(neurodegenerative disorder, stroke, etc.).

For instance, in the context of stroke, there is evidence of action-
monitoring deficits in patients with anosognosia for hemiplegia 
(AHP) (85, 86). Interestingly, these action-monitoring deficits seem 
to relate to monitoring deficits in distinct cognitive domains (87), thus 
supporting the existence of an error-monitoring impairment in stroke 
patients with AHP. Moreover, these patients appear unable to monitor 
self-performed actions, while able to monitor others’ actions or their 
own actions as if they were a third person (88), which seems to 
indicate impairment in their self-referential systems. As clearly 
established, the DMN – and the PCC, as a central node of this network 
– play a primordial role in self-referential processes, with additional 
evidence indicating that damage to brain white matter tracts involved 
in these processes may foster the appearance of anosognosia in stroke 
patients (89).

A growing body of evidence has shown that synaptic failure is a 
common pathological finding in several brain conditions, including 
neurodevelopmental and neurodegenerative diseases (33), as well as 
ischemic cerebral damage. Interestingly, although not focused on 
anosognosia, further evidence has suggested that prolonged synaptic 
failure may be a cause of persistent symptoms in patients with cerebral 
ischemia (90). Moving research from correlation to understanding the 
mechanistic causation is crucial for the development of successful 
therapies in the neurological and psychiatric fields. ERPs primarily 
reflect synaptic transmission processes, and may thus provide sensitive 
biomarkers to improve our knowledge on the neural substrates and 
mechanisms underlying brain disorders and their 
clinical manifestations.

Finally, elucidating the neural mechanistic cascade leading to 
anosognosia in AD may have two major clinical and scientific 
outcomes: first, contribute to a deeper understanding of the 
pathophysiology of this neurodegenerative disorder; second, refine 
current models of anosognosia with the goal of improving 
rehabilitation strategies allowing anosognosic patients to adhere to 
healthcare measures, which could maintain their autonomy for longer 
and reduce the burden of care. Very important, the rationale of our 
hypothesis extends beyond AD. To validate it, novel research is 
required not only in Alzheimer’s patients, but also in other 
neurological (and even psychiatric) populations, in which anosognosia 
has been frequently reported. Such a line of research can still 
illuminate the theoretical foundations of human self-awareness.
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