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Fahr’s disease, or primary familial brain calcification (PFBC), is a rare genetic 
neurologic disease characterized by abnormal calcification of the basal ganglia, 
subcortical white matter and cerebellum. Common clinical features include 
parkinsonism, neuropsychiatric symptoms, and cognitive decline. Genes 
implicated in Fahr’s disease include PDGFB, PDGFRB, SLC20A2, XPR1, MYORG, 
and JAM2. We present the case of a 51-year-old woman who developed subacute 
cognitive and behavioral changes primarily affecting frontal-subcortical pathways 
and parkinsonism in association with extensive bilateral calcifications within 
the basal ganglia, subcortical white matter, and cerebellum on neuroimaging. 
Relevant family history included a paternal aunt with parkinsonism at age 50. 
Normal parathyroid hormone and calcium levels in the patient’s serum ruled out 
hypoparathyroidism or pseudohypoparathyroidism as causes for the intracranial 
calcifications. Genetic panel sequencing revealed a variant of unknown 
significance in the PDGFRB gene resulting in a p.Arg919Gln substitution in the 
tyrosine kinase domain of PDGFRB protein. To our knowledge this is the first 
report of a p.Arg919Gln variant in the PDGFRB gene associated with PFBC. 
Although co-segregation studies were not possible in this family, the location 
of the variant is within the tyrosine kinase domain of PDGFRB and pathogenicity 
calculators predict it is likely to be pathogenic. This report adds to the list of genetic 
variants that warrant functional analysis and could underlie the development of 
PFBC, which may help to further our understanding of its pathogenesis and the 
development of targeted therapies for this disorder.
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Introduction

Primary familial brain calcification (PFBC), also known as Fahr’s Disease, is a genetically 
and phenotypically heterogenous neurodegenerative disorder (1–3). Clinically, patients with 
PFBC experience a variable combination of neuropsychiatric (4–10) and motor symptoms (2, 
11, 12), including parkinsonism, dystonia, seizures, ataxia, chorea, dementia, psychosis, and 
frontal-subcortical cognitive dysfunction. Radiologically, abnormal calcification is present 
within the bilateral basal ganglia, but also the subcortical white matter, cerebellum, thalamus, 
and brainstem (1–3).

Six genes contribute to the genetic heterogeneity of PFBC, four of which follow autosomal 
dominant inheritance: PDGFB, PDGFRB, SLC20A2, and XPR1 (3, 12–15) and two are autosomal 
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recessive: MYORG, and JAM2; (12, 16, 17). We describe a case of a 
51-year-old woman with cognitive, behavioral, and radiographic 
features of Fahr’s disease who harbored a variant (Rs14571770) (18) 
of the PDGFRB gene (Platelet Derived Growth Factor Receptor beta). 
The transition c.2756G>A resulted in a glutamine substitution of 
arginine (p.Arg919Gln) in exon 20, within the tyrosine kinase domain 
of the PDGFRB protein (Figure 1) (19).

Three gene panels were used to screen for genetic variants in a 
total of 70 genes implicated in neurodegeneration and PFBC 
(Supplementary material). Genes implicated in PFBC were SLC20A2, 
PDGFB, PDGFRB and XPR1. At the time of testing, available panels 
did not include sequencing for the two autosomal recessive genes 
MYORG and JAM2. All 3 panels used next generation sequencing of 
the exons; and analyzed the sequences for missense variants, 
insertions, deletions, and copy number variations.

Detection of this variant in PDGRFB assisted in diagnosis and 
management of this patient, emphasizing the importance of genetic 
testing in patients with neuropsychiatric symptoms, parkinsonism and 
neuroimaging characteristics suggestive of PFBC.

Case presentation

A 51-year-old Filipina woman with a history of hypertension 
and systemic lupus erythematosus (SLE) presented with subacute 
cognitive changes over the course of 4 weeks. The patient reported 
feeling occasionally disoriented at work, with difficulty 
concentrating, and depressed, which were noticed by her family and 
coworkers. Additional symptoms noted by her family included 
dysarthria, dysphagia, gait instability, and trouble following 
conversations. She had no personal psychiatric or neurologic history. 
Family history was significant for several family members with 
rheumatoid arthritis and SLE, and a paternal aunt with parkinsonism 
at the age of 50, for whom an autopsy was not done. The patient’s 
father died at age 74 from small cell lung carcinoma and her mother 
died at age 70 from cardiac arrest. Neither parent had parkinsonian 
or cognitive symptoms, although a paternal aunt was diagnosed with 
Parkinson’s Disease at age 50. Evaluation at a local hospital included 
a computerized tomography (CT) scan of the head, which showed 
extensive hyperintensity throughout the basal ganglia, cerebellum, 
central pons, and periventricular subcortical white matter. Initial 
magnetic resonance imaging (MRI) of the brain with gadolinium 
showed diffuse abnormal susceptibility signal within the deep white 
matter in the cerebellar and cerebral hemispheres, relatively minimal 

abnormal fluid-attenuated inversion recovery (FLAIR) signal, and 
no contrast enhancement. Lumbar puncture was performed to 
assess for inflammation in the setting of possible neuropsychiatric 
SLE (NPSLE); cerebrospinal fluid (CSF) testing was 
non-inflammatory, with white blood cell count 3 (nL = 0–5 cells/
mm3), Glucose 76 (nL = 40–70 mg/dL), Protein 35 (nL = 15–45 mg/
dL), and negative results for Gram stain and culture, West Nile virus, 
Herpes Simplex Virus (HSV), Measles, Mumps, Varicella Zoster 
Virus (VZV), and Coccidioidomycosis. Serum studies showed a 
positive Antinuclear Antibody (ANA) titer of: 1:2,560 (nL = <1:40) 
speckled, negative double stranded deoxyribonucleic acid (dsDNA) 
Antibody < 1 (nL = <4 iU/mL), normal complement component 3 
(C3): 123 (87–200 mg/dL), and normal complement component 4 
(C4): 32 (19–52 mg/dL). Based on a concern for NPSLE, she was 
treated with intravenous methylprednisolone 1 g/kg/day for 3 days 
followed by a prolonged oral prednisone taper. For depressive 
symptoms, she was prescribed citalopram 20 mg. A 
neuropsychological evaluation was ordered, and she was referred to 
a tertiary center for further diagnosis and management. A timeline 
of the patient’s symptoms, diagnostic workup, and interventions is 
represented in Figure 2.

The patient underwent the neuropsychological evaluation but 
did not follow up in clinic until 15 months later. At that time, she 
presented with concerns of symptom progression. She reported 
trouble with fine movements, especially writing, slowing of her gait, 
and falling. Her dysarthria worsened and she developed dysphonia 
and dysphagia. Behavioral changes included new impulsivity and 
episodes of uncontrollable bouts of laughter or anger. On 
neurological examination, the patient was alert and oriented to 
person, place, and time, her speech was slow, deliberate and 
aprosodic. She exhibited normal naming, comprehension, and 
repetition, with no paraphasic errors. Ideomotor apraxia was 
demonstrated in both hands. She scored 16 on a Montreal Cognitive 
Assessment (MoCA), missing points for Trails B (−1), cube copy 
(−1), clock draw (−2), animal naming (−1), backward digit 
repetition (−1), serial seven subtraction (−2), sentence repetition 
(−2), phonemic fluency (−1), abstraction (−2), and delayed recall of 
one of five words (−1), although she retrieved the word with a 
semantic cue. Cranial nerve evaluation demonstrated oculomotor 
apraxia with hypermetric saccades and impaired smooth pursuit, 
hypophonia, and hypokinetic dysarthria. The motor exam showed 
paratonic upper extremities, bradykinesia and diffuse hyperreflexia. 
Plantar reflexes were flexor bilaterally. Primitive reflexes of grasp., 
glabellar, palmomental, and snout were present. Dysmetria was 

FIGURE 1

A schematic representation of Platelet Derived Growth Factor Receptor beta (PDGFRB) protein including a signal peptide (SP), five extracellular Ig-like 
(IG) domains, a transmembrane (TM) domain, a juxtamembrane domain (JM), an intracellular split tyrosine kinase (TK) domain, and a C-terminal tail 
(C-tail). Previously reported variants affecting the PDGFRB protein are presented according to their approximate position in the protein amino-acid 
chain. The patient’s p.R919Q variant is shown in red.
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present bilaterally, although more prominent on the left. Her posture 
was narrow-based, upright, but with reduced stride and absent arm 
swing on the left. Sensory exam was normal.

Initial blood work was ordered to exclude metabolic etiologies 
that might lead to brain calcifications, including parathyroid hormone, 
calcium, magnesium and phosphate, all of which were normal. A 
repeat CT scan of the head showed diffuse hyperdense foci favored to 
represent extensive calcifications throughout the bilateral corona 
radiata, basal ganglia, cerebellar hemispheres, and midbrain 
(Figure  3A), comparable to the patient’s initial neuroimaging 
15 months prior. A repeat MRI brain without contrast showed 
extensive susceptibility effect and high T1 and T2 signal in the bilateral 
cerebral, brainstem, and cerebellar deep gray nuclei and white matter 
(Figure 3B).

The neuropsychological evaluation (Table  1) done 15 months 
prior revealed prominent impairment in attention and processing 
speed that contributed to variably impaired new learning and memory. 
Impairments were also evident with problem solving, speeded verbal 
fluency and naming tasks. On a self-report measure of depression 
(Beck Depression Inventory, 2nd Edition), she endorsed elevated level 
of depressive symptoms, with feelings of sadness, thoughts of suicide, 
anhedonia, irritability, and significant fatigue. On a self-report 
measure of behavioral symptomatology associated with frontal 
networks functioning (Frontal Systems Behavior Scale), when 
compared with that at the time of initial presentation, 2 months prior 
to the neuropsychological evaluation, she endorsed a decrease in 
measures of apathy, disinhibition, and executive dysfunction, although 
her partner endorsed no significant changes in these symptoms. A 
repeat neuropsychological evaluation, approximately one and a half 
years after the initial evaluation (Table 1), was generally consistent 
with the findings described in the previous evaluation, although the 
patient demonstrated some improvement in measures of immediate 
and delayed memory and recognition; increased difficulty on select 
measures of visual memory and psychomotor processing speed were 

also noted (Table  1). She was switched from citalopram 20 mg to 
sertraline 50 mg daily due to her unresolved depressive symptoms, and 
was provided physical, speech, and cognitive therapy.

Based on the neuropsychiatric findings, clinical parkinsonism, 
basal ganglia calcifications, and family history of parkinsonism, the 
suspicion for PFBC was high which prompted us to search for a 
possible genetic cause, using a directed approach that focused on 
genes implicated in PFBC. We detected a c.2756G>A change in the 
PDGFRB gene, which results in a glutamine (Gln) substitution of 
arginine (Arg) at residue 919 (Figure 1).

Discussion

We report here the clinical, neuroimaging and neuropsychological 
features of 51-year-old Filipina woman with PFBC who was found to 
harbor a missense variant in the PDGFRB gene. Using next generation 
genetic sequencing, we  detected a c.2756G>A, p.Arg919Gln 
substitution in the tyrosine kinase domain of PDGFRB protein (19). 
Using available computational models, the variant is predicted to 
be “probably damaging” (PolyPen: 0.981), “deleterious” (SIFT: 0.03), 
“likely deleterious” (CADD: 32), and “damaging” (MetaLR: 0.56). This 
variant [NM_002609.4, ENST00000261799.4, chr5: 149499072 
(GRCh37/hg19)] is reported in dbSNP (Rs145717708, http://www.
ncbi.nlm.nih.gov/snp/) (18), and was found in 33 individuals in 
gnomAD (SNV 5-149,499,072-C-T, https://gnomad.broadinstitute.
org) (20), with a low minor allele frequency of 0.0001202  in the 
general population and 0.001595 (>0.1%) in the “Other East Asian” 
population, but has never been reported in association with PFBC or 
any other pathology. Following the ACMG criteria for scoring genetic 
variants (21), we  would classify this as a variant of unknown 
significance (VUS) because it satisfies contradictory criteria for being 
a benign (BS1, the allele frequency is greater than expected for the 
disorder) and a pathogenic variant (PP3, the variant is located in a 

FIGURE 2

A schematic timeline of the patient’s symptoms, diagnostic workup, and interventions, presented in years after presentation.
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well-established functional domain and that multiple lines of 
computational evidence support a deleterious effect on the protein).

PDGFRB gene is known for its pleiotropism, making it central 
to different molecular systems and implicated in a diverse array of 
neurological syndromes including infantile myofibromatosis, 
Kosaki/overgrowth syndrome, Penttitnen syndrome, Sporadic 
Port-Wine Stain, Moyamoya syndrome, Cornelia de Lange 
syndrome and PFBC (19). The PDGFRB protein is a widely 
expressed pericyte marker (22), integral in maintaining the blood–
brain barrier (BBB). Dysfunction within the BBB can lead to 
deposition of aberrant materials in the brain, such as the 
calcifications seen in PFBC (8).

Among the 13 variants in PDGFRB that are reported to 
be associated with PFBC (Figure 1) (8, 23–29), six are missense 

variants lie within the tyrosine-kinase domain between exons 13 
and 20 (8, 24, 26–29). In cell-based experiments, two missense 
variants affecting the tyrosine-kinase domain (p.L658P, p.R695C) 
were shown to directly interfere with PDGFRB 
autophosphorylation, leading to defective downstream signaling 
(27, 30, 31). A recent study showed that 4 of the 6 known 
missense variants in the tyrosine-kinase domain (p.G612R, 
p.L658P, p.D826Y, p.D844G) resulted in complete loss of tyrosine-
kinase activity (29), one variant (p.R695C) had a partial effect on 
receptor autophosphorylation, and one variant (p.D737N) did 
not lead to any significant functional defect. The p.R919Q variant 
we  present here warrants further study to investigate its 
functional effect on the tyrosine-kinase activity of 
PDGFRB protein.

FIGURE 3

(A) Representative axial cuts from the patient’s computed tomography (CT) scan 15  months after symptom onset, showing diffuse hyperdense foci 
favored to represent extensive calcifications throughout the bilateral corona radiata, basal ganglia, cerebellar hemispheres, and midbrain. 
(B) Representative axial cuts from the patient’s magnetic resonance imaging (MRI) 15  months after symptom onset, fluid-attenuated inversion recovery 
(FLAIR) sequence showing high T2 signal in the bilateral cerebral, brainstem, and cerebellar deep gray nuclei and white matter and susceptibility-
weighted angiography (SWAN) sequence showing extensive susceptibility effect.
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In a recent systematic review on phenotype–genotype 
relationships of 516 patients with PFBC, 26 (5%) from 9 families 
were reported to carry PDGFRB variants, eight of which carried a 
unique missense variant (12). All 26 carriers had calcification of the 
basal ganglia and 12 of the 26 variant carriers (46%) were clinically 
affected. As in the case of our patient, calcifications in other affected 
areas including thalamus, cerebellum, and white matter were 
commonly found in symptomatic carriers (12). The median age at 
onset of PFBC in a PDGFRB carrier in this series was 48 years 
(range 11–54) (12), which is consistent with our patient who 
developed symptoms at age 51. The most common motor signs 
reported included parkinsonism and bradykinesia (17% each), and 
the most frequent nonmotor signs were headache (33%) and 
cognitive deficits (25%) (12). In our case, the patient’s predominant 
symptoms were neuropsychological (cognitive, behavioral, and 
psychiatric) with only mild motor manifestations (bradykinesia 
and dysarthria).

The clinical work up of brain calcifications include ruling out an 
endocrinological source of abnormal calcium homeostasis. 
We confirmed normal serum parathyroid hormone and calcium 
levels in our patient, ruling out hypoparathyroidism or 
pseudohypoparathyroidism as causes. Our patient’s history of SLE 
also raised concerns for NPSLE. NPSLE is known to present with 
multiple neuropsychological symptoms including acute confusional 
states, cognitive, anxiety, and mood disorders; however, less than 
1% of patients present with motor symptoms and the diagnosis 
remains largely a diagnosis of exclusion (32). In our patient, the 
presence of parkinsonism on exam and the extensive intracranial 
calcification supports the diagnosis of PFBC over NPSLE. Other 
adult-onset neurodegenerative conditions with intracranial 
calcifications include spinocerebellar ataxia type 20 (SCA20) which 
is associated with pronounced cerebellar calcifications affecting the 
dentate nucleus without involvement of the basal ganglia; polycystic 
lipo-membranous osteo-dysplasia (PLOSL) characterized by 
fractures, frontal lobe syndrome, and progressive dementia 

TABLE 1 (Continued)

2019 
evaluation

2021 
evaluation

Domain Measure z-scores z-scores

Behavioral 

functioning

  FrSBe7 (self) Before/after 

(T-score)

Before/after 

(T-score)

Apathy 78/58 91/95

Disinhibition 83/64 75/63

Executive dysfunction 61/45 96/57

Total 79/57 95/74

  FrSBe (informant)

Apathy 44/51 47/97

Disinhibition 50/52 48/54

Executive dysfunction 50/54 46/69

Total 48/53 47/76

1. Wechsler Adult Intelligence Scale, 4th Edition Working Memory Index; 2. Wechsler Adult 
Intelligence Scale, 4th Edition Processing Speed Index; 3. California Verbal Learning Test, 
2nd Edition; 4. Rey-Osterrieth Complex Figure Test; 5. Wechsler Memory Scale, 4th Edition; 
6. Wisconsin Card Sorting Test; 7. Frontal Systems Behavior Scale.

TABLE 1 Neuropsychological test data comparing 2019 evaluation with 
2021 evaluation.

2019 
evaluation

2021 
evaluation

Domain Measure z-scores z-scores

Estimated 

premorbid 

function

Word reading 0.90 0.75

Attention/

working 

memory

  WAIS-IV WMI1 −0.55 −0.95

Digit span −0.67 −0.67

Arithmetic −2.00 −1.00

  WAIS-IV PSI2 −1.75 −1.60

Symbol search −2.33 −1.67

Coding −1.00 −1.33

Stroop word −1.50 −3.00

Stroop color −1.60 −2.10

Trails A −2.40 −2.40

Memory   CVLT-II3

Total −1.20 −0.70

Short delay free recall −1.50 −1.00

Short delay cued recall −3.50 −2.00

Long delay free recall −2.00 −1.00

Long delay cued recall −2.50 0.00

  RCFT4

Immediate recall 0.50 −0.40

Delayed recall 0.50 −1.30

Recognition trial −2.95 −2.00

  WMS-IV5

Logical memory I −1.67 −0.67

Logical memory II −1.00 0.00

Recognition trial 36%–50%tile 51%–75%tile

Language Naming −3.00 −2.67

  Fluency

Phonemic −1.33 −0.33

Semantic −1.75 −1.67

Executive 

functioning

Stroop color-word −1.60 −1.80

  WCST6

Categories 6%–10%tile 11%–16%tile

Errors −1.60 −1.70

Perseverative Responses −1.50 −0.90

Trails B −1.90 −2.30

Motor 

functioning

  Grooved pegboard

Dominant hand −2.70 −2.20

Non-dominant hand −2.80 −2.00

  Grip strength

Dominant hand −1.90 −1.90

Non-dominant hand −1.30 −1.40

(Continued)
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beginning in the fourth decade, with bilateral calcifications of the 
basal ganglia, most often in the putamina; and dystonia, 
parkinsonism, hypermanganesemia, polycythemia, and chronic 
liver disease, which is a movement disorder resulting from 
manganese accumulation in the basal ganglia. This disease results 
from biallelic loss-of-function variants in SLC30A10 and basal 
ganglia calcifications may mimic those seen in individuals with 
PFBC (3).

Several case reports and reviews have explored the 
neuropsychological profiles of individuals with PFBC (4, 5, 7, 33–35). 
Psychiatric manifestations including mood disorders and psychotic 
symptoms are frequently present. Behavioral problems including 
apathy, disinhibition, aggressiveness, and impulse control disorders 
are reported, and the cognitive impairment that is describe ranges 
from mild memory and attention deficits to dementia with a frontal-
subcortical profile (5, 36, 37).

As evidenced by the neuropsychological evaluations, our patient 
had findings of cognitive (impaired attention, delayed processing 
speed, and executive dysfunction), behavioral (apathy and 
disinhibition) and psychiatric manifestations (depression and 
irritability). These findings can be attributed to a dysfunction of the 
frontal-subcortical circuits including the anterior cingulate, the 
dorsolateral prefrontal, and the lateral orbitofrontal circuits. 
According to the Rate Model developed in the late 1980s and early 
1990s (38, 39), the basal ganglia are responsible for the execution 
and maintenance of both motor and cognitive functions (40). 
Impaired executive function, apathy, and impulsivity, all of which 
were present in our patient, are likely explained by disturbances in 
the anterior cingulate and dorsolateral prefrontal circuits that are 
known to regulate these functions (36, 41, 42). Additionally, mood 
disorders including depression, also present in our patient, can 
be attributed to dysfunction in the lateral orbitofrontal circuit (36, 
41, 42).

This report demonstrates the importance of genetic sequencing in 
patients with progressive neuropsychiatric disease and extensive basal 
ganglia calcification that suggests PFBC. Uncovering the full genetic 
spectrum in patients with PFBC can contribute to further 
understanding of disease pathogenesis and may be  integral in 
developing targeted molecular and genetic therapies. Without targeted 
therapies, the treatment remains supportive with the help of a 
multidisciplinary team including a neurologist, psychiatrist, 
psychotherapist, physical therapist, and cognitive and speech therapist. 
The limitations of our study include the inability to perform 
co-segregation studies and genetic analysis of parents’ samples, and 
the inability to sequence the two autosomal recessive genes MYORG 
and JAM2. Future studies are warranted to investigate the variant’s 
functional effect on the tyrosine-kinase activity of PDGFRB protein.

Patient’s perspective

We thank the patient and her family for allowing us to discuss her 
clinical course and genetic findings in this report. Undergoing the 
multiple panel genetic testing, the patient was hopeful to find a clear 
genetic cause for her disease; however, the patient remains unsure 
about the pathogenesis of her disease as the PDGFRB variant she 
carries is of unknown clinical significance, and she hopes that future 

functional analysis can prove or disprove the disease causality of 
her variant.
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