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Introduction: Impairments in activities of daily living (ADL) are a major concern

in post-stroke rehabilitation. Upper-limb motor impairments, specifically, have

been correlated with low quality of life. In the current case report, we used

both task-based and resting state functional MRI (fMRI) tools to investigate the

neural responsemechanisms and functional reorganization underlying hyperbaric

oxygen therapy (HBOT)-induced motor rehabilitation in a chronic post-stroke

patient su�ering from severe upper-limb motor impairment.

Methods: We studied motor task fMRI activation and resting-state functional

connectivity (rsFC) in a 61-year-old right-handed male patient who su�ered

hemiparesis and physical weakness in the right upper limb, 2 years after his

acute insult, pre- and post-treatment of 60 daily HBOT sessions. Motor functions

were assessed at baseline and at the end of the treatment using the Fugl–Meyer

assessment (FMA) and the handgrip maximum voluntary contraction (MVC).

Results: Following HBOT, the FMA score improved from 17 (severe impairment)

to 31 (moderate impairment). Following the intervention during trials involving

the a�ected hand, there was an observed increase in fMRI activation in both the

supplementary motor cortex (SMA) and the premotor cortex (PMA) bilaterally. The

lateralization index (LI) decreased from 1 to 0.63, demonstrating the recruitment

of the contralesional hemisphere. The region of interest, ROI-to-ROI, analysis

revealed increased post-intervention inter-hemispheric connectivity (P = 0.002)

and a between-network connectivity increase (z-score: 0.35 ± 0.21 to 0.41 ±

0.21, P < 0.0001). Seed-to-voxel-based rsFC analysis using the right SMA as seed

showed increased connectivity to the left posterior parietal cortex, the left primary

somatosensory cortex, and the premotor cortex.

Conclusion: This study provides additional insights into HBOT-induced brain

plasticity and functional improvement in chronic post-stroke patients.
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Introduction

Stroke is the second leading cause of long-term disability

worldwide, where ∼80% of individuals with acute stroke present

upper-limb motor impairment, and 50–60% of them will have

persistent disability or weakness at the chronic phase (1, 2).

Impaired upper-limb motor function is highly associated with

low self-care ability, limited mobility, and poor quality of life

(3). Furthermore, subjective wellbeing was found to decrease 1

year after stroke and was mainly correlated with arm motor

impairments (4). These long-term disabilities may affect social

reintegration and result in direct and indirect economic impacts.

Therefore, improving upper-limb function is a core element of

stroke rehabilitation.

Biological mechanisms of motor function recovery were found

to be associated with cell genesis, structural and functional

neuroplasticity, and reorganization of neural pathways that were

mostly observed within the first few months post-stroke (5–

8). Therefore, formal rehabilitation protocols are focused on the

acute-sub-acute phase (up to 6 months), and long-term disability

treatment is less frequent in the late chronic phase (9). Current

interventions to enhance upper-limb recovery in those early

stages include physical, constraint-induced movement therapy and

occupational therapy. However, their beneficial effect is limited in

the chronic phase (8, 10).

In recent years, evidence has been accumulating about the

neuroplasticity effects of hyperbaric oxygen therapy (HBOT).

Importantly, HBOT was found to induce neuroplasticity in

chronic stages, even years after brain injury (11–15). These

findings are supported by preclinical and clinical studies,

demonstrating HBOT’s effects through multiple mechanisms

including anti-inflammatory, mitochondrial function restoration,

increased perfusion via angiogenesis and induction, proliferation,

and migration of stem cells (16–20). In post-stroke chronic

patients, HBOT-induced significant changes in neurological

function, neurocognitive recovery (21–23), post-stroke depression

(24), and sleep and quality of life (14, 23, 25). However, the specific

effect of HBOT on upper-limb function has not been evaluated.

In the current case report, we used both task-based and resting

state functional MRI (fMRI) tools to investigate the neural response

mechanisms, and functional reorganization underlying HBOT-

induced motor rehabilitation in a chronic post-stroke patient

suffering from severe upper-limb motor impairment. The results

were compared to a matched healthy control subject.

Case description

Clinical presentation

A 61-year-old right-handed male patient presented to our

center with right hemiparesis, speech, and cognitive impairments

due to a left frontal chronic ischemic stroke, 2 years prior to

his referral. The patient was conscious and comfortable and

had co-existing adult-onset diabetes mellitus, hyperlipidemia,

hypertension, and ischemic heart disease. During the sub-

acute stroke period, he was treated daily for 4 months with

physical, speech, and occupational therapy, followed by twice

weekly treatment for a few more months. Additional clinical

and demographic details are provided in Supplementary Table 1;

Supplementary Figure 3. Despite therapy, he remained severely

impaired and required assistance with activities of daily living

(ADL), especially with fine motor function and communication

and used a cane for walking. Anatomical MRI imaging showed a

chronic infarct involving the supplementary motor cortex (SMA)

and severe damage to the premotor cortex (PMA). The primary

motor cortex was relatively intact (Figure 1).

An age-matched healthy (64-year-old, right-handed man)

subject without a history of neurologic impairments or limitations

in upper-limb movements participated for reference. The

participants signed a written informed consent before inclusion.

The fMRI study protocol was approved by Shamir Medical Center’s

Institutional Review Board (IRB) (No. 134-19-ASF).

Therapeutic intervention

The HBOT protocol was administrated in a multi-place

Starmed-2700 chamber (HAUX, Germany). The protocol

comprised of 60 daily sessions, five sessions per week within

a 2-month period. The HBOT protocol included breathing

100% oxygen by mask at 2ATA for 90min with 5-min air

breaks every 20min. Compression/decompression rates were

1.0 m/min. During the therapeutic phase, the patient received

physical and occupational therapy twice a week. The physical

therapy regimen focused on lower-limb mobility, executing

transitions between body positions, enhancing walking

pace both with and without a cane, and proprioceptive

training to augment coordination, reflexes, and balance. The

occupational therapy incorporated activities of daily living

(ADL) and instrumental ADL practice carried out both sitting

and standing.

Assessment tools

The motor function of the patient’s affected upper limb was

assessed at baseline and at the end of the HBOT session using

the Fugl–Meyer assessment (FMA) and the handgrip maximum

voluntary contraction (MVC).

The FMA contains 50 items to investigate upper (UE) and

lower (LE) limb motor functions (26). The FM-UE test consists of

movement instructions for the position (e.g., supination/pronation,

flexion/extension, and adduction/opposition) of proximal, medial,

and distal parts of the UL (i.e., shoulder, elbow, forearm, wrist,

hand, and finger) as well as of tests for the existence and possibility

to activate reflexes. The maximum FM-UE score is 66 points. An

FM-UE score of 60–66 is defined as mild impairment. A score of

22–59 is considered moderate, and a score of 0–21 is considered

severe impairment. The MVC test was measured as the mean force

value when squeezing a handheld dynamometer for 2 s as strongly

as possible.
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FIGURE 1

Patient’s brain MRI. Images show atrophy and some damage to the supplementary motor cortex (SMA) (red arrow), and severe damage to the

premotor cortex (PMA) (blue arrow). The primary motor cortex is relatively intact (yellow arrow).

Brain imaging data acquisition

Brain imaging MRI scans were performed on a MAGNETOM

VIDA 3T scanner, configured with 64-channel receiver head

coils (Siemens Healthcare, Erlangen, Germany). The MRI

protocol included 3D T2-weighted, 3D fluid-attenuated inversion

recovery (FLAIR), susceptibility-weighted imaging (SWI), and

high-resolution T1-weighted (MPRAGE).

Functional imaging data (task-fMRI) were acquired using

gradient-echo (EPI) BOLD (blood oxygen level dependent)

contrast sequence with a total of 198 volumes. Scan parameters

were as follows: TR: 2,000ms, TE: 30ms, flip angle: 90◦, voxel

size: 2.0 × 2.0 × 3.0mm, no gap, FOV: 205 mm2, number

of slices: 45, and SMS factor: 3, axial slices parallel to the

AP-PC plane.

A total of 300 volumes (7:40min) of resting state fMRI

scans were acquired using gradient-echo-planar imaging BOLD

sequence. Scan parameters were as follows: TR: 1,500ms, TE:

30ms, flip angle: 90◦, voxel size: 2.2 × 2.2 × 3.0mm, distance

factor: 25%, FOV: 210, number of slices: 36, and axial slices parallel

to the AP-PC plane. During scanning, each participant was asked

to remain still and relaxed with eyes open, without thinking of

anything deliberate. Foam pads and earplugs were used to reduce

head motion and scanning noise.

Structural T1-weighted MRI scans were acquired for co-

registration purposes using a T1-weighted 3D magnetization-

prepared rapid gradient-echo (MPRAGE) sequence in a sagittal

plane with 1mm isotropic resolution. Sequence parameters were

as follows: TR: 2,000ms, TE: 1.9ms, flip angle: 9◦, TI: 920ms, FOV:

256× 256, and 256 contiguous slices.

Motor task fMRI

An fMRImotor task was performed both with the affected hand

(AH) and the unaffected hand (UH) in a block design paradigm.

During the task, participants were asked to press the index-

finger button (ResponseGrip, NordicNeuroLab Inc., Norway) in

response to a periodic visual cue—a flashing green dot either

on the left or on the right side of the screen (frequency 0.5Hz)

(Supplementary Figure 1).

This block design paradigm consisted of ten alternating LEFT,

RIGHT, and REST (fixation) blocks each lasting 30 s as illustrated

in Supplementary Figure 2. NordicAktiva (NordicNeuroLab

Inc., Norway, www.nordicneurolab.no), was used for stimuli

presentation and performance accuracy acquisition. The task

began with a 6 s countdown. Each active block consisted of 13

(600ms ON, 1,400ms OFF) trials. The active blocks began with

an instruction statement presented for 4 s. The total experiment

time was 6:36min. Motor accuracy scores were calculated as

the percentage of responses divided by the number of expected

responses (13 × 4). Prior to the fMRI experiment, the task was

explained, and participants practiced the motor task outside the

scanner to familiarize themselves with the task and the grips.

Motor task fMRI data analysis

Analysis of the time series BOLD data was performed using

statistical parametric mapping software SPM12 (http://www.fil.ion.

ucl.ac.uk/spm/) through a standard pre-processing procedure (27).

All images were initially slice-time corrected, realigned, and resliced

using a 6-parameter rigid-body spatial transformation to correct

head motion and normalized to the MNI (Montreal Neurological

Institute) space by using the unified segmentation normalization

algorithm. Finally, spatial smoothing was performed using an 8mm

full-width half-maximum (FWHM) Gaussian kernel.

The general linear model was applied on the subject level.

The design matrix incorporated the task and the six spatial

axes of movement repressors. The task repressors were modeled

as a boxcar function and were convolved with a canonical

hemodynamic response function. A high-pass filter (cutoff of 128 s)
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was applied to account for slow signal drifts. Contrast images

were thresholded at a significance level of a P-value of <0.05, and

familywise error (FWE) was corrected for multiple comparisons.

Motor function regions of interest (ROIs) were defined for

each hemisphere based on activation likelihood estimation meta-

analysis (28): primary motor cortex (M1), supplementary motor

cortex (SMA), premotor cortex (PMA), primary somatosensory

cortex (S1), posterior parietal cortex (PPC), and the cerebellum

(CB). Masks were extracted using the WFU-PickAtlas Matlab

toolbox (https://www.nitrc.org/projects/wfu_pickatlas/).

The level of activation and lateralization index (LI) was

calculated for each ROI during left- and right-hand movements to

identify changes in the cortical activation symmetry. LI was defined

as (C – I)/(C+ I), where C and I are the numbers of activated voxels

in the contralateral and ipsilateral regions of the finger movement,

respectively (29).

Rs functional connectivity data analysis

RsFC analysis was carried out using the CONN-fMRI toolbox

v17 as implemented using statistical parametric mapping software

SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Functional volumes of

the pre-processing pipeline included slice-timing correction,

realignment, co-registration, normalization-to-MNI space (152-

brain template) with a resolution voxel size of 2 × 2 × 2mm,

and spatial smoothing (8mm FWHM Gaussian kernel) steps (30).

The pre-processing steps derived (1) the realignment covariate,

containing the six rigid-body parameters characterizing the

estimated subject motion, (2) the scrubbing covariate containing

potential outlier scans performed with the CONNs artifact

detection tool (ART), and (3) the quality assurance (QA) covariate

based on global signal change (>3 standard deviations from the

mean image intensity) and framewise displacement (FD) scan-to-

scan head-motion. Age and sex were also used as group (second

level) covariates. A component-based noise correction procedure

(CompCor) approach (31) was used to identify additional

confounding temporal factors controlling for physiological noise,

BOLD signal present in WM, and head motion effects. Finally,

residual BOLD time series were then bandpass filtered at a

frequency range of 0.01–0.09Hz (30). Individual connectivity maps

were generated using the seed-to-voxel approach. We examined

rsFC using a priori seeds derived from the FSL Harvard–Oxford

atlas (32), focusing on large-scale brain networks related to the

patient’s reported symptoms, which included default mode (DMN),

salience (SN), visual (VN), dorsal attention (DAN), fronto-parietal

(FPN), language (LN), sensorimotor (SMN), and cerebellar (CN)

(networks and the coordinates of the associated seed regions are

presented in Supplementary Table 2). Bivariate correlation analysis

was used to determine the linear association of the BOLD time

series between the seed and significant voxel clusters. Fisher’s Z

transformation was applied to the correlation coefficients to satisfy

normality assumptions. Then, rsFC maps were thresholded at a P-

value of <0.05, with familywise error (FWE) corrected for multiple

comparisons. Adjusted ROI-to-ROI network analysis (33) was used

to derive patient-specific adjusted ROIs as follows: in each map,

a cluster was identified within spheres of 6mm radii centered on

the coordinates of interest from each network. Then, the voxel

with the maximal value within the sphere was identified as the

adjusted ROI. For each corrected location, the mean Z-score value

was calculated within a 3mm radius, producing a symmetrical 32×

32 connectivity matrix. Whole brain within and between-network

connectivity as well as inter- and intra-hemispheric values were

calculated. Analysis was performed using in-house software written

in MATLAB R2021b (MathWorks, Natick, MA).

Statistical analysis

In addition to the MRI statistical methods, due to the single-

subject nature of the study, brain global parameters were chosen

to demonstrate the longitudinal change. Two-tailed paired t-

tests were performed to compare connectivity variables between

sessions when a normality assumption was held according

to a Kolmogorov–Smirnov test. Data analysis was performed

using MATLAB R2021b (MathWorks, Natick, MA) statistics and

machine learning toolbox.

Results

Functional evaluation

Supplementary Table 3 shows the scores of the upper-limb

motor function tests at pre- and post-intervention time points.

The baseline FM-UE score was 17, indicating severe impairment.

The post-intervention score was 31, considered as moderate

impairment, and the 1-year follow-up score was 41, which is

higher than the post-treatment score. At baseline, the patient was

unable to perform the MVC test, while in post-intervention, he

completed the maneuver with a score of 3 kg. The motor accuracy

score, measured during the motor task fMRI, before treatment

was 27% and improved to 100% after HBOT. Finally, the patient

reported an improvement in life satisfaction and participation in

the community as assessed by the short form-stroke impact (SF-

SIS) scale (34) from 17/40 at baseline to 29/40 after 12 months of

followup.

Motor task-fMRI evaluation

The whole-brain activation maps (affected and unaffected hand

activation > rest conditions) at baseline and post-intervention

session are shown in Figure 2 and Supplementary Table 4 (P <

0.05, FWE corrected). The overall post-intervention activation

was increased during both the affected and unaffected finger

movement. The quantification of ROI analysis is presented in

Table 1.

During the affected hand trials (Figure 2A), post-intervention,

the most substantial increases were found in the ipsilesional

SMA and the PMA from k = 0 to 328, T = 10.52, and

from k = 442 to 1,143, T = 15.66, respectively. At baseline,

contralesional activation was not observed. However, post-

intervention activation was observed in the contralesional SMA,

k = 162, T = 8.31, and in the contralesional PMA, k =
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FIGURE 2

Motor task fMRI activation maps, pre- and post-HBOT. (A) Right finger movement (a�ected hand) > REST. (B) Left finger movement (una�ected

hand) > REST. Compared to a healthy control subject. PFWE < 0.05.

328, T = 10.51. Activation in the left and right cerebellum

was also observed (k = 633, T = 13.69, and k = 1,579,

T = 10.85, respectively). LI was decreased (from 1 to 0.63,

compared to 0.71 in HC), demonstrating recruitment of the

contralesional hemisphere.

During the unaffected finger trials (Figure 2B), post-

intervention, the most substantial increases were found in

the ipsilesional SMA, from k = 99 to 307, T = 7.87, and

contralesional SMA from k = 0 to 636, T = 8.23. However, LI

was not markedly changed (from 0.78 to 0.72 compared to 0.77

in HC).

RsFC evaluation

The ROI-to-ROI analysis revealed increased post-intervention

inter-hemispheric connectivity (P = 0.002). Post-treatment intra-

hemispheric connectivity was increased in the contralesional

hemisphere (P < 0.0001) and was not significantly changed in the

ipsilesional hemisphere (P = 0.105) (Figure 3A). Network analysis

showed that the patient’s within-network connectivity was not

significantly changed (z-score: 0.49 ± 0.24 to 0.50 ± 0.23, P =

0.47), while between-network connectivity was increased following

treatment (z-score: 0.35± 0.21 to 0.41± 0.21, P < 0.0001).
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TABLE 1 Motor task fMRI—ROI activation maxima.

ROI Stroke pre-HBOT Stroke post-HBOT HC

K PFEW T X Y Z K PFEW T X Y Z K PFEW T X Y Z

L(UH) > REST

SMA L 99 0.000 6.78 −6 −2 56 307 0.000 7.87 −2 −6 60 107 0.000 6.47 −4 −6 60

PMA L 113 0.000 7.48 −42 −10 52 119 0.000 6.75 −42 −10 52 –

CB L – 2,115 0.000 13.46 −14 −64 −18 258 0.000 7.00 −16 −54 −18

M1 R 268 0.000 14.53 42 −16 60 295 0.000 17.25 42 −14 60 125 0.000 7.32 40 −16 52

S1 R 490 0.000 11.50 44 −20 60 471 0.000 11.92 58 −20 46 –

SMA R – 636 0.000 8.23 10 2 76 357 0.000 6.89 8 10 58

PMA R 967 0.000 17.18 42 −16 64 1,244 0.000 18.83 40 −16 64 499 0.000 7.74 38 −14 50

CB R – 770 0.000 9.51 26 −74 −18 –

R(AH) > REST

M1L 81 0.000 8.41 −38 −22 66 204 0.000 13.43 −44 −16 60 55 0.000 6.59 −34 −18 54

S1 L 110 0.000 9.31 −46 −20 60 246 0.000 13.58 −46 −20 60 –

SMA L – 328 0.000 10.52 −4 −6 54 103 0.000 7.53 −6 −6 60

PMA L 442 0.000 9.86 −30 −20 74 1,143 0.000 15.66 −32 −20 70 308 0.000 7.11 −34 −12 68

CB L – 633 0.000 13.69 −24 −64 −18 –

SMA R – 162 0.000 8.31 8 8 46 82 0.000 6.67 6 −2 60

PMA R – 282 0.000 10.51 48 0 48

CB R – 1,579 0.000 10.85 24 −76 −18 24 0.010 6.08 22 −54 −20

M1, primary motor cortex, SMA, supplementary motor area, PMA, premotor cortex, S1, primary somatosensory cortex, CB, cerebellum.

PFWE < 0.05, K > 50; L, left, R, right, FWE, familywise error, UH, unaffected hand, AH, affected hand, HC, healthy control, X, Y, Z MNI coordinates.
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FIGURE 3

rsFC maps pre- and post-HBOT of a post-stroke patient. (A) ROI-to-ROI network analysis, swarm scatterplot of longitudinal changes in rsFC z-score

connectivity in brain global network parameters. (B) Seed-to-voxel connectivity maps of longitudinal group di�erences, seed: right supplementary

motor cortex (6, −3, 58). P < 0.05, FEW corrected, R, right.

Figure 3B shows seed-to-voxel-based rsFC maps and refers

to the right SMA seed (6, −3, 58). Within the motor cortex,

post-intervention increased connectivity was demonstrated

in the left posterior parietal cortex (BA7, z-score: 0.23–

0.61), the left primary somatosensory cortex (BA1, z-score:

0.36–0.64), the left premotor cortex (BA6, z-score: 0.56–

0.78), and the right primary motor cortex (BA4, z-score:

0.50–0.69).

Discussion

In this case study, we identified longitudinal changes in cerebral

rsFC and activity related to motor recovery in a chronic post-

stroke patient. We found a possible HBOT-induced reorganization

in inter-hemispheric connectivity patterns and recruitment of

bilateral SMA and PMA activation to improve motion control in

the affected hand.
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Functional motor-related neuroimaging was used in several

studies to investigate the mechanisms of motor recovery after

stroke (35–37). Since the functional cortical representation of

the hand area is highly reproducible in healthy subjects, changes

may reflect reorganization and cerebral plasticity (38). Cramer

showed that activation volume in the primary sensorimotor-

premotor cortex was 37% of the volume activated in patients

with full recovery (39). In this study, improved motor skills were

associated with increased volume activation, primarily in bilateral

SMA and PMA and the cerebellum during affected hand activation,

along with a decrease in LI, demonstrating recruitment of the

contralesional hemisphere. Activation of both ipsilesional and

contralesional somatosensory and PMC areas was previously found

to be involved in cortical plasticity and successful motor function

recovery (40, 41). In addition, contralesional cerebellar activity was

related to the functional reorganization of the motor network after

recovery (28).

Notably, several studies showed that good motor recovery

after rehabilitation is correlated to near-normal activation patterns,

where an increased volume activation and decreased LI are more

likely to occur during the early post-stroke phase (36, 42, 43).

Nevertheless, the activation volume depends on stroke severity and

location, time from injury, type of rehabilitation, and differences in

task or stimulus (44).

In the current study, motor dysfunction was attributed to severe

damage in the secondary cortical areas, responsible for motor

coordination and control, rather than the primary motor cortex.

Therefore, remapping and recruitment of the contralateral cortex

may replace the injured ipsilateral premotor neurons.

To strengthen the observation of changes in brain plasticity, we

identified changes in post-intervention function connectivity. As

rsFC was found to be dynamic over the recovery period (45), inter-

hemispheric connectivity was found to be significantly reduced in

the acute stage and become more balanced with recovery (46–49).

Our results show that increased inter-hemispheric connectivity as

well as between-network connectivity, demonstrating a change in

the recruitment pattern of brain regions, may explain the patient’s

motor skill relearning. These results, acquired in separate scanning

days, also support the increased activation in the contralesional

hemisphere shown during motor task fMRI.

The observed clinical improvement at the delayed chronic

phase in the presented patient, corroborated by findings in

the fMRI, further supports the mechanism of action of the

newly adopted protocol of HBOT. It has become evident

that the synergistic effect of both hyperoxia and hyperbaric

pressure leads to a significant enhancement in tissue oxygenation.

This targets both oxygen-sensitive and pressure-sensitive genes,

resulting in optimized mitochondrial metabolism with anti-

apoptotic and anti-inflammatory effects (16, 17, 50). The

intermittent increase in oxygen concentration triggers many of

the mediators and cellular mechanisms usually induced during

hypoxia but without the harmful effects of hypoxia itself. This

phenomenon is known as the hyperoxic-hypoxic paradox (HHP)

(16, 50).

Among other biological effects, intermittent hyperoxic

exposure during HBOT can influence HIF-1 levels, matrix

metalloproteinases (MMP) activity, and VEGF. It can induce

stem cell proliferation, increase circulating levels of endothelial

progenitor cells (EPCs), and factors related to angiogenesis,

as well as promote angiogenesis itself and enhance blood

flow in ischemic areas (16, 17, 50). Based on previous clinical

studies involving brain single photon emission computerized

tomography (SPECT) imaging, the beneficial impact of

HBOT is most pronounced in the non-necrotic metabolic

dysfunctional regions of the brain, even years after the acute

insult (14).

The present report has several limitations. In this study, the

treatment protocol included physical and occupational therapy

twice a week during the HBOT course of treatment. The patient

was in stable condition prior to treatment; in the absence of

a control group, it is not clear whether the improvement in

motor function is due to HBOT or due to the combined

therapy even though there was no improvement with physical

therapy before 2 years HBOT was initiated. The reliability

of functional imaging analysis (task-based and rsFC) at the

subject level is affected by many technical and personal factors.

Although we used global brain parameters to describe changes

and to reduce measurement error, motor deficits following a

stroke are influenced not only by regional anatomical damage

but also by the effectiveness of the rehabilitation process (51),

and further investigations using a larger sample are needed

to examine the potential of HBOT in the late chronic post-

stroke stage.

In conclusion, our findings provide additional insights

into how HBOT induces brain plasticity and functional

improvement in chronic post-stroke patients. This study

highlights the potential of a complementary analysis of

rsFC and task-based imaging as tools for rehabilitation

efficacy monitoring.
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