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Genetic epilepsy with febrile seizures plus (GEFSP) is a familial epileptic syndrome

that is genetically heterogeneous and inherited in an autosomal dominant form

in most cases. To date, at least seven genes have been reported to associate with

GEFSP. This study aimed to identify the disease-causing variant in a Chinese Tujia

ethnic family with GEFSP by using whole exome sequencing, Sanger sequencing,

and in silico prediction. A heterozygous missense variant c.5725A>G (p.T1909A)

was identified in the sodium voltage-gated channel alpha subunit 1 gene (SCN1A)

coding region. The variant co-segregated with the GEFSP phenotype in this family,

and it was predicted as disease-causing by multiple in silico programs, which was

proposed as the genetic cause of GEFSP, further genetically diagnosed as GEFSP2.

These findings expand the genetic and phenotypic spectrum of GEFSP and should

contribute to genetic diagnoses, personalized therapies, and prognoses.

KEYWORDS

genetic epilepsy with febrile seizures plus, SCN1A, whole exome sequencing, missense
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1. Introduction

Genetic epilepsy with febrile seizures plus (GEFSP, also called GEFS+), previously

known as generalized epilepsy with febrile seizures plus, was first defined by Scheffer and

Berkovic as an inherited epileptic syndrome with genetic and phenotypic heterogeneity

(1, 2). It is a familial epilepsy syndrome clinically characterized by various types of seizures,

including fever-associated and afebrile seizures (3, 4). GEFSP includes a wide range of

subtypes with varying prevalence, of which the estimated prevalence of febrile seizures

(FS) is 3–4%, and the overall prevalence is unclear (5, 6). The most common phenotype

in the GEFSP pedigrees is FS, which occurs between the age of 3 months and 6 years,

followed by febrile seizures plus (FS+), in which episodes with fever persist beyond 6 years

or afebrile seizures occur (7). The diagnosis is based on the occurrence of two or more

family members that show phenotypes in the spectrum, including FS, FS+, FS/FS+ with

various seizures (such as absence, atonic, myoclonic, and partial seizures), and myoclonic-

atonic epilepsy, along with Dravet syndrome (8–10). The inheritance patterns include

autosomal dominant, autosomal recessive, and complex inheritance in which several genes

are involved, accompanied by possibly environmental contributions. In pedigrees with

monogenic variants, most of them follow autosomal dominant patterns, and the minority
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abides by autosomal recessive traits. In some small families, the

most common pattern may be complex inheritance (11, 12). To

date, at least 11 genetic loci are recorded for GEFSP in the Online

Mendelian Inheritance in Man (OMIM, https://www.omim.org/).

Variants in the critical regions of at least seven genes, including

the sodium voltage-gated channel beta subunit 1 gene (SCN1B),

the sodium voltage-gated channel alpha subunit 1 gene (SCN1A),

the gamma-aminobutyric acid type A receptor subunit gamma2

gene (GABRG2), the gamma-aminobutyric acid type A receptor

subunit delta gene (GABRD), the syntaxin 1B gene (STX1B),

the hyperpolarization-activated cyclic nucleotide-gated potassium

and sodium channel 1 gene (HCN1), and the hyperpolarization-

activated cyclic nucleotide-gated potassium and sodium channel 2

gene (HCN2), were reported to be responsible for GEFSP (13–19).

Of these, the SCN1A gene is the most clinically relevant and most

frequently reported disease-causing gene for the GEFSP spectrum,

and∼11% of reported pedigrees were caused by its variants (20).

In this study, we identified a heterozygous missense variant

c.5725A>G (p.T1909A) in the SCN1A gene as the causative variant

in a Chinese Tujia ethnic family with GEFSP.

2. Materials and methods

2.1. Participators and clinical evaluations

A non-consanguineous Chinese Tujia ethnic family located

in the west of Hunan province was recruited from the Third

Xiangya Hospital, Central South University (Changsha, China).

The GEFSP diagnosis was based on clinical features, family history,

electroencephalography (EEG), and genetic testing. The medical

history of the patients was collected. Routine physical examinations

and EEG were performed on the proband. All individuals had

signed the written informed consent before the peripheral venous

blood samples were acquired. The approval of this study was

received from the Institutional Review Board of the Third Xiangya

Hospital, Central South University, Changsha, China.

2.2. DNA extraction and exome capture

The genomic DNA (gDNA) was extracted from peripheral

venous blood samples by using the standard phenol-chloroform

extractionmethod as previously described (21). The gDNA samples

of II:1 and III:1 (Figure 1A) were randomly fragmented to 150 bp-

250 bp using Covaris technology and prepared for whole exome

sequencing (WES). The ends of DNA fragments were repaired, and

the “A” base was ligated at the 3′-end of each strand. Adapters were

added to both ends of the end-repaired DNA for PCR amplification

and further sequencing. The products were then purified and

hybridized to the exome array. Hybridized fragments were used

for circularization, and non-specific fragments were cleaned out

(22). DNA nanoballs were produced by rolling circle amplification.

The qualified captured library was loaded on the BGISEQ-500

sequencing platform, and sequencing-derived raw image files were

analyzed by BGISEQ-500 base-calling software, performed by the

BGI-Shenzhen (Shenzhen, China).

2.3. Read mapping and variant analysis

The clean data were produced by noise-decrease data

filtering on raw data and then aligned to the human reference

genome (GRCh37/hg19) by Burrows–Wheeler Aligner (BWA,

v0.7.15) (23). Picard tools (v2.5.0) were used to label and

remove duplicate reads. The Genome Analysis Toolkit (GATK,

v3.3.0) was used for local realignment and base quality score

recalibration (24, 25). Single nucleotide polymorphisms (SNPs)

and insertions-deletions (indels) were called using HaplotypeCaller

of GATK and then annotated with the SnpEff tool (26). All

candidate variants were screened and analyzed by the public

databases, including the Single Nucleotide Polymorphism database

(dbSNP, build 141), the 1000 Genomes Project, the National

Heart, Lung, and Blood Institute Exome Sequencing Project

6500 (NHLBI ESP6500), the Exome Aggregation Consortium

(ExAC), the Genome Aggregation Database (gnomAD), the

China Metabolic Analytics Project (ChinaMAP), Human Gene

Mutation Database (HGMD), and ClinVar, along with the in-

house BGI exome database including 1,943 controls (27–33).

The MutationTaster (http://www.mutationtaster.org/), Protein

Variation Effect Analyzer (PROVEAN, http://provean.jcvi.

org/), Sorting Intolerant from Tolerant (SIFT, http://provean.

jcvi.org/), Polymorphism Phenotyping v2 (PolyPhen-2, http://

genetics.bwh.harvard.edu/pph2/), and MutationAssessor (http://

mutationassessor.org/r3/) were used to obtain the predicted

pathogenic effects of variants (34–37). Sanger sequencing was

employed to validate the causative variant with an ABI3500

sequencer (Applied Biosystems, Foster City, CA, USA). Primers

used for PCR amplification and sequencing were designed and

analyzed by the Primer3 program and Primer-BLAST, and the

primer sequences for detecting the disease-associated variant are

as follows: forward, 5′-GTGACCGGATCCACTGTCTT-3′ and

reverse, 5′-GCTTTAAAAGGTGGCGTCTG-3′. The NCBI Basic

Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.

gov/Blast.cgi) was used to conduct conservation analysis among

multiple species (38). Wild-type and mutant protein structures

were predicted by SWISS-MODEL (https://swissmodel.expasy.

org/) and displayed by PyMOL software (v2.5.2, Schrödinger,

LLC, New York, NY, USA) (39). The American College of Medical

Genetics and Genomics (ACMG) guidelines for the sequence

variant interpretation were utilized to classify the identified

variant (40).

3. Results

3.1. Clinical findings

The proband (III:1) was a 22-year-old female with

unremarkable spontaneous vaginal delivery and development.

Her first seizure occurred at the age of 2 years when she suffered

from an upper respiratory tract infection and had a fever of

∼38◦C. After that, she had recurrent episodes when she caught

a fever or felt nervous. She has suffered from attacks of afebrile

seizures (AFS) since the age of 14 years. The episodes can

manifest as moderate generalized tonic-clonic seizures, with

a mean duration of 2–7min, and focal impaired awareness
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FIGURE 1

Pedigree figure of the Chinese Tujia ethnic family with genetic epilepsy with febrile seizures plus (GEFSP) and the variant analysis. (A) A pedigree

figure of the family. (B) SCN1A sequence of the proband (III:1) with heterozygous c.5725A>G (p.T1909A) variant. (C) Normal SCN1A sequence of the

una�ected member (II:2). (D) SCN1A p.T1909 amino acid residue is conserved in multiple species. (E) Schematic structure of SCN1A protein and the

location of the p.T1909A variant. S1–S6 represent six alpha-helical transmembrane segments, and DI–DIV represent four homologous domains.

seizures, with a mean duration of 1–1.5min. The ambulatory

EEG showed interictal epileptiform discharges: bilateral slow

waves, sharp waves, and sharp-and-slow wave complexes

(41). Irregularly antiepileptic drug lamotrigine treatment not

adhering to medical advice was applied, and the efficacy was

not good. The self-reported medical history of her father (II:1)

revealed fever-associated seizures at 7 months and spontaneous

remission before the age of 14 years. Focal impaired awareness

seizures began at the age of 7 years, and no AFS were claimed.

Detailed features of patients in this family are presented in

Table 1.

3.2. Genetic analysis

Overall, the WES of the two patients generated an average of

203.59 million effective reads. Of these, ∼99.95% were mapped to
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TABLE 1 Clinical features and genotypes of patients.

Case II:1 III:1

Sex Male Female

Age (years) 49 22

Ethnic background Chinese Tujia ethnic Chinese Tujia ethnic

Variant c.5725A>G (p.T1909A) c.5725A>G (p.T1909A)

Zygosity Heterozygote Heterozygote

Inheritance Maternal? Paternal

Phenotype FS with focal impaired

awareness seizures

FS+ with focal impaired

awareness seizures

FS onset/remission 7 months/14 years 2 years/no

FS episode count 3 30

AFS

onset/remission

No/not applicable 14 years/no

AFS episode count 0 20

Seizure type GTCS and FIAS GTCS and FIAS

Seizure duration 2–7min (FS) and

0.5–1min (FIAS)

2–7min (GTCS) and

1–1.5min (FIAS)

Seizure frequency Once per 2–3 years Once per month (GTCS)

and twice per 3 months

(FIAS)

Heat sensitivity

(fever-association)

100% Before age 14: 100%,

after age 14: <50%

Familial history Yes Yes

Pregnancy and

delivery

Possible malnutrition in

pregnancy

(self-reported)

Normal

Psychomotor

development

Normal Normal

Neurological

examination

Not available Normal

Electroencephalogram Not available Interictal epileptiform

discharges

Brain imaging Not available Normal MRI

Antiepileptic drug

response

Not applicable

(remission without

antiepileptic drugs)

Slightly shortened

duration and decreased

frequency on lamotrigine

FS, febrile seizures; AFS, afebrile seizures; FS+, febrile seizures plus; GTCS, generalized tonic-

clonic seizures; FIAS, focal impaired awareness seizures; MRI, magnetic resonance imaging.

the human reference genome. The target sequence covered 99.68%

of bases at ≥10×, and the average sequencing depth was 256.39×.

A total of 98,432 SNPs and 17,160 indels were identified in the

father (II:1), and∼106,543 SNPs and 18,860 indels were detected in

the proband (III:1). A variant filtering scheme, described in recent

studies, was applied for detecting the potential disease-associated

variant for patients. Common variants registered in dbSNP, 1000

Genomes Project, and NHLBI ESP6500 with an allele frequency

of >0.5% were excluded, and damaging variants predicted by

in silico tools were reserved. Using the mentioned criteria, only

a heterozygous variant of the SCN1A gene (NM_001353948.2),

c.5725A>G (p.T1909A), shared by two patients, was judged as the

most likely disease-causing variant and predicted to be deleterious

TABLE 2 Identification of the disease-associated variant in the patients.

Item Information

Gene SCN1A

Exon 27

Nucleotide change c.5725A>G

Amino acid change p.T1909A

Zygosity Heterozygote

Variant type Missense variant

dbSNP141 Absence

1000G Absence

NHLBI ESP6500 Absence

ExAC Absence

gnomAD Absence

ChinaMAP Absence

ClinVar Absence

HGMD CM173503

In-house BGI exome database Absence

MutationTaster (probability value, prediction) 0.999, disease causing

PROVEAN (score, prediction) −4.60, deleterious

SIFT (score, prediction) 0.000, damaging

PolyPhen-2 (score, prediction) 0.999, probably damaging

MutationAssessor (FI score, prediction) 4.03, high function impact

Classification (ACMG guidelines) Likely pathogenic

SCN1A, the sodium voltage-gated channel alpha subunit 1 gene; dbSNP141, Single Nucleotide

Polymorphism database build 141; 1000G, 1000 Genomes Project; NHLBI ESP6500,

National Heart, Lung, and Blood Institute Exome Sequencing Project 6500; ExAC, Exome

Aggregation Consortium; gnomAD, Genome Aggregation Database; ChinaMAP, China

Metabolic Analytics Project; HGMD, Human Gene Mutation Database; PROVEAN, Protein

Variation Effect Analyzer; SIFT, Sorting Intolerant fromTolerant; PolyPhen-2, Polymorphism

Phenotyping v2; FI, functional impact; ACMG, American College of Medical Genetics

and Genomics.

by bioinformatics (Table 2). Sanger sequencing corroborated the

variant in the patients (II:1 and III:1, Figure 1B) and revealed the

absence of the variant in the proband’s unaffected mother (II:2,

Figure 1C). Conservation analysis showed the high conservation of

themutated p.T1909 residue among 10 species (Figure 1D), and the

conformation change caused by the variant was shown in Figure 2.

Based on the above evidence, the variant c.5725A>G (p.T1909A)

in the SCN1A gene appears to be accountable for the GEFSP in this

family. According to ACMG guidelines, the SCN1A gene variant

c.5725A>G (p.T1909A) was classified as a “likely pathogenic” (PS1

+ PM2+ PP1+ PP3) variant.

4. Discussion

GEFSP is a familial epileptic syndrome with remarkable genetic

and phenotypic heterogeneity (42). It was first described in a large

Australian family having an unusual concentration of generalized

epilepsy and FS (43). Since the SCN1B gene was reported as the first

causative gene of GEFSP in 1998, a large number of GEFSP-related

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1229569
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1229569

FIGURE 2

Cartoon model of the SCN1A protein structure by PyMOL 2.5.2 based on the SWISS-MODEL: the threonine and the altered alanine at position 1909

are shown as ball-and-stick models.

variants have been identified in seven pathogenic genes, in which

the SCN1A gene is the most frequently reported and most clinically

relevant one (44).

In this study, we identified the SCN1A missense variant

c.5725A>G (p.T1909A) in two members of the Chinese Tujia

ethnic family via WES and Sanger sequencing, which was found to

co-segregate with the phenotype in the family. The proband had

AFS and uncontrolled seizures in adulthood, and her father had

self-limited seizures, in favor of the phenotypic heterogeneity of

GEFSP, genetically diagnosed as GEFSP2.

The SCN1A gene, located on chromosome 2q24.3, includes 27

exons, encoding the protein sodium voltage-gated channel alpha

subunit 1 (Nav1.1) with 2,009 amino acids (∼229 kDa) (45). The

Nav1.1 includes four homologous domains (I-IV), each containing

six alpha-helical transmembrane segments (S1-S6), in which the

S4 is a voltage sensor, and the S5 and S6 form the ion-selective

pores (Figure 1E) (46). It is highly expressed in the brain, especially

the prefrontal cortex, and forms the voltage-dependent sodium

channel with beta subunits as one of the primary sodium channels

in the central nervous system (http://biogps.org/), which plays a

crucial role in the initiation and propagation of action potentials

in neurons (47, 48).

To date, more than 2,584 variants in the SCN1A gene

have been recorded, and most are deemed responsible for

GEFSP phenotypes (HGMD, http://www.hgmd.cf.ac.uk/ac/index.

php). The c.5725A>G variant was located at the exon 27 of

the SCN1A gene. It was absent in public databases including

dbSNP, the 1000 Genomes Project, NHLBI ESP6500, ExAC,

gnomAD, ChinaMAP, ClinVar, and the in-house BGI exome

database. The variant was predicted as deleterious or probably

damaging by multiple in silico programs including MutationTaster,

PROVEAN, SIFT, PolyPhen-2, and MutationAssessor. The
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threonine at position 1,909 was phylogenetically conserved

among varied species from fruit flies to human beings. The

polar hydrophilic to non-polar hydrophobic residue change may

affect the tertiary structure and impact normal function (49).

The p.T1909A variant is located in the cytoplasmic region of

the Nav1.1 C-terminal domain, which contains binding sites

of interaction proteins and plays an important role in channel

inactivation (50).

A de novo c.5725A>G (p.T1909A) variant was reported in

a patient with focal epilepsy, recorded in HGMD (CM173503)

(44). Moreover, a missense variant involving the same residue,

c.5726C>T (p.T1909I, rs121918793), was reported in a 7-month-

onset female with severe myoclonic epilepsy of infancy (SMEI, i.e.,

Dravet syndrome) (51).

Functional studies indicated that different SCN1A variants

alter sodium channel properties and functions in different

ways and cause distinctive effects on the sodium channel

activity, thus affecting the selection of antiepileptic drugs

(52). Both gain-of-function (GOF) and loss-of-function (LOF)

effects could be responsible for SCN1A-associated epilepsies.

In human tsA201 cells with p.R1648C or p.F1661S variant,

a small non-inactivating persistent inward current during

depolarization was reported to lead to neuron hyperexcitability,

which exhibited a GOF effect in the sodium channels (53).

GOF-related epilepsy can usually be relieved by commonly

prescribed antiepileptic drugs that inhibit sodium channels, such

as carbamazepine and phenytoin (54). SCN1A LOF variants

mainly impair bipolar GABAergic inhibitory interneurons

and lead to diminished inhibition (55). The application

of GABA transaminase inhibitors such as valproic acid

or GABA receptor-positive allosteric modulators, such as

pentobarbital, appears to be effective, while the sodium channel

blocker may provoke seizure aggravation (56). In human

tsA201 cells, the SMEI-associated p.T1909I variant exhibited

a mixture mechanism of GOF and LOF, with increased

persistent current and reduction of current density (57). In

this study, disease symptom remission and seizure frequency

reduction after lamotrigine application in the proband were

unsatisfactory. Due to the same biophysical property change

(polar hydrophilic to non-polar hydrophobic) of p.T1909I

and p.T1909A variants, the same mechanism may be shared.

Limited response to medication may be due to the use of

a single sodium channel blocking antiepileptic drug. The

prescription of GABA transaminase inhibitors or GABA

receptor-positive allosteric modulators might be beneficial

for the sufferers.

Genetic deficient animal models verified the important

role of the SCN1A gene in epilepsy development. The

drosophila SCN1A p.K1270T variant knock-in model showed

that when the temperature rose, the deactivation threshold

for persistent sodium currents reversibly shifted to a more

negative voltage, causing sustained depolarizations in GABAergic

inhibitory interneurons and leading to reduced inhibitory

activity in the brain (58). Heterozygous (Scn1a+/−) mice had

spontaneous seizures and occasional deaths beginning on

postnatal day 21, attributed to haploinsufficiency of Nav1.1

channels, and homozygous Scn1a knockout (Scn1a−/−) mice

developed severe ataxia and seizures and died on postnatal

day 15, corresponding to the LOF effect (59). In a bacterial

artificial chromosome transgenic SCN1A p.R1648H variant

mouse model, experiments showed a delayed recovery of

channel inactivation only in inhibitory neurons, suggesting

the cell type-dependence of SCN1A mutation and the

p.R1648H variant leading to a reduction in inhibitory neurons

excitability (60).

5. Conclusion

In summary, a missense variant c.5725A>G (p.T1909A) in

the SCN1A gene was identified in a Chinese Tujia ethnic family

with GEFSP, further classified as GEFSP2. The different phenotypes

of the same variant in the family show the heterogeneity of

GEFSP. These findings confirmed the SCN1A-associated GEFSP,

which may expand the genetic and phenotypic spectrum of

GEFSP and improve genetic diagnoses, personalized therapies,

and prognoses. The combination of WES and Sanger sequencing

efficiently provided a timely diagnosis and indicated management

for those with clinically and/or genetically suspected GEFSP.

Additional in vitro studies and the establishment of genetically

deficient animal models to explore the functional effect of

human SCN1A variants may help to further illuminate potential

pathogenic mechanisms.
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