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Objective: This study aimed to classify and calculate the minimal detectable 
changes (MDC) in gait time and gait speed in a 10-meter walking test (10MWT) in 
patients with stroke classified according to their gait speed.

Methods: The participants were 84 patients with stroke. Their gait times were 
measured twice each at their comfortable gait speed (CGS) and maximum gait 
speed (MGS) on a 10-meter straight track, and gait speed was calculated using gait 
time. Participants were assigned to three speed groups based on their CGS: low-
speed (<0.4  m/s; n  =  19); moderate-speed (0.4–0.8  m/s; n  =  29); and high-speed 
(>0.8  m/s; n  =  36). For each group, first and second retest reliability and MDC of 
CGS and MGS were calculated using gait time and gait speed in the 10MWT.

Results: MDCs in the 10MWT at CGS were: low-speed group, gait time 5.25  s, 
gait speed 0.05  m/s; moderate-speed group, gait time 2.83  s, gait speed 0.11  m/s; 
and high-speed group, gait time 1.58  s, gait speed 0.21  m/s. MDCs in the 10MWT 
at MGS were: low-speed group, gait time 7.26  s, gait speed 0.04  m/s; moderate-
speed group, gait time 2.48  s, gait speed 0.12  m/s; and high-speed group, gait 
time 1.28  s, gait speed 0.19  m/s.

Conclusion: Since the MDC of gait speed and gait time differ depending on 
the participant’s gait speed, it is necessary to interpret the results according 
to the participant’s gait speed when judging the effectiveness of therapeutic 
interventions.
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1. Introduction

Patients with stroke frequently have gait impairments, such as low gait speed, low endurance, 
and low gait independence (1). Following a stroke, approximately 70% of individuals older than 
65 years of age regain independent gait within 6 months (2), but only 30% of gait speeds exceed 
0.8 m/s following inpatient rehabilitation (3). Previous studies have reported an average gait 
speed of 0.36 m/s in patients in the subacute stroke phase (4), and 0.56 m/s in patients in the 
chronic stroke phase (5). Furthermore, the incidence of falls within 1 year of stroke onset has 
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been reported to be 73% (6). Therefore, recovery of gait ability in 
patients with stroke is an important and major goal of 
rehabilitation (7, 8).

The 10-meter walking test (10MWT) is one of the most common 
methods for assessing gait ability (9), that can be easily and quickly 
evaluated in the laboratory as well as at the clinical site (10), and has 
been reported as being reliable in many reports (11–14). Furthermore, 
since the 10MWT has been reported to be associated with motor 
function (15), health-related quality of life (16), and predictors of 
survival (17), capturing changes in gait speed is considered very 
important (18).

In recent years, although many studies have reported the 
importance of assessing changes in gait speed and intervention 
effects in patients with stroke in terms of the minimum detectable 
change (MDC) (5, 19, 20), the reported MDC is highly variable. 
Patients with stroke have large variability in gait speed due to the 
influence of motor function and gait ability (21). Furthermore, 
according to previous studies, there is an association between motor 
function and gait ability in patients with stroke, with low motor 
function typically observed with low gait speeds (15, 22). In addition, 
calculation of gait speed is often performed using the gait time 
obtained in the 10MWT. Several previous studies using the 10MWT 
have assessed the observed gait time, rather than gait speed, as the 
outcome measure (23–26), because it is easier to use gait time 
measured in the 10MWT at clinical sites. However, although it is 
necessary to consider the MDC when examining whether or not the 
change in gait time obtained following intervention is clinically 
significant, the MDC of the 10MWT in stroke patients is only 
reported for gait speed, and it is difficult to calculate the MDC of gait 
time, from the MDC of gait speed. It is also not possible to determine 
whether the clinical effect obtained in intervention studies is a change 
beyond the error range.

In a previous study of gait speed in patients with stroke, gait speed 
was used to classify the ability to move around in the home and 
outdoors (9). Classification of gait speed has also been reported to 
be clinically meaningful, as reports using these classifications have 
revealed differences in motor function and quality of life in groups 
classified according to these gait speeds (27). Although previous 
studies on the MDC of gait speed in patients with stroke have also 
reported that the MDC of gait speed varies depending on the baseline 
gait speed of the subject (28), no report has yet mentioned the MDC 
of gait time according to baseline gait speed in patients with stroke.

Therefore, in this study, we assessed MDCs of gait time and gait 
speed in the 10MWT in patients with stroke classified according to 
their gait speed, and examined the differences in MDCs of gait time 
and gait speed.

2. Materials and methods

2.1. Participants

A total of 84 stroke patients were enrolled at the Ukai 
Rehabilitation Hospital of the Keizankai Medical Corporation in this 
study (average age, 68.5 ± 13.7 years; males, n = 42; females, n = 42; 
average time since stroke, 75.7 ± 34.5 days; hemorrhage, n  = 39; 
infarction, n = 45; right hemiplegia, n = 47; left hemiplegia, n = 37; 
Table 1).

Inclusion criteria were defined as the ability to walk independently 
without the assistance of physical therapists, with or without the use 
of walking aids (i.e., T-cane and Q-cane) or an ankle foot orthosis 
(AFO) when walking. Exclusion criteria were the presence of 
orthopedic diseases, significant ataxic symptoms, and aphasia or 
dementia leading to patient inability to comprehend the study 
purpose. Previous studies have reported that, based on gait speed, 
people can be classified as those capable of household ambulation 
(<0.4 m/s), limited community ambulation (0.4 to 0.8 m/s), or full 
community ambulation (>0.8 m/s) (9); additionally, the classification 
of gait speed has been reported to be clinically meaningful, as reports 
using these classifications have revealed differences in the quality of 
life in each group according to these gait speed classifications (27). 
Based on these previous studies, patients were divided into three 
groups according to gait speed: a low-speed group with a gait speed of 
less than 0.4 m/s; a moderate-speed group with a gait speed between 
0.4 m/s and 0.8 m/s; and a high-speed group with a gait speed of 
0.8 m/s or higher. All participants provided their informed consent 
before the start of the study. This study was conducted according to 
the guidelines of the Declaration of Helsinki and was approved by the 
Ethics Committee of Ukai Rehabilitation Hospital (approval number: 
4-0040).

2.2. Assessments

The 10MWT is a method of assessing gait ability that has been used 
to evaluate a variety of conditions in patients with stroke (29). It 
measures speed during a 10-meter walk, although currently, there are 
no clear rules regarding acceleration and deceleration intervals before 
and after the 10-meter segment. In the present study, an acceleration 
distance of 3 m and a deceleration distance of 3 m was set up at the front 
and rear end, respectively, of the 10 m track, and gait speed was 
calculated by measuring the gait time in the 10 m middle section, 
excluding the acceleration and deceleration areas, with a digital 
stopwatch (30). For the assessment of parameters at a comfortable 
walking speed, participants were instructed to “Walk at your normal, 
comfortable pace”; for the fast speed, participants were instructed to 
“Walk as fast as you safely can.” If necessary, participants used their 
walking aids (i.e., T-cane and Q-cane) or AFO, although they did not 
receive the physical therapists’ assistance. Measurements were obtained 
twice at a comfortable speed and twice at the maximum speed. In 
addition, participants took a 20-s break between each measurement (31);.

Further, motor function was assessed using the lower-limb 
Brunnstrom Recovery Stage (BRS). The BRS evaluates lower extremity 
function on a 6-point scale, with higher scores (range: 1–6) indicating 
better motor function (32).

2.3. Data and statistical analysis

The mean of the first and second 10MWTs for each subject and 
the difference between the first and second measurements were used 
for statistical analysis as the difference between the two measurements. 
First, the normality of the variables obtained from the 10MWT at each 
speed was confirmed by the Shapiro–Wilk test. Reliability refers to the 
error of the measurement due to variability between study subjects, 
and is used to determine the discriminative ability of the measurement 
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at a group level (33, 34). Reliability and agreement of an outcome are 
both essential when determining the effects of treatment in a patient 
population (33). In this study, to test the reliability of the first and 
second measurements, the inter-rater reliability of the 10MWT was 
assessed using a two-way mixed effect, consistency, single-rater 
measurement model (3, 1) intraclass coefficient (ICC) with absolute 
agreement, as described in previous research (31, 35). The ICCs were 
classified using the following categories: <0.5 = poor reliability; 
0.5 < 0.75 = Moderate reliability; 0.75–0.9 = Good reliability; 
>0.9 = Excellent reliability (36). Then, Bland–Altman analysis was 
used to check for systematic bias (37). For Bland–Altman plot, see 
Supplementary material. In systematic bias, a fixed bias can 
be  considered to be  absent if the 95% confidence interval of the 
difference between two measurements includes 0 (37). Furthermore, 
proportional bias can be determined by testing the difference between 
two measurements and the correlation between two average data 
groups (38). When the absence of systematic bias was confirmed, the 
measurement error was calculated in each group using the MDC, 
because the difference between multiple measurements can be limited 
to random error. The MDC indicates the marginal range in which the 
change between two measurements obtained by repeated 
measurements, such as retests, is due to measurement error, and 
MDC95, the 95% confidence interval of the MDC, is generally used 
(39). MDC95 is calculated using the following equation:

 MDC SEM95 1 96 2= × ×√.

Although several methods for calculating the standard error of 
measurement (SEM) included in the MDC formula have been 
reported (38–40), the differences between the SEM calculated by these 
methods and the respective MDC values calculated using these SEMs 
are reported to be negligible, including in clinical applications [32]. In 
the present study, the standard deviation of the difference between the 
two measurements (SDd), obtained using the following equation, was 
used, as reported in a previous study (41):

 SEM SDd= √/ 2

From the above equations, the MDC of gait time and gait speed 
in the 10MWT, measured at the CGS and MGS in each group, 
were calculated.

Age, sex, height, weight, time since the stroke, type of stroke, 
paretic side, and BRS of the three groups were compared using a 
one-way analysis of variance or the Kruskal-Wallis test. The Bonferroni 
method was used for multiple comparisons. All statistical analyses 
were conducted using SPSS version 28.0 (IBM Corp., Armonk, NY, 
USA). Values of p < 0.05 were considered to indicate significance.

3. Results

Overall, 84 individuals with stroke were analyzed in this study 
(Table 1). The low-speed group comprised 19 individuals (<0.4 m/s), 
the moderate-speed group comprised 29 individuals (0.4–0.8 m/s), and 
the high-speed group comprised 36 individuals (>0.8 m/s). The results 
of the multiple comparison tests showed that the low-speed group had 
a lower BRS and severe paralysis compared to the moderate-and high-
speed groups (p < 0.05; Table 1). No significant differences were found 
between the groups for the other variables. In each group, the MDC 
for gait time and speed were different (Tables 2, 3). The ICCs (3, 1) of 
the 10MWT in each group were in the ‘good’ to ‘excellent’ reliability 
range for both gait time and gait speed (Tables 2, 3).

3.1. MDC of the 10MWT at a comfortable 
gait speed

MDCs in the 10MWT at a comfortable gait speed (CGS) were 
different in each group. The MDCs of each group at CGSs were: 
low-speed group: gait time 5.25 s, gait speed 0.05 m/s; 

TABLE 1 Characteristics of the total cohort and the three groups.

Overall (n  =  84) Low-speed group 
(n  =  19)

Moderate-speed 
group (n  =  29)

High-speed group 
(n  =  36)

Age (years) 68.5 ± 13.7 69.6 ± 12.0 68.0 ± 14.7 68.1 ± 14.1

Sex (male/female) 42/42 9/10 9/20 24/12

Height (cm) 161.7 ± 9.1 159.7 ± 11.2 163.6 ± 8.8 161.6 ± 7.9

Weight (kg) 59.9 ± 12.5 56.8 ± 12.7 62.5 ± 13.7 59.4 ± 11.2

Time since stroke (days) 75.7 ± 34.5 93.4 ± 40.5 72.3 ± 32.6 68.0 ± 29.9

Type of stroke (hemorrhagic/infarction) 39/45 11/8 10/19 18/18

Paretic side (right/left) 47/37 9/10 15/14 23/13

Use of ankle-foot orthosis 34 17 17 0

Use of cane (T-cane/Q-cane) 26/13 8/11 18/2 1/0

Brunnstrom recovery stage (point) 4 (2–6) 3 (2–5) 4 (3–6) 6 (5–6)

Comfortable 10-meter walking test (s) 21.14 ± 18.71 49.38 ± 21.99 16.94 ± 2.97 9.62 ± 1.48

Comfortable walking speed (m/s) 0.72 ± 0.35 0.24 ± 0.10 0.61 ± 0.09 1.07 ± 0.16

Maximum 10-meter walking test (s) 16.37 ± 13.97 40.10 ± 14.35 14.11 ± 3.56 7.58 ± 1.49

Maximum walking speed (m/s) 0.93 ± 0.48 0.28 ± 0.11 0.75 ± 0.15 1.37 ± 0.28

Data are expressed as the mean ± standard deviation or median (minimum-maximum).
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moderate-speed group: gait time 2.83 s, gait speed 0.11 m/s; and high-
speed group: gait time 1.58 s, gait speed 0.21 m/s (Table 2). On the 
10MWT at a CGS, the slower the participant’s gait speed, the larger 
the error in gait time and the smaller the error in gait speed.

3.2. MDC of the 10MWT at a maximum gait 
speed

Similar to the 10MWT at a CGS, the MDCs of the 10MWT at 
maximum gait speed (MGS) were also different for each group. The 
MDC of each group on the 10MWT at the MGS were: low-speed 
group, gait time 7.26 s, gait speed 0.04 m/s; moderate-speed group, gait 
time 2.48 s, gait speed 0.12 m/s; and high-speed group, gait time 1.28 s, 
gait speed 0.19 m/s (Table 3). Similar to the 10MWT at a CGS, the 
10MWT at the MGS also showed that the error in gait time increased 
and the error in gait speed became smaller as the participant’s gait 
speed became slower.

4. Discussion

The purpose of this study was to classify both gait time and gait 
speed on the 10MWT in patients with stroke classified according to the 

participants’ gait speed, and to calculate their MDC. The results of this 
study showed that the MDC of gait speed measured on the 10MWT 
was lower in the low-speed group than in the high-speed group. The 
MDC results for gait speed on the 10MWT in the present study were 
generally similar to, and thus supported, those of the previous study 
(28, 42). On the other hand, the results of the present study showed that 
the MDC of gait time measured on the 10MWT was lower in the high-
speed group than in the low-speed group. When selecting outcome 
measures to assess changes in gait ability in patients with stroke, 
clinicians and therapists need to use tools with sound psychometric 
properties. However, measuring outcomes in post-stroke individuals 
can be  challenging due to symptom heterogeneity, variability in 
severity, and the variety of etiologies (43). The results of the present 
study can be used to measure changes in gait ability in patients with 
stroke classified according to their gait speed. Clinicians and therapists 
should use MDC values established from participants with similar 
characteristics when attempting to determine if a true change in gait 
speed has occurred. As areas of further research, the characteristics of 
patients with stroke might need to be considered when using the MDC.

On the other hand, the results of this study showed that the MDC 
of gait speed was different from the MDC of gait time, and slower gait 
speed was associated with a greater MDC. It has been shown that the 
lower the motor function of stroke patients, the lower their gait ability 
(1, 44, 45). Furthermore, previous studies have shown that the lower 

TABLE 2 Minimum detectable changes in each gait speed group at comfortable speeds and reliability of repeated measurements.

Group 10-meter 
walking test

Outcomes ICC 
(3, 1)

Bland–Altman analysis SDd SEM MDC95

Fixed bias Proportional bias

95% Confidence 
interval

Correlation 
coefficient

p value

Low speed group 

(n = 19)

Gait time (s) 21.14 ± 18.71 0.95 −0.56 - 2.03 −0.54 p > 0.05 2.68 1.89 5.25

Gait speed (m/s) 0.72 ± 0.35 0.94 −0.01 - 0.03 1.99 p > 0.05 0.03 0.02 0.05

Moderate speed group 

(n = 29)

Gait time (s) 16.94 ± 2.97 0.93 −0.07 - 1.03 0.22 p > 0.05 1.40 1.00 2.83

Gait speed (m/s) 0.61 ± 0.09 0.88 −0.01 - 0.04 −0.26 p > 0.05 0.06 0.04 0.11

High speed group 

(n = 36)

Gait time (s) 9.62 ± 1.48 0.92 −0.24 - 0.30 −0.24 p > 0.05 0.80 0.60 1.58

Gait speed (m/s) 1.07 ± 0.16 0.89 −0.03 - 0.04 −0.17 p > 0.05 0.11 0.08 0.21

Data are expressed as the mean ± standard deviation. ICC, intraclass correlation coefficients; SDd, standard deviation difference; SEM, standard error of measurement; MDC95, Minimal 
detectable change.

TABLE 3 Minimum detectable changes in each gait speed group at maximum speeds and the reliability of repeated measurements.

Group 10-meter 
walking test

Outcomes ICC 
(3, 1)

Bland–Altman analysis SDd SEM MDC95

Fixed bias Proportional bias

95% Confidence 
interval

Correlation 
coefficient

p value

Low speed group 

(n = 19)

Gait time (s) 16.37 ± 13.97 0.95 −2.58 - 0.10 −1.49 p > 0.05 3.70 2.62 7.26

Gait speed (m/s) 0.93 ± 0.48 0.95 −0.01 - 0.01 −0.34 p > 0.05 0.02 0.01 0.04

Moderate speed group 

(n = 29)

Gait time (s) 14.11 ± 3.56 0.96 −0.78 - 0.19 −0.89 p > 0.05 1.27 0.89 2.48

Gait speed (m/s) 0.75 ± 0.15 0.95 −0.04 - 0.01 0.77 p > 0.05 0.06 0.04 0.12

High speed group 

(n = 36)

Gait time (s) 7.58 ± 1.49 0.95 −0.43 - 0.01 −0.10 p > 0.05 0.65 0.46 1.28

Gait speed (m/s) 1.37 ± 0.28 0.93 −0.06-0.01 0.28 p > 0.05 0.10 0.07 0.19

Data are expressed as the mean ± standard deviation. ICC, intraclass correlation coefficients; SDd, standard deviation difference; SEM, standard error of measurement; MDC95, minimal 
detectable change.
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the gait ability, the greater the variability in gait cycle time, swing time 
of gait, and stride length during gait (46, 47). The present study 
showed lower motor function in the low-speed group compared to the 
high-speed group, supporting previous studies. Therefore, it was 
thought that the MDC of gait time in multiple measurements might 
have been larger in the low-speed group.

In the case of gait speed measured on the 10MWT, however, the 
MDC was larger in the high-speed group. Gait speed is calculated by 
dividing the distance covered by the gait time. Therefore, even if a 
large change occurs in the low-speed group, the change is small after 
standardization because the denominator is the long gait time. On the 
other hand, in the case of the high-speed group, since the denominator 
of gait time is short, MDC measurements are sensitive to even a slight 
change in gait speed, reflecting a large change when the speed is 
standardized. The above results suggest that the variability in 
calculated gait speed is larger in the high-speed group and that MDC 
might also be larger in the high-speed group.

Furthermore, in this study, the MDC of gait speed and gait time 
were calculated at both comfortable and maximum speeds. As a result, 
the MDC of gait speed was higher in the high speed group and the 
MDC of gait time was higher in the low speed group, regardless of the 
speed condition at the time of measurement in stroke patients. Under 
the 10 MWT speed condition, there was no difference in both gait 
speed and gait time MDC. It has been reported that the difference 
between comfortable gait speed and maximum gait speed is smaller 
in stroke patients than in normal subjects because stroke patients are 
unable to tolerate changes in gait speed due to their reduced balance 
ability caused by motor paralysis and muscle weakness (48). It is 
possible that these effects did not cause differences in MDC values 
between the 10MWT speed conditions in this verification.

The results obtained in this study, in which the MDC of gait speed 
and gait time in the 10MWT differed for each gait speed, suggest that 
the MDC depends on the gait speed of patients with stroke, and that 
the results should be interpreted according to their gait speed when 
determining changes in gait speed in response to interventions. 
Comparing the MDC of gait speed reported in the previous study (5, 
28, 48) and the MDC of the low speed group obtained in this 
verification, the low speed group shows lower values than those 
reported in the previous study. Therefore, based on the MDC used in 
previous studies, any attempt to measure or capture pre-and post-
intervention changes in low-velocity stroke patients would 
be evaluated as changes that do not exceed the MDC. Furthermore, 
the MDC of gait time at 10 MWT in the low speed group showed a 
large value, suggesting that the actual change in time may be large 
before and after the measurement and intervention. Conversely, the 
MDC of the high speed group shows larger values compared to the 
MDC reported in previous studies. Therefore, about high speed 
patients with stroke, there is a risk of judging that the MDCs reported 
in previous studies are changing before and after measurement or 
intervention, even though they are within the range of measurement 
error when compared before and after measurement or intervention 
using the MDCs reported in previous studies. Thus, the MDC of gait 
speed by gait speed obtained in this study may help to more accurately 
capture measurement and intervention changes in future studies of 
patients with stroke. Furthermore, while error values are sometimes 
used to estimate sample size (49, 50), the finding that the MDC 
differed depending on the subject’s gait speed in this study may help 
in estimating sample size in future studies.

In addition, at clinical situations, the MDC of gait time according 
to gait speed should also be taken into consideration, since gait time 
obtained with the 10MWT is often used for easy assessment of the 
changes in the subject’s gait ability (23–25). In recent years, 
intervention studies for patients with severe stroke have been 
reported (24, 26, 51). The results of this study suggest that, with 
respect to patients with low speed with severe stroke, MDC of gait 
time may be effective in sensitizing them to changes. Furthermore, 
the results presented in this study could aid future studies using gait 
time in the 10 MWT as an outcome.

One limitation of this study is the inter-patient variability in the 
time interval between stroke onset and performing the 10MWT in 
this study. Since the number of days elapsed since stroke onset 
might have at least some effect on MDC, these factors should 
be taken into account in the future. Another limitation is that the 
number of participants in each speed group varied, with the high-
speed group having a larger number of participants than the low 
speed group. In the future, it would be desirable to calculate MDC 
with a larger number of participants. Furthermore, in the present 
validation study, the 10MWT was performed with or without the 
use of a walking aid, although the use of a walking aid might also 
affect the MDC. These limitations will need to be considered in 
future studies.
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