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Introduction: Degenerative cervical myelopathy (DCM) is the most common

cause of non-traumatic incomplete spinal cord injury, but its pathophysiology is

poorly understood. As spinal cord compression observed in standard MRI often

fails to explain a patient’s status, new diagnostic techniques to assess DCM are

one of the research priorities. Minor cardiac-related cranio-caudal oscillations

of the cervical spinal cord are observed by phase-contrast MRI (PC-MRI) in

healthy controls (HCs), while they become pathologically increased in patients

su�ering from degenerative cervical myelopathy. Whether transversal oscillations

(i.e., anterior–posterior and right–left) also change in DCM patients is not known.

Methods: We assessed spinal cord motion simultaneously in all three spatial

directions (i.e., cranio-caudal, anterior–posterior, and right–left) using sagittal

PC-MRI and compared physiological oscillations in 18 HCs to pathological

changes in 72 DCM patients with spinal canal stenosis. The parameter of interest

was the amplitude of the velocity signal (i.e., maximum positive to maximum

negative peak) during the cardiac cycle.

Results: Most patients su�ered from mild DCM (mJOA score 16 (14–18) points),

and the majority (68.1%) presented with multisegmental stenosis. The spinal

canal was considerably constricted in DCM patients in all segments compared

to HCs. Under physiological conditions in HCs, the cervical spinal cord oscillates

in the cranio-caudal and anterior–posterior directions, while right–left motion

was marginal [e.g., segment C5 amplitudes: cranio-caudal: 0.40 (0.27–0.48) cm/s;

anterior–posterior: 0.18 (0.16–0.29) cm/s; right–left: 0.10 (0.08–0.13) cm/s].

Compared to HCs, DCM patients presented with considerably increased cranio-

caudal oscillations due to the cardinal pathophysiologic change in non-stenotic

[e.g., segment C5 amplitudes: 0.79 (0.49–1.32) cm/s] and stenotic segments

[.g., segment C5 amplitudes: 0.99 (0.69–1.42) cm/s]). In contrast, right–left [e.g.,

segment C5 amplitudes: non-stenotic segment: 0.20 (0.13–0.32) cm/s; stenotic
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segment: 0.11 (0.09–0.18) cm/s] and anterior–posterior oscillations [e.g., segment

C5 amplitudes: non-stenotic segment: 0.26 (0.15–0.45) cm/s; stenotic segment:

0.11 (0.09–0.18) cm/s] remained on low magnitudes comparable to HCs.

Conclusion: Increased cranio-caudal oscillations of the cervical cord are

the cardinal pathophysiologic change and can be quantified using PC-MRI

in DCM patients. This study addresses spinal cord oscillations as a relevant

biomarker reflecting dynamic mechanical cord stress in DCM patients, potentially

contributing to a loss of function.

KEYWORDS

spinal cord motion, spinal cord oscillations, spinal stenosis, degenerative cervical

myelopathy, phase contrast MRI

1. Introduction

Degenerative cervical myelopathy (DCM) is the most common

cause of non-traumatic incomplete spinal cord injury (1, 2). As

spinal cord compression observed in standard MRI often fails to

explain a patient’s status (3–6), new diagnostic techniques to assess

DCM are one of the research priorities (7). The spinal cord is

subject to cardiac-related oscillations, which were initially shown

by intraoperative ultrasound (8). Later on, phase contrastMRI (PC-

MRI) revealed increased cranio-caudal spinal cord oscillations at

the level of cervical spinal stenosis and also in adjacent segments

in DCM patients (9–12). The highest increase in cranio-caudal

oscillations was observed at the site of the cervical stenosis,

suggesting that this is a causal mechanism resulting in excessive

strain on the entire cervical cord through stretch and compression

of adjacent segments (13). Additionally, in contrast to a

physiological resting phase in healthy conditions, an alteredmotion

pattern with restless oscillations of the spinal cord throughout

the cardiac cycle in DCM patients was observed (14). Assuming

∼100,000 heartbeats and subsequent oscillations per day, dynamic

mechanical stress on the spinal cord tissue may be underestimated

in DCM pathophysiology. Supporting this hypothesis, increased

cranio-caudal spinal cord motion was associated with sensory

deficits (9, 12) and impaired electrophysiological readouts (11) in

DCM patients. Thus, increased cranio-caudal spinal cord motion

has emerged as a new and promising diagnostic biomarker in

DCM patients, reflecting dynamic mechanical stress on the spinal

cord. Therefore, studies on cervical spinal cord motion in DCM

patients focused on oscillations in the cranio-caudal direction

only, while relevant anterior–posterior and right–left oscillations

of the cord in patients suffering from spine metastasis were

previously observed (15). In this study, we aimed to investigate

cervical spinal cord motion simultaneously in all three spatial

directions (i.e., cranio-caudal, anterior–posterior, and right–left)

under physiological conditions in healthy controls (HCs) in

comparison to its pathologic changes in DCM patients. We

hypothesize that, compared to HCs, anterior–posterior and right–

left spinal cord oscillations will be reduced in DCM patients due

to space constraints at the cervical stenosis level and that the

cranio-caudal component of the oscillations is enhanced, leading to

increased dynamic mechanical stress inflicted upon the spinal cord.

2. Methods

2.1. Population

This prospective, cross-sectional study recruited 72 DCM

patients from the outpatient clinic of the University Hospital

Balgrist, Zurich, Switzerland between September 2018 and June

2021. The population was in part reported previously (14, 16),

and the findings presented here were not reported earlier. The

inclusion criteria were as follows: cervical spinal stenosis on T2-

weighted (T2-w) MRI, clinical symptoms and signs consistent

with degenerative cervical myelopathy (17) (i.e., pain, sensory or

motor deterioration in the upper or lower limbs, and gait or

bladder dysfunction), and age 18–80 years. Other neurological

diseases (e.g., radiculopathy at the lower limbs, polyneuropathy,

and CNS disorders) were excluded upon extensive examination

(e.g., cranial MRI and electrophysiologic examinations) prior

to study inclusion. The exclusion criteria were general MRI

contraindications (e.g., pacemaker), epileptic seizures, mental

illness, severemedical illness, and pregnancy. A previously reported

cohort of 18 HCs (18) was used for the evaluation of cervical spinal

cord motion under physiological conditions and for comparison

to patients. For HCs and patients, body weight and height

were recorded, and the body mass index [=weight (kg)/(height

(m)2)] was calculated. Body weight and height data were missing

for one control. Symptom severity in patients was assessed

with the modified Japanese Orthopedics Association (mJOA)

score (19).

2.2. Standard protocol approval,
registration, and patient consent

This prospective study was approved by the local ethics

committee (Kantonale Ethikkommission Zurich, KEK-ZH 2012-

0343, BASECNr. PB_2016-00623) and registered (clinicaltrials.gov;

NCT 02170155). The study has been carried out in accordance with

the Code of Ethics of the World Medical Association (Declaration

of Helsinki) for experiments involving humans. Informed consent

was provided by all participants prior to study enrollment. Study

data were collected and managed using REDCap electronic data
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TABLE 1 Parameters of MRI sequences.

Axial T2w
Sagittal
T2w Sagittal PC

TE (ms) 93 87 12.36

TR (ms) 3600 3760 60.28

Slice thickness

(mm) 3 2.5 5

Flip angle (◦) 150 160 10

Field of view (mm) 160 220 180

Bandwith (Hz/px) 284 260 355

Base resolution 320 384 256

Phase resolution 80% 75% 50%

Spatial resolution

(mm3) 0.5× 0.5× 3.0 0.6× 0.6× 2.5 0.4× 0.4× 5.0

PAT mode GRAPPA 2 None None

TABLE 2 Basic demographics of controls and patients.

Controls
(N = 18)

Patients
(N = 72) P

Sex (female) [%] 44.4 36.1 0.59

Age (years) [median

(IQR)]

65.5

(57.5–67.3)

56.0

(47.0–65.8)

0.03

BMI (kg/m2)

[median (IQR)]

22.8

(20.9–25.8)

24.7

(22.7–28.1)

0.08

mJOA total score

(max. 18) [median

(IQR)]

– 16 (14–18) na

Multisegmental

stenosis [%] – 68.1 na

Number of stenotic

segments [median

(IQR)]

– 2 (1–3) na

mJOA, modified Japanese Orthopedics Association score; na, not applicable; IQR,

interquartile range.

capture tools hosted at Balgrist University Hospital, Zurich,

Switzerland (20).

2.3. Imaging

All patients underwent a 3 Tesla MRI scan (MAGNETOM

Skyra Fit and MAGNETOM Prisma; Siemens Healthcare,

Germany, Erlangen), including sagittal and axial T2-weighted

(T2-w) MRI. Spinal cord motion was assessed with sagittal

PC-MRI as described previously (14, 16, 18). Briefly, sagittal

phase contrast measurements were placed midsagittal into the

spinal cord. A predefined round-shaped region of interest (20.03

mm2) was centered on the spinal cord in sagittal PC-MRI at

each corresponding cervical intervertebral disk level (segment

C2/3–C7/T1). The velocity encoding (venc) value was set to 2 cm/s

and 3 cm/s (from April 2020) based on the previous findings of

cord motion (9–12, 18, 21). The velocity signal was assessed within

20 time points during a cardiac cycle. The velocity calculation

was conducted as reported previously (14, 18). Cranio-caudal,

anterior–posterior, and right–left oscillations were measured

simultaneously. The total MRI acquisition time was∼23min (MRI

parameters are listed in Table 1). Images were processed using a free

of charge, online available DICOM viewer (www.horosproject.org).

In patients, cervical segments were classified as “stenotic” or “non-

stenotic” for analysis (NP and MH). A segment with a loss of the

CSF signal in axial T2-w imaging ventral and dorsal to the spinal

cord and/or evidence of spinal cord compression was defined

as “stenotic.” Segments with a visible CSF signal in axial T2-w

imaging ventral and/or dorsal to the spinal cord without evidence

of spinal cord compression were defined as “non-stenotic.” The

number of stenotic and non-stenotic segments for each cervical

level is provided in Supplementary Table 1. PC-MRI was visually

checked for artifacts prior to image processing (NP and MH). MR

images of one HC had to be excluded due to artifacts, and caudal

cervical segments could be evaluated in 16 HCs at C6 and in 13

HCs at C7 due to the partial volume effects of the cerebrospinal

fluid signal. In 71 patients with available PC-MRI in three spatial

directions/planes (one patient with cranio-caudal measurement

only), two MRI scans had to be excluded from analysis due to

motion artifacts and one MRI scan due to aliasing artifacts in all

segments. In the remaining 68 patients, no analysis was possible

in one patient at C4 and C5 due to aliasing artifacts and in two

patients at C4–C7 due to metal artifacts from implants. Finally, in

HCs, 17 datasets at C2–C5, 16 datasets at C6, and 13 datasets at C7,

and in patients, 68 datasets at C2 and C3, 65 datasets at C4 and C5,

and 66 datasets at C6 and C7 were included in the study. Velocity

values were calculated as described previously (14, 16, 18). PC-MRI

spinal cord motion readout was the amplitude of the velocity

plot during the cardiac cycle (maximum positive-to-maximum

negative velocity peak). To reflect the constriction of the spinal

canal, the adapted spinal canal occupation ratio (aSCOR) was

calculated at each segment [aSCOR (%)= spinal cord CSA divided

by spinal canal CSA multiplied by 100] (22). Axial T2-w for

aSCOR calculations covered segments C2–C5 in all, segment C6

in 70, and segment C7 in 17 patients. In all HCs, all the segments

were covered.

2.4. Statistical analysis

Statistical analysis was conducted with SPSS (IBM

SPSS Statistics for Windows, Version 28.0; Armonk, NY;

IBM Corp.). Metrics were reported as group median and

interquartile range (IQR). Statistical significance was set at

α < 0.05. Group differences between patients and HCs were

calculated using the Mann–Whitney U-test (age and BMI)

and Fisher’s exact test (sex). Differences between patients

(subgroups stenotic and non-stenotic segments) and HCs

for aSCOR and amplitude values were calculated using the

Kruskal–Wallis test (at segment C2 and aSCOR at segment

C7: Mann–Whitney U-test—only non-stenotic segments in

patients). Differences between motion amplitudes in different

spatial directions were calculated with the Friedman test. A

Bonferroni correction for multiple comparisons was applied.

Correlations between amplitude and aSCOR values were

analyzed using the calculation of Spearman-rho coefficients with

one-sided p-values.
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TABLE 3 Adapted spinal canal occupation ratio values in controls and patients.

Controls
Patients

non-stenotic
segments

Patients stenotic
segments P

N
% (median
[IQR])

N
% (median
[IQR])

N
% (median
[IQR])

Controls -
patients

non-stenotic
segments

Controls -
patients
stenotic
segments

Patients
non-stenotic
- stenotic
segments

C2 18
25.7

[22.8–29.8] 72
36.8

[33.4–40.9] 0 na <0.01 na na

C3 18
34.0

[31.4–36.8] 46
47.2

[42.4–51.8] 26
70.8

[58.8–84.7] <0.01 <0.01 <0.01

C4 18
34.9

[32.6–36.7] 34
51.7

[46.1–56.5] 38
62.7

[53.7–81.0] <0.01 <0.01 <0.01

C5 18
35.6

[31.5–38.6] 15
51.7

[39.8–55.2] 57
72.5

[59.1–83.6] 0.20 <0.01 <0.01

C6 18
29.2

[26.2–34.6] 41
44.5

[35.2–51.3] 29
66.2

[54.8–74.6] <0.01 <0.01 <0.01

C7 18
22.0

[20.9–25.5] 17
32.2

[29.6–35.4] 0 na <0.01 na na

N, number of measurements; IQR, interquartile range; na, not available. Significant findings are illustrated in bold letters.

3. Results

3.1. Subject characteristics

HCs were older compared to patients [65.5 (57.5–67.3) versus

56.0 (47.0–65.8) years; p = 0.03; Table 2]. No differences were

observed for BMI or sex (Table 2). The majority of DCM patients

were mildly affected [mJOA score: 16 (14–18) points], and 68.1%

of patients suffered from multisegmental spinal canal stenosis

[number of stenotic segments: 2 (1–3)]. The spinal canal was

considerably constricted (reflected by higher aSCOR values) in

patients (stenotic and non-stenotic segments) compared to HCs,

most severely in stenotic segments (Table 3 and Figure 1).

3.2. Physiologic cervical spinal cord motion
in HCs

Under physiological conditions in HCs, amplitude values

of cervical spinal cord oscillation amplitudes were higher in

the cranio-caudal direction at all cervical segments (∼2–4x)

and in the anterior–posterior direction at segments C2–C5

(∼1.8–2.2x) compared to the right–left direction (Figure 2 and

Supplementary Table 2). Amplitude values in the cranio-caudal

direction were higher compared to the anterior–posterior

direction at segments C2 and C6 (∼1.6x; Figure 2 and

Supplementary Table 2).

3.3. Correlations of spinal canal
constriction and motion amplitudes

Within the entire population (controls and patients), higher

aSCOR values (reflecting a more narrowed spinal canal) were

correlated with higher motion amplitudes in the cranio-caudal

direction at all cervical levels and in the right–left direction at

C2–C4 (Table 4 and Figure 3). In contrast, amplitude values in

the anterior–posterior direction became reduced with increasing

aSCOR values at C3.

3.4. Pathologic cervical spinal cord motion
in DCM patients

In DCM patients, cranio-caudal motion amplitude values

were considerably increased compared to anterior–posterior

(non-stenotic segments: ∼2–2.5x; stenotic segments: ∼3.5–

4.5x) and right–left directions (non-stenotic segments: ∼3–5x;

stenotic segments: ∼6–9x) (Figure 2 and Supplementary Table 2).

Anterior–posterior motion amplitudes in patients were increased

compared to the right–left direction in non-stenotic segments at

C2, C3, C6, and C7 (∼1.6–2x) and in stenotic segments at C5

(∼1.6–2x). No differences in the motion amplitude values could be

seen between non-stenotic and stenotic segments in patients.

3.5. Comparison of cervical spinal cord
motion between DCM patients and HCs

Compared to HCs, cranio-caudal motion amplitudes in

patients showed highly increased values in non-stenotic (∼2x)

and stenotic segments at all cervical levels (∼2.5x; except for

stenotic segment C7, only two datasets were available; Figure 2 and

Supplementary Table 2). In contrast, right–left motion amplitude

values were onlymoderately increased in patients compared to HCs

non-stenotic segments: C2, C4, C5 - ∼1.2–2x; stenotic segments:

C4 - ∼1.2x). Amplitude values in the anterior–posterior direction

did not differ between HCs and patients.
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FIGURE 1

Adapted spinal canal occupation ratio in controls and patients. The adapted spinal canal occupation ratio (aSCOR; %) was higher (reflecting

accentuated spinal canal constriction) in patients (light gray boxplots = non-stenotic segments; dark gray boxplots = stenotic segments) compared

to controls (white boxplots) in all cervical segments, but at C5 for not-stenotic segments. In patients, stenotic segments showed higher aSCOR

values compared to non-stenotic segments in all segments. At C2 no stenosis could be observed in any patient, at C7 only anatomic measurements

in not-stenotic segments were available. N, number of patients *p < 0.01.

4. Discussion

This study evaluated cervical spinal cord oscillations

simultaneously in all three spatial directions (i.e., cranio-

caudal, anterior–posterior, and right–left direction) under

physiological conditions in HCs and the pathological changes

induced by spinal canal constriction in DCM patients (Figure 4).

Under physiological conditions, the spinal cord was subject to

cranio-caudal and anterior–posterior oscillations, while right–left

oscillations were marginal. Accentuated constriction of the spinal

canal was associated with increased motion amplitudes in cranio-

caudal and right–left directions, while anterior–posterior motion

amplitudes decreased. Interestingly, absolute amplitude values of

anterior–posterior and right–left spinal cord oscillations in DCM

patients remained low, comparable to HCs, while considerably

increased cranio-caudal oscillations represented the cardinal

pathophysiologic change.

4.1. Physiologic cervical spinal cord motion

In line with previous reports, our healthy cohort showed

physiological anterior–posterior, right–left (15), and cranio-caudal

oscillations of the spinal cord (10, 21, 23–27). In addition, it could
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FIGURE 2

Motion amplitude values in controls and patients in di�erent spatial directions. The boxplots show the motion amplitude values (cm/s) for right-left

(white), anterior-posterior (light gray) and cranio-caudal direction (dark gray) in controls (left), non-stenotic segments (middle) and stenotic

segments (right) at each cervical segment. Horizontal lines represent significant di�erences (p < 0.05) between motion amplitudes within each

group and between groups. N, number of patients.

be shown that the magnitude of anterior–posterior and cranio-

caudal oscillations under physiological conditions was comparable,

while right–left oscillations were much lower. Under healthy

conditions, the spinal cord can oscillate in all spatial directions

without any anatomic restrictions. Cerebrospinal fluid (CSF)

dynamics and arterial pulsations are assumed to be the sources

of spinal cord motion (8, 28–31). While systolic spinal cord

motion is driven by caudal CSF flow from the cranium, diastolic

cranial CSF flow and the elastic properties of the spinal cord

and its surroundings (32) contribute to the upward motion of

the spinal cord back to its primary position. Anterior–posterior

oscillations may be mainly caused by local arterial pulsations and

CSF flow dynamics, resulting in forces on the front and back

of the cord. Sideward forces on the spinal cord were shown to

be negligible, as only marginal right–left motion amplitudes were

observed in healthy controls and DCM patients. Because the MRI

measurements were all collected in the supine position, we cannot

necessarily assume that a similar three-dimensional motion of the

spinal cord would be observed in the upright body position. Gravity

may attenuate cranio-caudal oscillations in the upright position,

while anterior–posterior oscillations may be relatively increased.

4.2. Pathologic cervical spinal cord motion
in DCM patients

Increased cranio-caudal oscillations in DCM patients

compared to HCs, both in stenotic and non-stenotic segments,
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TABLE 4 Interrelation of adapted spinal canal occupation ratio and motion amplitude values.

Segment
Cranio-caudal oscillations Anterior-posterior oscillations Right-left oscillations

N r p r p r p

C2 85 0.19 0.04 −0.03 0.38 0.25 0.01

C3 85 0.41 <0.01 −0.31 <0.01 0.26 0.01

C4 82 0.53 <0.01 −0.14 0.10 0.35 <0.01

C5 82 0.49 <0.01 −0.03 0.40 −0.02 0.42

C6 80 0.48 <0.01 0.07 0.27 0.08 0.24

C7 29 0.54 <0.01 0.07 0.35 −0.18 0.18

N, number of measurements. Significant findings are illustrated in bold letters.

FIGURE 3

Interrelation of motion amplitude and adapted spinal canal occupation ratio values in di�erent spatial directions. The plots show the adapted spinal

canal occupation ratio values (x-axis; %) in relation to the corresponding motion amplitude values (y-axis; cm/s) for cranio-caudal (blue),

anterior-posterior (green) and right-left (red) direction in the entire population (controls and patients) for each cervical segment. Significant findings

for Spearman rho coe�cients (r) are displayed in bold letters and underlined.
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FIGURE 4

Illustration of spinal cord oscillation measurements in healthy controls and patients. Spinal cord oscillations in cranio-caudal (B, F) (sagittal PC-MRI),

anterior-posterior (C, G) (sagittal PC-MRI) and right-left (D, H) (sagittal PC-MRI) direction are illustrated for a healthy control (A: sagittal T2w; B–D:

sagittal PC-MRI) and a patient (E: sagittal T2w; F–H: sagittal PC-MRI). Higher velocities in sagittal PC-MRI are encoded with darker (B, F: caudal; C, G:

posterior; D, H: left) respectively brighter (B, F: cranial; C, G: anterior; D and H: right) colors. Velocities were assessed with a predefined round shaped

region of interest placed onto the spinal cord at the correspondend intervertebral disc level (B–D and F–H; segments C2/3-C7/T1; red circles). The

representative PC-MRI pictures illustrate the highest observed velocities within the cardiac cycle. In a healthy control (A–D) only moderate

physiologic cranio-caudal and anterior-posterior oscillations could be observed, while right-left motion was marginal. In the DCM patient extensively

increased cranio-caudal oscillations were observed at the cervical stenosis at segment C5/C6 (F), while anterior-posterior (G) and right-left

oscillations (H) remained on low magnitudes.

have been previously reported (9–14, 22). This study complements

those findings by showing that amplitudes in the right–left

direction increase only slightly and in the anterior–posterior

direction decrease with the accentuated constriction of the

spinal canal (reflected by correlation analysis). However, absolute

amplitude values in the right–left and anterior–posterior directions

in patients were low and comparable to HCs, in contrast to

considerably increased cranio-caudal oscillations. The results are

partly in line with our initial hypothesis, showing an increase

in motion amplitude values, particularly in the cranio-caudal

direction, while anterior–posterior and right left oscillations

were low. However, no difference in anterior–posterior motion

amplitudes between HCs and DCM patients could be observed.

Additionally, an unexpected increase of right–left oscillations

in patients was associated with narrowed anatomic conditions,

while we had postulated a decrease. These alterations of cervical

spinal cord oscillations in DCM patients compared to HCs may

most likely be attributable to narrowed anatomic conditions.

In healthy conditions, the spinal cord can oscillate unhindered

in all spatial directions, and anterior–posterior and right–left

oscillations in DCM patients are limited due to spinal stenosis.

While spinal canal constriction is often accentuated in the

anterior–posterior dimension, leaving no CSF space, preserved

lateral CSF is frequently observable where there is spinal stenosis.

Therefore, a slight increase in right–left oscillations in patients may

be attributed to the remaining lateral space within the spinal canal,

allowing the spinal cord to oscillate in this direction. However, the

values of right–left oscillations remained low. In conclusion, we
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reason that with the progressive constriction of the spinal canal,

forces mainly driven by CSF dynamics can predominantly be

translated into cranio-caudal spinal cord oscillations, resulting in

manifold increasedmovement velocity amplitudes in this direction.

4.3. Clinical significance of spinal cord
motion measurements

The pathophysiology of DCM involves immediate cord

compression, spinal malalignment causing altered cord tension,

impaired vascular supply, and repeated dynamic injury (33–

36). DCM patients consistently exhibit increased cranio-caudal

oscillations (9, 10, 12, 13, 22). Wolf et al. found that increased

cranio-caudal motion at a focal cervical stenosis mechanically

strains the entire cervical cord (13). A computational model

also demonstrated that cranio-caudal spinal cord oscillations

can contribute to spinal cord damage in DCM, similar to

dynamic compression (37). Increased cranio-caudal oscillations

are associated with upper limb dysesthesia (9), impaired sensory-

evoked potentials (11), and decreased sensory scores (12) in

DCM patients. The impact of anterior–posterior and right–left

oscillations on DCM patients is understudied and requires further

investigation. Future studies should explore motion readouts in

all three spatial directions and their association with clinical

outcomes in DCM patients. Spinal cord motion alterations have

also been reported in other pathological conditions. Tethered cord

patients show limited cord motion, and markedly decreased cord

motion indicates a poor postoperative outcome (38, 39). Similar

changes with increased spinal cord motion have been observed

in Chiari malformation and Chiari-associated syringomyelia (40–

43). Spontaneous intracranial hypotension has also been linked

to increased oscillations (44). Spinal cord motion measurements

can be conducted using PC-MRI or ultrasound at the C1/C2 level

(45, 46). PC-MRI is easily incorporated into clinical MRI protocols

and provides the simultaneous assessment of all cervical levels,

although simplified postprocessing methods are needed for clinical

implementation. Importantly, increased spinal cord oscillations

may be detected in patients before irreversible spinal cord damage

occurs, aiding in clinical decision-making and timely surgical

intervention to prevent impairment.

4.4. Limitations

Only a relatively small dataset of HCs could be used for

comparison to changes in DCM patients, and the analysis of

physiological changes due to aging was not included. A matched

analysis, controlled for age and gender, would be more appropriate

for future studies. The visual dichotomization between stenotic

and non-stenotic segments may be subject to bias, and the impact

of physiological cervical spine curvatures (i.e., lordosis) was not

assessed. Partial volume effects in phase contrast imaging, especially

at the spinal cord tissue—the cerebrospinal fluid border in spinal

cord motion measurements—have to be carefully considered to

avoid measurement errors. While the used region of interest for

our PC-MRI analysis sufficiently covered the spinal cord size in

anterior-posterior and cranio-caudal direction, in healthy controls

1 measurement at C6 and 4 measurements at C7 had to be

excluded due to partial volume effects with CSF in right-left

direction. Additionally, intravoxel phase dispersion may cause a

certain amount of measurement error. A previous study showed

no differences in spinal cord motion within different regions of

the spinal cord in axial PC-MRI (14) and also demonstrated good

test–retest reliability for sagittal phase contrast measurements of

spinal cord oscillations (13). Therefore, measurement error due to

intravoxel phase dispersion appears to be negligible.

5. Conclusion

Under physiological conditions, the spinal cord oscillates

in cranio-caudal and anterior–posterior directions with low

magnitudes. In contrast, in DCM, pathophysiological changes

in spinal cord motion are transduced to manifold increased

oscillations in the cranio-caudal direction, while anterior–posterior

and right–left oscillations remained low in magnitude. In

conclusion, this study further demonstrates cranio-caudal spinal

cord oscillations as the cardinal pathophysiologic change in DCM.

Further studies are warranted to prove spinal cord oscillations as

a relevant biomarker reflecting dynamic mechanical cord stress in

DCM patients.
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