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Introduction: The therapeutic efficacy of deep brain stimulation (DBS) of 
the subthalamic nucleus (STN) for Parkinson’s disease (PD) may be limited for 
some patients by the presence of stimulation-related side effects. Such effects 
are most often attributed to electrical current spread beyond the target region. 
Prior computational modeling studies have suggested that changing the degree 
of asymmetry of the individual phases of the biphasic, stimulus pulse may allow 
for more selective activation of neural elements in the target region. To the 
extent that different neural elements contribute to the therapeutic vs. side-effect 
inducing effects of DBS, such improved selectivity may provide a new parameter 
for optimizing DBS to increase the therapeutic window.

Methods: We investigated the effect of six different pulse geometries on cortical 
and myogenic evoked potentials in eight patients with PD whose leads were 
temporarily externalized following STN DBS implant surgery. DBS-cortical evoked 
potentials were quantified using peak to peak measurements and wavelets and 
myogenic potentials were quantified using RMS.

Results: We found that the slope of the recruitment curves differed significantly 
as a function of pulse geometry for both the cortical- and myogenic responses. 
Notably, this effect was observed most frequently when stimulation was delivered 
using a monopolar, as opposed to a bipolar, configuration.

Discussion: Manipulating pulse geometry results in differential physiological 
effects at both the cortical and neuromuscular level. Exploiting these differences 
may help to expand DBS’ therapeutic window and support the potential 
for incorporating pulse geometry as an additional parameter for optimizing 
therapeutic benefit.
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Introduction

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) 
is standard of care treatment for motor symptoms of moderate to 
severe Parkinson’s disease (PD) (1, 2). To optimize therapeutic benefit 
and minimize side effects, a clinician is able to refine settings related 
to the location, frequency, amplitude, and width of the electrical pulses 
delivered via the DBS lead. The shape, or geometry, of the individual 
biphasic pulses themselves is fixed, however, with a charge-balanced, 
cathode-leading asymmetric pulse standard on currently-approved 
devices (3, 4). This limitation persists despite prior computational 
modeling work suggesting that manipulating pulse geometry may 
yield differences in the neural elements affected by stimulation and 
serve to enhance therapeutic selectivity (5, 6). While there is recent 
evidence to suggest that flipping the polarity of the current DBS pulse 
can influence therapeutic window (7), no study has investigated 
whether manipulating pulse geometry alters physiological responses 
that can be  recorded from PD patients with STN-DBS implants. 
Understanding how pulse shape impacts both the cortical and 
muscular response patterns associated with STN-DBS may help us to 
understand how geometry influences selectivity in vivo and facilitate 
the development of neural element-specific techniques to optimize 
therapeutic outcomes.

Previous modeling work by McIntyre and Grill proposed 
manipulating pulse geometry as a means of enhancing neural 
selectivity during electrical stimulation (6). The authors introduced a 
long-duration and short amplitude conditioning pre-pulse phase prior 
to a short-duration and large amplitude primary stimulation phase to 
influence the threshold for small and large-diameter fibers through 
changes in the current distance relationship (6, 8). Their work suggests 
that manipulating the degree of asymmetry of the pulse phases 
combined with reversing polarity can result in enhanced cell body vs. 
axonal recruitment that is absent when stimulating with symmetric 
biphasic pulses. In-vivo preclinical studies have further explored and 
supported this phenomena and demonstrated enhanced spatial 
selectivity as a result of manipulating pulse geometry (9). No clinical 
studies have yet explored how such changes in pulse geometry may 
impact the physiological response to stimulation in STN-DBS for PD.

The physiological effects of DBS in the region of the STN can 
be appreciated using standard electromyography (EMG) (10–14) and 
scalp electroencephalography (EEG) (15, 16) based techniques. 
Muscle contraction represents one of the most common, amplitude-
limiting side effects associated with STN DBS. It typically affects 
muscles of the lower face or distal upper extremity and is attributable 
to spread of electrical current laterally to the corticofugal fibers that 
make up the adjacent internal capsule. Clinically, such effects are 
readily appreciated or reported as twitches or tightening of the affected 
body region; however they can be further characterized quantitatively 
using stimulus-locked EMG to record myogenic evoked potentials 
(MEPs) that generally occur approximately 20 ms after stimulus 
delivery (10). The precise origin of the EEG-based, DBS cortical 
evoked potential (DBS-CEPs) is less clear as the response likely 
represents a composite of various neural elements, and corresponding 
pathways, activated in the region of the DBS lead (15–17). Since its 
introduction, a number of studies have characterized how the 
DBS-CEP activation pattern changes in relation to specific DBS 
parameters (18–20), patient status (21), and as a function of overall 
therapeutic benefit (22–24). The short latency responses (i.e., those 

occurring within a few milliseconds from the onset of stimulation) 
recorded over motor cortex have, for example, been hypothesized to 
reflect antidromic activation of the hyperdirect pathway between 
motor cortical regions and STN (20, 24, 25) and further posited to 
represent the primary therapeutic pathway of STN-DBS (20, 24, 26–
28). Manipulating the pulse geometry of the electrical stimulus 
waveform may allow for enhanced targeting of potential therapeutic 
pathways and the avoidance of those associated with side effects.

In this study, we  investigated how manipulating the degree of 
asymmetry of the pulses phases (i.e., pulse geometry) of STN DBS 
influenced myogenic and scalp-recorded DBS-CEPs (short and long-
latency) in patients with PD. For the MEP response, we proposed that 
the pulse geometries identified by McIntyre and Grill as preferentially 
activating axons, would show earlier (i.e., at lower pulse amplitudes) 
recruitment of corticofugal fibers as reflected by the DBS-MEP in 
comparison to those predicted to be selective for cell bodies (6). For 
the DBS-CEP, our work was guided by a recent pair of computational 
modeling studies suggesting that specific pulse geometries should alter 
the recruitment of the terminating fibers of the hyperdirect pathway 
during STN-DBS (29, 30), which would be reflected in the appearance 
of short-latency CEPs. We explore how the long-duration and small 
amplitude anodic phase followed by a short-duration and large 
amplitude cathodic phase proposed may be selective for axons and 
capable of producing larger MEP responses during monopolar 
stimulation than their cell body recruiting counterpart. We  also 
investigate how short-latency cortical responses reflecting antidromic 
activation of the hyperdirect pathway may show preferential activation 
based on changes in pulse geometry. Our data provide insights into 
how we can minimize DBS-induced motor side effects and potentially 
increase the therapeutic window through manipulating DBS 
pulse geometry.

Materials and methods

Data acquisition and analysis

Participants
The Cleveland Clinic Institutional Review Board (IRB) approved 

all research and participants provided written informed consent prior 
to participating (NCT04563143) in accordance with the Declaration 
of Helsinki. Data reported in this study are derived from patients who 
underwent standard of care unilateral (participant 6) or staged, 
bilateral (all other participants) DBS lead implantation surgery 
targeting the STN for the treatment of PD. For each participant, a 
single DBS lead was externalized for up to 9 days prior to implantable 
pulse generator (IPG) placement to allow for data collection. Data 
from the current study were collected between days three through 
eight post-surgery with patient seated in a recliner and in the 
dopaminergic medication ON-state.

Anatomical localization of leads
DBS lead localization was performed post-operatively using the 

MATLAB toolbox Lead DBS v2.5.3, in line with the methodology 
previously described in Horn et al. (31). The pre-operative volumetric 
T1-weighted with contrast MRI and post-operative head CT were 
used. The images were uploaded in DICOM format and converted to 
NIfTI file with the dcm2niix protocol (32). The post-operative head 
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CT was co-registered to pre-operative MRI using a two-stage linear 
registration (i.e., rigid followed by affine registration) as implemented 
in Advanced Normalization Tools (33). Subsequently, the preoperative 
acquisitions were spatially normalized into MNI ICBM 2009b 
nonlinear asymmetric space (34) using a three-step non-linear affine 
registration (33, 35). Localization of the lead was done in the 
co-registered postoperative head CT, manually matching the lead’s 
model to the acquired image. Contact coordinates were calculated at 
their geometric center in MNI space coordinates. Using MNI to 
ACPC algorithm implemented by Horn et al., MNI coordinates were 
converted to coordinates relative to midcommisural point (36). 
Coordinates x, y, and z represent the lateral, anterior, and inferior 
distance, respectively, between the contact and the MCP, expressed in 
millimeters and rounded to the nearest one decimal place. For 
representation purposes, left-side leads were moved to the right side 
flipping coordinate X from the left to right side. The “DISTAL” brain 
atlas was used for STN segmentation in MNI space (37). The resulting 
co-registration for each participant’s DBS lead relative to the STN 
target is shown in Figure 1A.

Contact selection
All participants underwent a monopolar review of the externalized 

lead between 1 and 3 days post-operatively. This process identifies the 
stimulation contacts on the DBS lead best associated with clinical 
improvement as not all contacts on an implanted lead will provide 
therapeutic benefit. We chose to focus our experimental efforts on the 
contact (s) selected through monopolar review. A constant rate of 
130 Hz and pulse width between 60 and 90 μs were used. For each 
contact, the amplitude of stimulation was gradually increased in 
pre-defined increments of 0.5 (Volts for Medtronic system and 
milliamperes for others), and the threshold, localization, subjective 
intensity (i.e., low, medium, high), and duration (i.e., transient or 
continuous) of the side-effect(s) were documented. The maximum 
amplitude of stimulation before non-transient side-effects (low 
intensity) was defined as the stimulation threshold. Efficacy 
assessments were performed similarly for each contact by a trained 
clinician, guided primarily by improvements in rigidity and tremor 

while the participant was OFF-medication. The active contact for 
stimulation used to characterize the electrophysiological data was 
determined based on the widest therapeutic window. For the bipolar 
configuration portion of the study the adjacent contact (or contacts 
when a pseudo-annular ring was required) along the Z dimension of 
the lead with the next most effective therapeutic window was selected 
as the return.

Pulse geometry and stimulation parameters
A total of six pulse geometries were used in this study (Figure 1B) 

and delivered in both a monopolar and bipolar montage across the 
selected contacts from the monopolar review findings as described 
above. Delivering both in a bipolar and monopolar configuration 
allowed for evaluation of whether the differences in the electric field 
influenced the effects of manipulating pulse geometry. The first two 
pulse geometries were symmetric biphasic (SB) and differed in terms 
of the order in which the cathodic and anodic phases were delivered 
(SB− and SB+, respectively). This configuration is commonly used in 
preclinical and research contexts, as it allows for the use of phase 
reversal to help differentiate the end of the stimulus artifact from the 
start of the physiological response in DBS-CEPs (16). The lowest 
amplitude was 0.6 mA and the upper limit did not exceed 7.0 mA. Pulse 
width was set constant for each phase of the SB condition at 80us. Two 
sets of asymmetric configurations were evaluated. This included a 
conditioning phase leads (CPL) asymmetric pulse geometry that was 
based on dimensions from McIntyre and Grill (6) where the first 
phase served as a conditioning pre-pulse (ω) and was 10x the width 
(i.e., 800us) and 1/10 of the amplitude (i.e., 0.06–0.70 mA) of the 
primary phase (φ) (6). The phase orientation was also evaluated in a 
reversed configuration, without a conditioning pre-pulse, such that 
the lower amplitude wider phase pulse followed (CPF) the primary 
phase and served only as a charge balancing phase. This configuration 
approximates the pulse geometry utilized in standard of care, clinical 
implantable pulse generators. Each orientation of the asymmetric 
pulse geometry was delivered such that the primary phase was tested 
in both anodic and cathodic form (Figure 1B: referred to as CPL+ and 
CPL−; CPF+ and CPF−, respectively). It should be noted, however, 

FIGURE 1

DBS lead localization for each participant via Lead DBS. Coronal view looking posteriorly with the cathode selected through monopolar review shown 
in red (A). A chart reflecting the six pulse geometries utilized in this study. The symmetric biphasic geometries are shown in the furthest two left panels 
with the cathode leading version (SB−) above the anode leading version (SB+). In the asymmetric pulse types the primary phase is denoted by a phi 
symbol. A conditioning phase is denoted by a omega symbol and either leads or follows the primary phase (referred to as the CPL+ and CPF− 
conditions, respectively). The geometry is cathodic or anodic based on the orientation of the primary phase (i.e., CPF− for the top right panel and CPF+ 
for the bottom right; B).
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that the effects of polarity reversal for adjacent contacts in a bipolar 
stimulation montage negate the effects of phase order rendering them 
no longer purely anodic vs. cathodic. The reference to whether 
stimulation is anodic vs. cathodic for the bipolar montage going 
forward refers exclusively to the polarity of the primary phase (φ) 
observed across the contact(s) selected during monopolar review. 
Stimulation was delivered using the Subject Interface Stimulator from 
Tucker Davis Technologies (Alachua, FL, United  States). For the 
monopolar configuration, an electrode patch was adhered to the 
participant’s chest above the eventual position of the IPG and served 
as the electrical return. Stimulation was performed at 5.1 Hz to avoid 
interactions with 60 Hz line noise and corresponding harmonics as 
well as to maximize the amount of samples acquired within a fixed 
period of time.

Data acquisition
Myogenic evoked potentials (MEPs) were used to evaluate the 

effect pulse geometry on activation of the adjacent internal capsule 
fibers (10–13). Electromyography electrodes from Medsource Labs 
(Chanhassen, MN, United States) were placed on the arm contralateral 
to stimulation with differential recordings across the deltoids, biceps, 
triceps, flexor carpi radialis (FCR), and extensor digitorum communis 
(EDC) muscles and a ground electrode placed on the sternum. Scalp 
electroencephalography (EEG) was acquired to understand the effect 
of manipulating pulse geometry on the short and long-latency 
DBS-CEP components given their putative relationship to therapeutic 
outcomes and mechanisms of STN-DBS (11, 20, 23, 26–28, 38). Silver/
silver chloride surface electrodes were placed according to the 
standard 10–20 EEG montage, with additional electrodes at positions 
FC1, FC2, FC5, FC6, FT9, CP1, CP2, CP5, CP6, TP9, and TP10. EEG 
data were left–right flipped to align to a common (right) side. All data 
were acquired using a Tucker Davis Technologies 128-channel 
electrophysiology recording system (Alachua, FL, United States) and 
sampled at ~24KHz with an antialiasing filter whose cutoff frequency 
was equal to 45% of the sampling rate.

Signal processing
Prior to averaging, periods of muscle or other artifact 

contamination were removed automatically via custom scripts in 
MATLAB. The full trace from the C4 electrode (referenced only to Pz 
for this step) was band pass filtered in the 8–100 Hz range and chosen 
for artifact detection based on its proximity to the brain regions of 
interest discussed below. We  observed infrequent activity by 
participants (i.e., coughs, shifting their weight in the chair, etc.) that 
would create 1–2 s artifacts during data collection that were excluded 
from analysis. In anticipation of this we collected up to 750 stimulation 
pulses, but were able to generate consistent evoked responses with 
fewer pulses. Thus, the minimum amount of summed pulses after 
artifact rejection across a few amplitudes and dispersed throughout 
each condition (CPL−/+, CPF−/+, SB−/SB+ in both the monopolar 
and bipolar configurations) was 450 pulses. The majority of averages 
exceeded 500 stimulation pulses. In circumstances where data 
acquisition personnel noted sustained artifacts during collection a 
trial was repeated to ensure at least 450 clean stimulation pulses. 
Instances where the amplitude of the signal exceeded 20uV were 
marked as periods of artifact contamination that were excluded from 
the evoked response calculation (see Supplementary Figure 1). Visual 
inspection of individual trials was also performed to validate the 

automated artifact removal. The composite average evoked potential 
for each pulse geometry and amplitude was comprised of 450–750 
stimulus pulses distributed across individual continuous trials for each 
setting and aligned with the stimulus pulses using custom scripts in 
MATLAB 2021a (Mathworks, Natick, MA, United States). For the 
CPL geometry, the electrophysiology data for all analyses were aligned 
to the second, larger amplitude phase of the stimulus pulse (φ), as the 
conditioning pulse (ω) was subthreshold for eliciting a measurable 
response at such small amplitudes and large pulse widths. For scalp 
EEG data, the grand average of all EEG channels was subtracted from 
each individual EEG channel to remove common noise. A 10-point 
moving average filter to remove high frequency noise and 0.5 ms 
baseline subtraction was applied to remove the DC shift after 
averaging (16, 18, 20).

EMG measurements
The MEP was derived using the averaging process described 

above for the EEG. The response period from 10 to 50 ms was 
compared to the baseline period prior to the artifact from −50to 0 ms 
to determine whether an MEP response was present and rising above 
the noise floor and residual activity in the EMG. The standard 
deviation of the response period needed to exceed 4× the standard 
deviation of the baseline period for further quantification of the 
MEP. Only participants and channels with at least one MEP response 
above that threshold in the SB− condition were included for analysis 
regardless of whether a channel showed an MEP response above 
threshold in another geometric condition. We  did not observe 
consistent responses in other conditions from participants with no 
response in the SB− condition. After thresholding for inclusion the 
MEP response was quantified using the root mean square (RMS) from 
the 10 to 50 ms period (39). The RMS was normalized for group 
analysis (across participants) using the following formula.

 
x

x x
x xnorm
i=
−( )
−( )
min

max min

Where xnorm = the resulting normalized value ranging from 0 to 1, 
xi = the RMS of an individual MEP response, xmin = the minimum RMS 
value of an individual MEP response from a participant’s dataset, 
xmax = the maximum RMS value of an individual MEP response from 
a participant’s dataset. This normalization allowed for responses to 
be shown as a percent of the maximal observation (values ranging 
from 0 to 100%) across all tested pulse geometries.

EEG short-latency components
After visual inspection of the current source density (CSD) plots 

for the SB− geometry it was determined that the response with the 
highest amplitude was localized in electrodes C4, FC2, Cz, and CP2 
across studies patients. To robustly capture the responses and compare 
them between patients, we averaged these four electrodes and used the 
average as a single channel to quantify the short latency components 
of the EEG response. Visualization of the CSD plots were performed 
using the Brainstorm toolbox in MATLAB (40). To characterize the 
short-latency components (<7.7 ms) the amplitude of the first 
observable positive peak (~2 ms) following the onset of stimulation 
was measured relative to the following negative deflection (i.e., peak-
to-peak amplitude). This peak is consistent with prior studies, where 
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it has been argued to represent antidromic activation of the hyper-
direct pathway between the primary motor cortex and STN (20, 41). 
Due to the prolonged, secondary phase in the two CPF conditions, the 
electrical artifact extended up to 4 ms after the onset of stimulation 
and precluded identification and quantification of these short-latency 
components. As such, short-latency peak-to-peak measurements were 
not made for those conditions. We did not attempt to remove or blank 
the artifact prior to quantification of the short-latency components, 
consistent with prior publications reporting on this component 
(20, 42).

EEG long-latency components
The long-latency components were measured across the same four 

electrodes averaged together to a single channel as was done for the 
short-latency components. The full time course of the single channel 
average and the current source density plots aligned to the 50 ms time 
point can be seen in Figure 2. The artifact was blanked for 5 ms and 
the DBS-CEP was zero padded to allow for an 8-100 Hz band pass 
filter to remove additional noise. We used the continuous wavelet 
transform (CWT) function in MATLAB utilizing the analytic Morse 
wavelet with 60 cycles to estimate the amplitude of the cortical 
DBS-EPs as a function of frequency and time (18, 43–45). We utilized 
the time-frequency decomposition to evaluate the long-latency 
components of the CEP and quantify them for group comparison and 
analysis. To measure wavelet amplitudes for group analysis, the 
average wavelet amplitude was calculated in the beta and gamma 
frequency bands. We averaged the wavelet amplitude in the 13–35 Hz 
(beta) band from 25 to 75 ms, and within the 36–100 Hz (gamma) 
band from 5 to 50 ms. These regions for both the beta and gamma 
frequency bands were selected based on a visual inspection of the 

wavelet spectrograms at each amplitude to identify the time points 
where the spectrograms exhibited their highest amplitudes. The 
minimum and maximum wavelet amplitudes of the evoked responses 
for a given participant across all stimulation amplitudes and pulse 
geometries were used to normalize their responses for group analysis 
(across patients). The same normalization formula used above for the 
EMG measurements was applied here to the EEG data. This 
normalization allowed for the responses to be shown as a percent of 
the maximal observation observed across all tested pulse geometries.

Statistics
Generalized linear mixed effects models (GLMM) were used to 

quantify the increase in percent activation of myogenic and cortical 
activity as a function of increasing stimulation amplitude, separately 
for each pulse geometry and stratified by polarity (mono- vs. bipolar), 
frequency band, and recording location (46). GLMM are flexible 
extensions of linear regression that can account for multiple 
observations per subject and non-Gaussian response data. Each model 
included a random effect for subject, a fixed effect for amplitude 
(continuous) and a compound symmetry covariance structure. 
Multivariate distribution was investigated visually using Chi-squared 
quantile by squared Mahalanobis Distance plots and selected 
distributions were confirmed via examination of model residual panel 
and Bayes Information criterion. For cortical beta, cortical gamma, 
and MEPs, data were multivariate lognormal and results are presented 
as exponential slopes to indicate the exponential increase in response 
for every one-unit increase in stimulation amplitude for each pulse 
geometry. For the short-latency peak-to-peak measurements, data 
were multivariate normal and are presented as linear slopes to indicate 
the linear increase in response for every one-unit increase in 

FIGURE 2

Time-domain response from each participant averaged across the C4, FC2, Cz, and CP2 electrodes using the SB− pulse geometry. Color key for the 
amplitude of stimulation is shown on the upper right from 0.60 to 7.00  mA. Current source density plot aligned to ~50  ms (with arrow indicating the 
timepoint from which the CSD is derived) is shown adjacent to each participant’s time domain response with the uV scale bar. Electrode locations with 
their corresponding labels generated via Brainstorm are shown on a gray scale replica of the response from Participant 1 on the far right.
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stimulation amplitude for each pulse geometry. Estimates were 
generated using restricted maximum likelihood.

95% confidence intervals (CI) were generated for each slope. CI 
for the slopes of each of the six geometries were compared to one 
another, separately within each polarity and within each region/
frequency (i.e., six slopes and CI for monopolar configurations within 
cortical beta, six slopes for bipolar configurations within cortical beta, 
etc.). If two CI did not overlap, this was considered to be indicative of 
a statistically significant difference in the two slopes. When this 
occurred, GLMM were used for pairwise comparisons: model 
specifications were as previously described, but with two geometries 
included, along with an interaction term for geometry by amplitude. 
This interaction was the coefficient of interest, to determine whether 
percent activation increased significantly more as a function of 
amplitude for one geometry compared to another.

Lastly, to identify the amplitude at which percent activation was 
significantly different from zero, a series of GLMM were used as first 
described (one model per geometry and stratified by polarity and 
region/frequency), but with tested amplitude values as a categorical 
variable instead of continuous. Percent activation for each categorical 
amplitude tested was compared with zero, and the lowest amplitude 
with activation significantly different from zero is presented. Due to 
the exploratory, hypothesis-generating nature of the study, correction 
for multiple comparisons was not made (47). Analyses were completed 
using SAS Studio v 3.81 (SAS Cary, NC, United States).

Results

Participant demographics and DBS lead 
location

Data were collected from eight participants (3 female), with a 
mean age and disease duration of 63.8 ± 2.5 years and 6.7 ± 2.4 years, 
respectively. The average pre-operative, OFF-medication, total 
MDS-UPDRS-III score was 41.4 ± 21.54. The average post-operative, 
OFF-medication, total MDS-UPDRS-III was 33.5 ± 20.44, indicating 
that the lead implantation alone was associated with an improvement 
of 19 % in the UPDRS-III (Table 1). The DBS leads had two to three 
contact rows implanted within the posterior part of STN (Figure 1A). 
All contacts selected for stimulation via the monopolar review were 
estimated to be inside the posterior STN based on pre-operative MRI 
and post-operative CT image co-registration. There were no 
complications from surgery or during testing.

MEP response

The MEP responses and group results from manipulating pulse 
geometry can be seen in Figure 3. Two out of eight participants (1 and 
3) did not show any MEP response to monopolar stimulation (up to 
7.0 mA) across the electrodes placed on the arm contralateral to 
stimulation and were excluded based on the MEP thresholds described 
above. For the patients who exhibited a supra-threshold MEP response 
in the monopolar montage, a clear biphasic response can be observed 
around 25 ms. The response was largest in the time-domain trace 
across the CPL− and CPF− conditions. The CPL+ and CPF+ 
conditions were associated with the smallest MEP response. Group 
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results of the quantified RMS from 10 to 50 ms normalized to the 
baseline at the end of the response profile can be seen on the left side 
of Figure 3. These group results demonstrate a shift in thresholds for 
MEP responses as a function of changing pulse geometry.

For monopolar configurations, activation as a function of 
amplitude increased more rapidly for CPF-, when compared to all 
other geometries (p < 0.0001 when compared to CPF+ and CPL+; 
p = 0.0006 when compared to SB+; p = 0.040 when compared to CPL−; 
and p = 0.041 when compared to SB−); for CPL−, when compared to 
CPF+ (p = 0.002) and CPL+ (p < 0.0001); and for SB−, when compared 
to CPF+ (p = 0.001) and CPL+ (p < 0.0001). Specifically, activation 
increased by 55% (95% CI 49–60) per mA for CPF− (all p < 0.0001). 
The CPL− condition increased by 47% (95% CI 41–52) per mA. SB− 
increased by 46% (95% CI 41–52) per mA, while SB+ increased by 
similarly by 41% (95% CI 35–46). The CPF+ increased by 33% (95% 
CI 27–39) per mA and CPL+ increased by 28% (95% CI 
23–34) per mA.

No differences in the EMG response as a function of pulse 
geometry were observed in the bipolar montage. GLMM slopes and 
their confidence intervals can be found in Table 2. The amplitude at 
which the response became significantly different from zero can 
be found in Table 3.

Short-latency cortical response

Short-latency components (<7.7 ms) could be discerned for four 
out of six pulse geometries (SB−, SB+, CPL−, and CPL+) in both the 
monopolar and bipolar montages. We were unable to reliably measure 

short-latency components with the CPF− and CPF+ geometries due 
to artifact contamination. The data for the peak-to-peak measurements 
of short-latency components best fit a linear model. A discernable 
peak began to emerge around 2 ms that was measured relative to the 
negative deflection that followed (see Figure 4). In the monopolar 
montage, the response for the CPL+ condition in participants 3 and 8 
could only be identified once the amplitude of stimulation reached 
3.0 mA and 1.5 mA, respectively. In the remaining participants, no 
short-latency peak was observed in the CPL+ condition regardless of 
amplitude. A short-latency peak could be observed as low as 1.00 mA 
in the CPL−, SB+, and SB− condition. For monopolar configurations, 
activation as a function of amplitude increased more rapidly for CPL− 
(p < 0.0001), SB+ (p < 0.0001), and SB− (p < 0.0001), when compared 
to CPL+. See Table 2 for the slopes and confidence intervals. The 
growth in the response curve was largest for the pulse geometries 
hypothesized to preferentially recruit axons (i.e., CPL−) compared to 
those hypothesized to preferentially recruit cell bodies (i.e., CPL+). 
For monopolar configurations, activation increased by 0.03 uV (95% 
CI 0.01–0.04) per mA for CPL+, which was significantly less than the 
0.10 uV (95% CI 0.09–0.11, p < 0.0001) increase per mA for SB+, the 
0.11 uV (95% CI 0.09–0.13, p < 0.0001), increase per mA for CPL− 
and the 0.13 uV (95% CI 0.11–0.15, p < 0.0001) increase per mA for 
SB−. The threshold at which the response was significantly greater 
from zero can be found in Table 3. The CPL+ condition was only 
significantly different from zero at 4.5 mA, while the others were 
significant at the listed amplitudes and all amplitudes above.

When using a bipolar montage, there was no short-latency 
response below 1.25 mA for all pulse geometries and a minimal 
response thereafter until 2.20 mA. Thereafter, the growth in the 

FIGURE 3

MEP individual and group results for all six pulse geometries. Each individual participant’s response across the six pulse geometries is shown on the six 
plots on the right from the monopolar configuration. The amplitude is fixed at 2.50  mA for each geometry. The normalized RMS measurement 
averages +/− SEM are shown on the upper left from the monopolar configuration. The bottom left plot shows the normalized RMS in the bipolar 
configuration.
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TABLE 3 Statistical findings presenting the lowest amplitude where 
percent activation began to be significantly different from zero.

Geometry MEP
Antidromic 

peak

Cortical-
EP beta 

band

Cortical-
EP 

gamma 
band

Monopolar

CPF+ 4.5 4.5 3

CPF− 3 2.2 2.2

CPL+ 4.5 4.5 4.5 4.5

CPL− 4.5 2.2 2.2 2.2

SB+ 4.5 2.2 2.5 2.5

SB− 4.5 2.2 2.2 2.2

Bipolar

CPF+ 1.25 2.2 1.25

CPF− 0.6 2.2 2.2

CPL+ 0.6 4.5 1.5 1.5

CPL− 0.6 3 1.5 2.2

SB+ 0.6 4.5 2.2 1.5

SB− 0.6 3 2.2 1.25

In the monopolar CPL+ condition the amplitude was only different at 4.5 mA, but not 5.5 or 
7.0 mA for the short-latency CEP. *Electrical artifact precluded measurement of the CPF+/− 
condition in this metric. The color coding under the “Geometry” column in table reflects the 
corresponding pulse geometry color coding from Figure 1.

response curve was again largest for the axon recruiting pulse 
geometries (i.e., CPL−) compared to those hypothesized to 
preferentially recruit cell bodies (i.e., CPL+). When comparing the 

slope of the curve for each geometry, activation as a function of 
amplitude increased more rapidly for SB−, when compared to CPL+ 
(p < 0.0001). For bipolar configurations, SB− increased by 0.12 units 
(95% CI 0.10–0.14) per mA, which was significantly greater than the 
0.04 units (95% CI 0.02–0.07, p < 0.0001) increase for CPL+. Overall, 
the effect of pulse geometry on the short-latency components was 
less robust in the bipolar montage compared to the monopolar  
montage.

Long-latency cortical response

The long-latency components were quantified using the wavelet 
transform. An example time-domain trace and corresponding 
spectrogram for each pulse geometry at 2.50 mA is shown in Figure 5 
for the monopolar montage. The time domain trace shows a series of 
positive and negative deflections from 10 to 150 ms after stimulation 
onset that differ as a function of pulse geometry (see Figure  5). 
Spectrograms showing the frequency content of the averaged evoked 
response with respect to time reveal that high-amplitude components 
were concentrated in the beta band (13–35 Hz), which is consistent 
with prior studies (18, 21). This amplitude component is observed 
between 25 and 75 ms and maximal at 50 ms. The amplitude of the 
wavelet response in the beta band was largest in the cathode-oriented 
pulse geometries (SB−, CPL−, and CPF−), with the anodic pulse 
geometries having resulted in evoked responses with lower amplitudes. 
The spectrogram also showed elevated gamma band (36-100 Hz) 
activity that occurs between 0 and 50 ms. This gamma component was 
most robust in the CPF− condition, however, it was also evident 
across other pulse geometries.

TABLE 2 Statistical findings comparing the differences in slope from a generalized linear mixed effect models as a function of changing pulse 
geometry.

Geometry
MEP Antidromic peak Cortical-EP beta band

Cortical-EP gamma 
band

Slope LCL UCL Slope LCL UCL Slope LCL UCL Slope LCL UCL

Monopolar

CPF+ 0.33 0.27 0.39 0.43 0.35 0.52 0.4 0.31 0.48

CPF− 0.55 0.49 0.6 0.57 0.48 0.65 0.48 0.38 0.59

CPL+ 0.28 0.23 0.34 0.03 0.01 0.04 0.55 0.44 0.67 0.58 0.48 0.69

CPL− 0.47 0.41 0.52 0.11 0.09 0.13 0.58 0.5 0.66 0.57 0.49 0.66

SB+ 0.41 0.35 0.46 0.1 0.09 0.11 0.69 0.57 0.81 0.6 0.51 0.69

SB− 0.46 0.41 0.52 0.13 0.11 0.15 0.59 0.51 0.68 0.58 0.49 0.67

Bipolar

CPF+ 0.13 0.07 0.18 0.44 0.35 0.54 0.31 0.24 0.39

CPF− 0.03 −0.02 0.09 0.44 0.34 0.55 0.33 0.24 0.42

CPL+ 0.05 −0.005 0.11 0.04 0.02 0.07 0.47 0.36 0.57 0.42 0.32 0.52

CPL− 0.12 0.06 0.17 0.08 0.06 0.11 0.42 0.31 0.53 0.38 0.3 0.47

SB+ 0.13 0.08 0.17 0.09 0.07 0.11 0.56 0.47 0.65 0.47 0.36 0.58

SB− 0.12 0.06 0.17 0.12 0.1 0.14 0.57 0.46 0.62 0.44 0.35 0.52

Slopes for each pulse geometry across the four measurements (MEPs, are indicated in the “slope” column). Their corresponding lower confidence limit (LCL) and upper confidence limit 
(UCL) are adjacent. For example, the MEP confidence interval for CPF+ or 0.27–0.39 does not overlap with the MEP confidence interval for CPF− or 0.49–0.6, indicating the two slopes are 
significantly different. Where confidence intervals do not overlap, that indicates that the slopes are significantly different. These significant differences are highlighted in blue and yellow. 
Confidence limits with blue and yellow highlight in split cells reflect slopes that are significantly steeper than at least one other slope and are significantly less steep than at least one other slope 
from another pulse geometry at that recording location within that montage. *Electrical artifact precluded measurement of the CPF+/− condition in this metric. The color coding under the 
“Geometry” column in table reflects the corresponding pulse geometry color coding from Figure 1.
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The group results are quantified in Figure 6 and shown for both 
the monopolar and bipolar montages. When comparing the time-
domain trace the peak morphology shows either a positive or negative 
deflection or phase shift in the components at approximately 25 and 

50 ms, respectively, in most participants as a function of pulse 
geometry. The overall amplitude of the time-domain trace is 
attenuated in the CPL+ and CPF+ conditions compared to the CPL− 
and CPF− conditions.

FIGURE 4

Short latency DBS-CEP peaks and quantified group results. Each individual participant’s response across the four pulse geometries is shown on the 
eight plots on the right from the monopolar configuration. The amplitude is fixed at 2.50  mA for each geometry. The normalized peak to peak 
amplitude measurements (average +/−SEM) are shown on the upper left from the monopolar configuration. The bottom left plot shows the 
normalized peak to peak measurements (average +/−SEM) from the bipolar configuration.

FIGURE 5

Example time and frequency domain response (average of Cz, FC2, C4, CP2 electrodes) of the DBS-CEPs and for each pulse geometry at 2.50  mA 
from Participant 3. The pulse geometry reflecting each response is labeled above the spectrogram (stimulus waveform not to scale).
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The quantified response using the average maximum wavelet 
amplitude for the beta frequency content for group comparison is 
shown on the left side of Figure 6. In the monopolar montage the 
response curve is led by the CPF− condition, followed by CPL−, SB−, 
SB+, CPL+, and CPF+. The wavelet amplitude changes as a function 
of stimulus amplitude and increased more rapidly for SB+, when 
compared to CPF+ (p = 0.001). This response could be appreciated at 
amplitudes as low as 0.60 mA for the CPF− condition. For monopolar 
configurations, activation increased by 69% (95% CI 57–81) per mA 
for SB+, but only 43% (95% CI 35–52) per mA for CPF+ (p = 0.001; 
no other significant differences between geometries in the monopolar 
configuration). Of note, there were no differences in the response 
profiles as a function of pulse geometry when stimulation was 
delivered using the bipolar configuration. The slope and corresponding 
confidence intervals for the exponential slope fitting these data can 
be  found in Table  2. The amplitude at which the response was 
significantly different from zero can be found in Table 3.

The quantified group results for the gamma band, using the 
average maximum wavelet amplitude, are shown in Figure  7. For 
monopolar configurations, activation as a function of amplitude 
increased more rapidly for CPL− (p = 0.013), SB+ (p = 0.003), and SB− 
(p = 0.008), when compared to CPF+. For monopolar configurations, 
activation increased by 40% (95% CI 31–48) per mA for CPF+, which 
was significantly less than the 57% (95% CI 49–66, p = 0.013) increase 
per mA for CPL−, the 58% increase per mA for SB− (95% CI 49–67, 
p = 0.008), and the 60% (95% CI 51–69, p = 0.003) increase per mA for 
SB+. There were no other significant differences between geometries. 
Similar to the beta frequency content, the responses begin to diverge 
for pulse amplitudes of 1.25 mA and higher and the bipolar montage 
showed no differences as a function of pulse geometry. The gamma 
band long-latency responses also best fit an exponential model and the 

values can be found in Table 2 along with the amplitudes where the 
response became significantly different from zero in Table 3.

Discussion

This study provides in vivo evidence that manipulating pulse 
geometry can have a significant impact on the physiological effects of 
STN DBS. This effect was most robust for monopolar stimulation and 
largely absent in the bipolar condition, with the exception of the 
short-latency components of the DBS-CEP. The CPF− waveform, 
which most closely emulates the waveform used in FDA-cleared IPGs 
in the US, showed the lowest MEP activation threshold. Notably, the 
next lowest was from the CPL− waveform, which has been 
hypothesized to be preferential for recruiting axons (6). When the 
primary, large-amplitude phase was anodic (CPL+ and CPF+) the 
threshold for MEP activation increased in the monopolar 
configuration. Similarly, the short and long-latency components of 
the DBS-CEPs response to CPL+, hypothesized to be preferential for 
recruiting cell bodies (6), were attenuated relative to the CPL− 
condition for both the short and long-latency responses. These results 
suggest that manipulating pulse geometry may allow for enhanced 
neural selectivity and, as a result, potentially impact the upper 
bounds of the therapeutic window of STN-DBS.

DBS-CEP and -MEP findings support 
computational modeling-based predictions

Charge balancing is critical to ensure safe delivery of electrical 
stimulation for in vivo use (48). However, charged balanced symmetric 

FIGURE 6

Long-latency cortical beta (13–35  Hz) band individual and group results for all six pulse geometries from −10 to 200  ms aligned to the stimulus pulse. 
Each individual participant’s response across the six pulse geometries is shown on the eight plots on the right from the monopolar configuration. The 
stimulus amplitude generating the time domain plots is fixed at 2.50  mA for each pulse geometry. The normalized averaged wavelet amplitude 
measurements in the beta (13–35  Hz) band from 25 to 75  ms are shown on the upper left from the monopolar configuration. The bottom left plot 
shows the normalized averaged wavelet amplitude from the beta band in the bipolar configuration. Error bars reflect standard error of the mean.
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biphasic pulses (i.e., SB+/−) minimize any neural selectivity for cell 
bodies vs. axons (6). McIntyre and Grill (6) introduced the idea of 
using asymmetric charge balanced pulses (i.e., CPL+/−) in DBS to 
restore the neural selectivity in extracellular stimulation that is 
observed when using monophasic pulses (6). This built upon prior, 
primarily in-vitro, work demonstrating that a reduction of pulse 
amplitude and increased pulse width of the first phase of stimulation 
allows for the exploitation of non-linear conductance properties of H 
and M gate dynamics in sodium channels (8, 49–52). Changing the H 
and M gate dynamics ultimately alters the excitability of the neuronal 
membrane and its response to the second phase of the stimulus 
pulse—referred to as the primary phase in the current study.

Our study results align with the modeling work of McIntyre and 
Grill (6) in two ways. First, we  demonstrated differences in the 
response curve through the use of varying types of asymmetric 
biphasic pulses. The differences that we  observed may reflect the 
enhanced selectivity of cell bodies vs. axons when employing 
geometric manipulation to the stimulus pulse. However, the ability to 
explicitly conclude cell body vs. axon activation is beyond the scope 
of the data reported here and deserve further research in a preclinical 
model where such differentiation is possible. Second, we showed that 
this potential selectivity is greatest when utilizing a monopolar 
configuration. This may be because a bipolar stimulation montage 

negates selective exploitation of sodium channel dynamics via the 
hyperpolarization or depolarizing conditioning phase by placing the 
inverse effect in closer spatial proximity than is achieved with a 
“monopolar” montage that uses the metal casing of patient’s 
implantable pulse generator located at the level of the chest as the 
return electrode. The use of a bipolar montage also eliminates any 
effects of polarity, therefore a bipolar montage is not truly anodic vs. 
cathodic when applied across adjacent contacts as done in this study 
and may explain why no difference was observed in a bipolar montage. 
Future work should explore the distance threshold between contacts 
in a bipolar montage that is necessary in order to observe effects from 
changing pulse geometry. Overall, these findings demonstrate that 
introducing an extended depolarizing or hyperpolarizing conditioning 
phase influences the stimulus selectivity. This selectivity was evident 
in both the MEP and DBS-CEP data.

Decreased motor side effects through 
anodic pulse geometries

One of the most common side effects of STN DBS is undesirable 
current spread to the corticospinal tract resulting in muscle twitches 
and pulling, which can be measured using MEPs (10–13). In this study 

FIGURE 7

Long-latency cortical gamma (36–100  Hz) band group results for all six pulse geometries quantified from 5 to 50  ms. The normalized averaged wavelet 
amplitude measurements in the gamma band are shown on the upper panel for the monopolar configuration. The bottom panel shows the 
normalized averaged wavelet amplitude in the gamma band from the bipolar configuration. Error bars reflect standard error of the mean.
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we demonstrate the threshold for eliciting an MEP response is higher 
when using the pulse geometries where the primary phase is anodic 
(i.e., CPL+ and CPF+). This parallels prior findings (7, 53) that suggest 
the therapeutic window was greater in STN-DBS when employing 
anodic compared to cathodic stimulation using pulse geometries 
similar to CPF+/− from this study. Taken together these results 
suggest that the ability to preferentially target neural components in 
the region of the STN that avoid undesirable capsule activation is 
possible with pulse geometries where the primary phase is anodic. 
However, this study evaluated a subset of muscles on the arm 
contralateral to stimulation. Further work would benefit from 
exploring additional muscles as well as the differing effects that anodic 
stimulation can produce on distinct neuronal elements (i.e., dendrites, 
soma, and axons) in the STN and neighboring regions compared to 
cathodic stimulation in PD to better understand the mechanisms 
behind reduced capsule activation.

Hyperdirect pathway activation with 
cathodic but not anodic stimulation

The hyperdirect pathway is comprised of layer 5 pyramidal 
neurons with axonal projections that innervate the STN (25). Prior 
work has shown that antidromic activation of this pathway appearing 
within the first 7 ms from the onset of stimulation is present during 
clinically effective STN-DBS and may be involved in the therapeutic 
mechanism of STN-DBS (20, 26–28, 41). Modeling studies further 
support the feasibility of peaks occurring within the first 7 ms as being 
of physiological origin and possibly attributable to antidromic 
activation from STN stimulation (29, 30, 38, 54). Results from this 
study demonstrate that a peak can be observed as early as ~2 ms post 
the onset of stimulation that changes as a function of manipulating 
pulse geometry and may be reflective of antidromic activation of the 
hyperdirect pathway. This peak presented only with the CPL−, SB−, 
and SB+ pulse geometries for the monopolar configuration. The 
anodic pulse geometry (CPL+) showed an absence of a peak at ~2 ms 
except for an amplitude of 4.5 mA during monopolar stimulation, 
despite previous modeling work that suggests anodic pulse geometries 
(such as CPL+) may preferentially activate the terminating axons in 
the hyperdirect pathway and more readily produce antidromic 
activation (29, 30). Future studies are needed to assess whether the 
CPL+ pulse geometry is capable of producing therapeutic benefit 
when delivered at high frequency in the absence of antidromic 
activation to clarify further the role of the hypderdirect pathway 
(antidromic) activation in the mechanism of STN-DBS.

Long-latency components and 
orthodromic pathways

The long-latency components in the DBS-CEPs have been tied to 
postoperative motor side effects, disease severity, and the fluctuation 
of dopamine due to medication cycling (11, 21, 23, 42, 55, 56). The 
impact on the long-latency components of manipulating pulse 
geometry was examined through the changes in wavelet amplitude in 
both the beta and gamma bands. Our results show that the changes 
were exclusive to monopolar stimulation, which is consistent with the 

original modeling work by McIntyre and Grill (6). Other previous 
modeling studies have proposed that the long-latency response can 
occur without additional orthodromic activation of the cortex (57). 
However, results from this study show that the long-latency response 
in the CPL+ condition occurred at low stimulation amplitudes, while 
the short-latency peaks did not emerge until stimulation reached a 
higher amplitude, which suggests orthodromic pathways may 
be contributing to the long-latency cortical response. This is further 
supported by the reduced or absent MEP response in the CPL+ 
condition, which suggests that the long-latency response was likely 
not due to activation of the corticospinal tract fibers independent of 
the hyperdirect pathway. Both the short and long-latency cortical 
responses emerged prior to the MEP responses, which may also 
suggest that CEP thresholds may relate more to benefit than 
side effects.

Manipulating pulse geometry and clinical 
use

Many preclinical and clinical studies have evaluated DBS using a 
symmetric biphasic pulse geometry despite their absence in the 
clinical IPGs providing therapeutic stimulation in implanted patients 
(4, 5). Given the differences demonstrated here and in prior clinical 
(7, 53, 58–60) and modeling (29) work, a lack of consideration for 
pulse geometry in study designs may confound efforts toward clinical 
translation. The results shown here suggest that changes in pulse 
geometry are exclusive to monopolar stimulation, which is often the 
clinical standard due to yielding a larger volume of tissue activation 
and necessitating lower current levels to solicit therapeutic benefit 
(61–63). In this study we observed reduced motor evoked potentials 
when utilizing the pulse geometry consisting of an anodic pre-pulse 
and cathodic primary pulse (CPL−) while maintaining the CEP. If the 
CEP is related to the therapeutic benefit of STN-DBS as previous 
groups have suggested, it would indicate that the CPL− pulse 
geometry may provide a better therapeutic window compared to 
conventional DBS waveforms where a low amplitude anodic phase 
follows the cathodic pulse.

Manipulating pulse geometry may best serve PD patients with 
poor symptom control or low side-effect thresholds where 
traditional stimulation approaches produce poor outcomes. Future 
studies would benefit from evaluating the behavioral effects of 
manipulating pulse geometry in those specific patient populations 
and may serve as an additional option prior to surgical interventions 
to reposition the DBS lead. Prior work by Anderson et  al. (64) 
demonstrated that lead position and the polarity of stimulation also 
influences the fibers activated during DBS, which may influence the 
variability in responses to changes in pulse geometry. Through 
modeling they demonstrate that fibers running orthogonally to the 
electrode are more easily activated by anodic stimulation at lower 
thresholds than fibers of passage are through cathodic stimulation. 
The results reported here combined with the findings from 
Anderson et al. (64) suggest that patients may benefit from DBS 
devices that allow for manipulating pulse geometries across 
different contacts to facilitate targeting of specific neural pathways 
that may be associated with control of different motor symptoms of 
PD. Future research should explore the physiological and behavioral 

https://doi.org/10.3389/fneur.2023.1216916
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Campbell et al. 10.3389/fneur.2023.1216916

Frontiers in Neurology 13 frontiersin.org

effects of evaluating pulse geometry spatially across directional 
contacts on the DBS lead.

Conclusion

The results from this study provide physiological evidence that 
pulse geometry may afford enhanced neural selectivity, with potential 
clinical implications related to modifying the DBS therapeutic 
window—specifically the side effect profile. Pulse configurations that 
target axons show increased capsule recruitment, while those targeting 
cell bodies show higher thresholds for comparable capsule 
recruitment. Cortical evoked potentials show morphological and 
frequency changes as a function of pulse geometry that demonstrate 
how enhancing neural selectivity may target different pathways in the 
basal-ganglia thalamocortical circuit. The specific impact of changing 
pulse geometry on the short-latency cortical responses possibly 
reflecting antidromic activation of the hyperdirect pathway suggest 
that manipulating pulse geometry may also provide an additional tool 
in investigating potential mechanisms of DBS through selective 
targeting of proposed mechanistic pathways in the basal-ganglia 
thalamocortical circuit.

Limitations

Participants were not asked to withhold their anti-Parkinson’s 
disease medication, however, the collection of each pulse geometry 
condition as well as amplitude was randomized relative to medication 
administration across participants. Further research would be needed 
to appreciate whether the effects of manipulating pulse geometry are 
impacted by the presence or absence of dopamine medication. 
However, prior preclinical work has indicated that medication does not 
impact the short-latency responses (42). These data may differ from 
results reported from long-term, chronically implanted patients due to 
changes in lead positioning and disease fluctuations with time (65). 
Participants may also be impacted by the micro-lesioning effect and 
show a reduced level of motor symptoms as a result. A lack of 
behavioral data to demonstrate the clinical efficacy of each pulse 
geometry restricts these findings to the upper bounds of the therapeutic 
window as only side effects can be  appreciated through the data 
reported in this study. A total of eight participants were included in this 
study, which may limit the ability to provide a detailed analysis of 
differences across individuals and variability due to lead position. Due 
to the limited time available for testing, only the contacts selected 
during the monopolar review could be assessed along with a single 
pulse width and stimulation frequency. Other contacts, pulse widths, 
or frequencies of stimulation may provide different response curves 
given different positions within the region of the STN and ability to 
activate the basal-ganglia thalamocortical circuit and other adjacent 
pathways. Given the pro-longed artifact during the CPF condition the 
short-latency peaks could not be  quantified, which most closely 
approximate those found in clinical pulse generators.
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