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Sti� person syndrome (SPS) is a rare central nervous system disorder associated

with malignancies. In this review, we retrieved information from PubMed, up

until August 2023, using various search terms and their combinations, including

SPS, sti� person syndrome spectrum disorders (SPSSDs), paraneoplastic, cancer,

and malignant tumor. Data from peer-reviewed journals printed in English were

organized to explain the possible relationships between di�erent carcinomas and

SPSSD subtypes, as well as related autoantigens. From literature searching, it

was revealed that breast cancer was the most prevalent carcinoma linked to

SPSSDs, followed by lung cancer and lymphoma. Furthermore, classic SPS was the

most common SPSSD subtype, followed by sti� limb syndrome and progressive

encephalomyelitis with rigidity and myoclonus. GAD65 was the most common

autoantigen in patients with cancer and SPSSDs, followed by amphiphysin

and GlyR. Patients with cancer subtypes might have multiple SPSSD subtypes,

and conversely, patients with SPSSD subtypes might have multiple carcinoma

subtypes. The first aim of this review was to highlight the complex nature of

the relationships among cancers, autoantigens, and SPSSDs as new information

in this field continues to be generated globally. The adoption of an open-

minded approach to updating information on new cancer subtypes, autoantigens,

and SPSSDs is recommended to renew our database. The second aim of this

review was to discuss SPS animal models, which will help us to understand

the mechanisms underlying the pathogenesis of SPS. In future, elucidating the

relationship among cancers, autoantigens, and SPSSDs is critical for the early

prediction of cancer and discovery of new therapeutic modalities.

KEYWORDS

sti� person syndrome (SPS), sti� person syndrome spectrum disorders (SPSSDs),

paraneoplastic, cancer, malignant, autoantigen

1. Introduction

Stiff person syndrome (SPS) is a rare chronic central nervous system (CNS) disorder
(1). The clinical manifestations of SPS encompass a wide range of symptoms, including
muscle rigidity, sporadic muscle spasms, and chronic muscle pain. It is also characterized
by psychiatric symptoms, such as depression and anxiety, and also other neurological
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symptoms, including horizontal and vertical supranuclear gaze
palsy, nystagmus, increased reflexes, and paroxysmal dysautonomic
crisis (2, 3).

Recently, SPS spectrum disorders (SPSSDs) have expanded to
include a series of diseases with similar signs and symptoms to
those of SPS (4).

SPS is associated with malignancies; however, this is not
really well-understood. In this review, we retrieved information
from PubMed, up until August 2023, using various search terms
and their combinations, including SPS, SPSSDs, paraneoplastic,
cancer, and malignant. Data from peer-reviewed journals printed
in English were organized to explain the possible relationships
between different carcinomas and SPSSD subtypes, as well as
related autoantigens. An analysis of the literature search revealed
that breast cancer was the most prevalent carcinoma linked to
SPSSDs, followed by lung cancer and lymphoma. The first aim
of this review highlights the complex nature of the relationships
among cancers, autoantigens, and SPSSDs as new information in
this field continues to be generated globally. The adoption of an
open-minded approach to updating information on new cancer
subtypes, autoantigens, and SPSSDs is recommended to renew
our database. The second aim of this review was to outline SPS
animal models, which will help us to understand themechanisms of
pathogenesis of SPS. In future, elucidating the relationship among
cancers, autoantigens, and SPSSDs is critical for the early prediction
of cancer and the discovery of new therapeutic modalities.

2. Major clinical characteristics of
SPSSDs

SPS was first reported by Moersch and Woltman in 1956
(1). In 1999, Brown et al. published the “Diagnostic Criteria
for Classic Stiff-Person Syndrome,” which classified SPS into the
following two major subtypes: (1) classic SPS, cases without
encephalomyelitis; and (2) SPS plus, cases with encephalomyelitis,
such as progressive encephalomyelitis with rigidity and myoclonus
(PERM), jerking stiff man syndrome, and stiff limb syndrome
(SLS) (5). Currently, SPS includes the following three subtypes: (1)
glutamic acid decarboxylase 65 (GAD65)-positive SPS associated
with other autoimmune conditions; (2) anti-amphiphysin-positive
SPS associated with tumors; and (3) seronegative idiopathic SPS (6).

To date, SPSSDs include the following: (1) partial SPS, limited
to extremities and often only one limb (stiff limb syndrome,
SLS) or the torso; (2) SPS-plus, with classic SPS symptoms that
exist in combination with cerebellar and/or brainstem findings;
(3) PERM; and (4) some overlapping syndromes, such as classic
SPS with epilepsy or limbic encephalitis (LE) (7), classic SPS
with myasthenia gravis (8), classic SPS with anti-N-methyl-D-
aspartate receptor (NMDAR) encephalitis (NMDARE-SPS) (9),
classic SPS with central sleep apnea (10), and classic SPS with
pure red blood cell aplasia (11). Most patients with SPSSD are
middle-aged females; however, some patients with SPSSD are either
pediatric individuals or adult males. For example, among a total
of 22 patients, eight older male patients with SPSSD showed early
prominent vestibular and ocular motor dysfunction (4, 12).

Several autoantigens are associated with SPSSD. The major
SPSSD autoantibodies are antibodies against GAD, amphiphysin,
and glycine receptors for PERM (13). GAD65 is the major
autoantibody associated with SPSSD and is linked to classic SPS
(4, 14). Other autoantigens, such as glycine receptors (linked
to PE RM) (15, 16), amphiphysin (linked to cancers) (17),
GABAA receptors (18) and its related protein GABAA receptor-
associated protein (GABARAP) (19), dipeptidyl-peptidase-like
protein-6 (DPPX), and Zic4 (linked to small-cell lung cancer) (20)
are also associated with SPSSD. In addition, SPSSD is associated
with breast cancer, small-cell lung cancer, and lymphoma (4, 21).
Recently, SPSSD has also been reported to be associated with some
rare cancers (21–36). In this review, we summarize the current
literature on malignant tumor-related SPSSDs.

3. Clinical characteristics of malignant
tumor-related SPSSDs

3.1. Breast cancer

Breast cancer is themost common carcinoma linked to SPSSDs.
Table 1 shows that from 29 studies on breast cancer, six SPSSD
subtypes, including classic SPS (21, 30, 37–47, 50, 63, 64), SLS
(57, 58, 65), paraneoplastic cerebellar degeneration (59), subacute
sensory neuronopathy, subacute cerebellar degeneration (60), and
PERM (61), among which classic SPS is the major SPSSD subtype,
were found to be involved. Patients with breast cancer and PSSD
were determined to have other carcinomas, such as colon cancer,
non-Hodgkin lymphoma, thymoma and lymphoma, andmalignant
melanoma (21, 34, 39, 41). Furthermore, patients with breast
cancer and SPSSD were found to have other diseases, including
autoimmune diseases, such as paraneoplastic encephalomyelitis,
type 1 diabetes, thyroid disease, pernicious anemia, vertigo,
psoriasis, thyroid disease, rheumatoid arthritis, sarcoidosis, mixed
connective disease, limbic encephalitis, myelopathy, HIV, and
ischemic cardiomyopathy (21, 34, 41, 45, 58, 59, 65). Amphiphysin
(55) is the most common autoantigen in patients with breast cancer
and SPSSD, followed by GAD65, Ri, acetylcholine receptor (AChR),
and glycine receptor (GlyR). Notably, Connolly et al. reported a
53-year-old male patient with breast cancer and classic SPS who
harbored the GAD65 autoantibody (42).

3.2. Lung cancer

Lung cancer has also been linked to SPSSD. This has been
reported in nine studies, involving six SPSSD subtypes, including
classic SPS (66–69), subacute sensory neuronopathy, subacute
cerebellar degeneration (60), paraneoplastic neurologic syndromes
(70), and PERM (71–73) (Table 2). Sinha et al. reported that
thymoma coexists with lung cancer and SPSSD (76). Table 2 shows
that GAD65 is the most common autoantigen reported in patients
with lung cancer and SPSSD, followed by amphiphysin, GABABR,
and Hu.
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TABLE 1 Breast cancer associated with SPSSD.

SPSD
subtype

References Gender Number Age Countries
or regions

Autoantibodies Coexisting with other
diseases

Classic SPS Wessig et al. (37) Female 1 71 Germany Amphiphysin Unknown

Schmierer et al. (38) Female 1 53 UK Amphiphysin Unknown

Nene et al. (39) Female 1 58 USA GAD65 Colon cancer

Thümen et al. (40) Female 1 58 Germany Ri Unknown

Lemieux et al. (41) Female 1 30 Canada Unknown Paraneoplastic
encephalomyelitis

McKeon et al. (21) Unknown 6 Unknown USA GAD65 Non-Hodgkin lymphoma, Type
1 diabetes, Thyroid disease,
Pernicious anemia Vitiligo,
Other antibody detected

Connolly et al. (42) Male 1 34 USA GAD65 Unknown

Rojas-Marcos et al.
(43)

Unknown 1 Unknown Spain Amphiphysin Unknown

Dogruoz Karatekin
et al. (44)

Female 1 45 Turkey Amphiphysin Unknown

Ibrikji et al. (45) Female 1 49 Lebanon Amphiphysin Transverse myelitis,
hypothalamitis

Huang et al. (46) Female 1 56 China GAD65 Unknown

Piccolo et al. (30) Unknown 3 54–60 Italy AchR Unknown

Vinjam et al. (47) Female 1 47 UK Amphiphysin,
GAD65

Unknown

Kelly et al. (48) Female 1 64 USA Amphiphysin Unknown

Carvajal-González
(34)

Unknown 2 Unknown UK, Germany,
Sweden, Belgium

GlyR Thymoma and lymphoma,
Hodgkin lymphoma, malignant
melanoma, thymoma, B cell
marginal zone lymphoma
associated with monoclonal
gammapathy igm, metastases
from previous treated breast
cancer, psoriasis, thyroid
disease, diabetes, rheumatoid
arthritis; sarcoid; mixed
connective disease

Vacaras et al. (28) Female 1 68 Romania Amphiphysin Unknown

Folli et al. (49) Female 3 54-76 Italy, UK Amphiphysin Unknown

Rosin et al. (50) Female 1 59 Germany Amphiphysin,
GAD65

Unknown

Sinnreich et al. (51) Female 1 85 Switzerland GAD65 Unknown

Petzold et al. (52) Female 1 62 Germany Amphiphysin Rhabdomyolysis

Kocak (53) Female 1 71 USA Amphiphysin Unknown

Pittock et al. (54) Female 15 46-80 USA, Korea,
Sweden

Amphiphysin Unknown

De Camilli et al.
(55)

Unknown 4 Unknown USA, Germany,
UK

Amphiphysin Unknown

Floyd et al. (56) Female 1 44 USA Amphiphysin Unknown

SLS Agarwal et al. (57) Female 1 55 India GAD65 Unknown

Krishna et al. (58) Female 1 54 USA Amphiphysin Limbic encephalitis

PCD Khanam et al. (59) Female 1 67 USA VGCC HIV, ischemic cardiomyopathy

SSN Aydin et al. (60) Female 2 36 - 40 Turkey Hu, Zic4 Unknown

SCD Aydin et al. (60) Female 1 53 Turkey Yo Unknown

PERM De Blauwe et al.
(61)

Female 1 66 Belgium Glycine Receptor Unknown

Antoine et al. (62) Female 1 75 France, USA Amphiphysin Unknown
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TABLE 2 Lung cancer associated with SPSSD.

SPSD
subtype

References Gender Number Age Countries or
regions

Autoantibodies Coexisting with
other diseases

Classic SPS Dropcho et al. (66) M:F 1:2 3 52–67 Germany Amphiphysin Unknown

Boronat et al. (67) Unknown 29 Unknown Spain GABABR Unknown

Sarwari et al. (68) Female 1 41 USA GAD65 Unknown

Lester et al. (69) Female 1 64 Mexico AChRGN, GAD65 Unknown

SSN Aydin et al. (60) Female 1 42 Turkey Hu Unknown

SCD Aydin et al. (60) Male 1 69 Turkey Hu Unknown

CIPO Badari et al. (70) Male 1 61 USA Hu Unknown

PERM Kyskan et al. (71) Male 1 39 Canada Gly-R Unknown

Nguyen-Huu et al.
(72)

Female 1 75 Germany Amphiphysin Unknown

Spitz et al. (73) Male 1 73 Brasil GAD65 Unknown

LEMS Abboud et al. (74) Female 1 68 USA PQ-VGCC Unknown

Ray and Nigam (75) Female 1 75 UK Unknown Unknown

3.3. Lymphoma and similar hematological
carcinomas

Lymphoma and similar hematological carcinomas have been
reported to be associated with SPSSD. In total, 10 studies involving
three SPSSD subtypes, such as classic SPS (21, 34, 77–80), SLS (81),
and PERM (82–84), have been reported (Table 3). Some authors
have reported the coexistence of thymoma and breast cancer with
lymphoma and SPSSD (34, 80). Table 3 shows that GlyR is the most
commonly reported autoantigen in patients with lymphoma and
similar hematological carcinomas and SPSSD, followed by GAD65,
PCA-1, PCA-Tr, and striational antibodies.

3.4. Other carcinomas

SPSSD is also associated with other carcinomas, such as
mediastinal liposarcoma (22), metastatic adenocarcinoma (23),
pancreatic adenocarcinoma (24), renal cell carcinoma (25),
mediastinal cancer, undifferentiated carcinoma of an undetermined
origin (26), multiple myeloma (86), embryonal carcinoma (27),
malignant glioma (87), ovarian adenocarcinoma (88), prostate
carcinoma (88), testicular seminoma and germ cell neoplasia (88),
pancreatic cancer (88), melanoma (88), invasive carcinoma of
no special type (28), ovarian teratoma (9), small cell carcinoma
of the bladder (31), pleuropulmonary blastoma (33), malignant
mesothelioma (35), colon cancer, and Hürthle cell adenoma (36).
It is also associated with overlapping cancers, such as breast
cancer with colon cancer (30, 39), chronic lymphocytic leukemia
(81), thymoma and non-Hodgkin lymphoma (80), non-functioning
pituitary microadenoma, and endometrial cancer (29) (Table 4).
Table 5 shows the other carcinomas included in 25 studies involving
six SPSSD subtypes, namely, classic SPS (21–36), SLS (86, 90),
PERM (91), progressive dizziness and unstable gait (87), and
NMDAR-SPS (9). Furthermore, thyroid and renal cell cancers
reportedly coexist with colon cancer and SPSSD (21). Table 4 shows

that GAD65 is themost common autoantigen in patients with other
carcinomas and SPSSD, followed by anti-nuclear, Ri, NCC-ST 439,
amphiphysin, gephyrin, AchR, anti-islet cell, VGKC-complex, and
LGI1 antigens.

4. Possible mechanisms of
paraneoplastic SPSSD

As we believe that autoantigens might be good candidates for
determining the possible mechanism underlying paraneoplastic
SPSSD, we have summarized the detailed information on
autoantigens, including GAD and amphiphysin, followed
by GlyR, gephyrin, anti-islet cell, and LGI1 (please see
Supplementary Table 1).

4.1. GAD

4.1.1. GAD isoform
GAD is predominantly expressed in neurons, which might

be linked to SPSSD, and insulin-secreting pancreatic β cells,
which might be linked to type I diabetes (107). GAD regulates
the decarboxylation of glutamate to gamma-aminobutyric acid
(GABA), the main inhibitory neurotransmitter within the CNS,
and is related to SPSSD (108, 109). There are two GAD isoforms—
GAD65 and GAD67. GAD65 is expressed in the presynaptic end
of nerve terminals in its inactive form and is converted to its active
form at the post-natal stage to rapidly synthesize GABA for synaptic
transmission (110). GAD65 is also responsible for packaging GABA
after its synthesis (111). Additionally, GAD67 is expressed in the
cell body and dendrites and is responsible for synthesizing basal
levels of GABA (100).

GAD65 antibody (Ab) titers and epitope specificities are
present in different diseases and different subtypes of SPSSD
(112, 113). For example, the GAD65 Ab titer is 348 U/mL in
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TABLE 3 Lymphoma and similar hematological carcinomas associated with SPSSD.

SPSD
subtype

References Gender Number Age Countries or
regions

Autoantibodies Coexisting with
other diseases

Classic SPS Rakocevic et al. (77) Female 1 57 USA GAD65 Unknown

Nuti et al. (78) Male 1 70 Italy GlyR Unknown

McKeon et al. (85) Unknown 1 Unknown USA GlyR Unknown

Gutmann et al. (79) Female 1 52 Italy Unknown Unknown

Tsai et al. (80) Male 1 66 Australia GAD65 Thymoma

Carvajal-Gonzalez
et al. (34)

Unknown 3 Unknown UK, Germany,
Sweden, Belgium

GlyR Thymoma, breast
cancer, psoriasis,
thyroid disease,
diabetes, rheumatoid
arthritis; sarcoid; mixed
connective disease

SLS Derksen et al. (81) Male 1 61 Germany GlyR Unknown

PERM Borellini1 et al. (82) Male 1 60 Italy GlyR Unknown

Schmidt et al. (83) Female 1 21 Germany Unknown Unknown

Tchapyjnikov et al.
(84)

Male 1 18 USA Unknown Unknown

type I diabetes, 6.0 × 105 U/mL in cerebellar ataxia (CA), 6.2
× 105 U/mL in LE, and 1.1 × 106 U/mL in SPS (112). GAD65
binding in the presence of rFab b78 is 99% in type I diabetes,
81% in CA, 88% in LE, and 77% in SPS (112). Moreover, positive
GAD immunoreactivity is ≥1,800 U/mL in SPS rat brain sections
as detected via immunohistochemistry or cell-based assays (7,
114). A high range of GAD65 Ab levels is associated with SPS,
whereas a lower one is associated with type I diabetes (13). A
possible mechanism underlying this distinction could be that the
GAD Ab in type I diabetes primarily reacts with conformational
epitopes, whereas GAD antibodies in SPS recognize linear epitopes
(115–117). Furthermore, GAD Ab-positive type I diabetes or
SPS, CA, and LE are associated with different HLA class II
haplotypes (118–121).

4.1.2. Decreased GABAergic activity is the major
physiopathological mechanism of SPSSD

GABAergic neurons are responsible for inhibitory signals in
the CNS and express high levels of GAD65. They are mainly
located in the hippocampus, cerebellum, basal ganglia, brainstem
nuclei, and spinal gray matter (122, 123). GABA binds GABAA
and GABAB receptors to mediate the hyperpolarization of post-
synaptic neurons, comprising an inhibitory signal (124, 125).
The GAD Ab inhibits GAD65 to block GABA synthesis, thereby
reducing the uptake of newly synthesized GABA in synaptic vesicles
and its synaptic release (111, 126–128).

Inhibiting GABA synthesis results in decreased GABAergic
transmission, which is linked to neuronal hyperexcitability and
is the core pathophysiological mechanism in SPS (129, 130).
For example, the possible mechanism underlying SPS might be
mediated by the inhibition of GABAergic neurons in the spinal
cord, resulting in a state of motor neuron hyperexcitability,
ultimately causing the simultaneous contraction of agonist and

antagonist muscles (100, 131). GABAergic interneurons are located
at different levels of the CNS, other than the spinal cord, leading to
other subtypes of SPSSD, such as PERM (128), which has also been
supported by animal studies (132, 133). However, this is not the
case for LE and temporal lobe epilepsy, owing to insufficient data.

4.1.3. Association with carcinomas or SPSSD
Subtypes

The major SPSSD subtype is classic SPS (11, 68, 69, 73, 77,
80, 92–98, 134, 135), followed by SPS with myasthenia gravis (21–
25, 29, 31, 34–36, 86, 89, 90, 135, 136), PERM (91), SLS (57),
progressive dizziness and unstable gait (87), and NMDAR-SPS (9),
as shown in Table 5. Moreover, the major carcinoma associated
with SPSSD subtypes is breast cancer (21, 39, 42, 47, 50, 51, 56,
57, 137), followed by thymoma (11, 80, 91–98, 104–106, 134, 135),
lymphoma (77, 80), lung cancer (68, 69, 73), and other carcinomas
(21–25, 29, 31, 34–36, 86, 89, 90, 135, 136).

4.1.4. Titer of anti-GAD65 Ab in the serum vs. the
cerebrospinal fluid of patients with SPSSD

One report showed that the median concentration of anti-
GAD65 Ab, measured via ELISA, is 30-fold higher in the serum
(74,700 IU/mL) than in the cerebrospinal fluid (CSF) (2,430
IU/mL). However, these data were from 34 patients with classical
anti-GAD65-associated syndromes, including SPS, CA, chronic
epilepsy, and LE, with overlapping syndromes in some of the cases
(138). The serum/CSF ratio of anti-GAD65 Ab was reported to be
approximately 20 in patients with SPS (138). Moreover, serum and
CSF anti-GAD65 Ab titers decreased, with those of CSF decreasing
more rapidly than serum titers after patients with SPS received
immunotherapy (138).
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TABLE 4 Other carcinomas associated with SPSSD.

SPSD
subtype

References Carcinoma Gender Number Age Countries or
regions

Autoantibodies Coexisting with
other diseases

Classic SPS Yohannan et al. (22) Mediastinal liposarcoma Female 1 20s USA GAD65 Seizure

McCabe et al. (23) Metastatic adenocarcinoma Female 1 43 UK Anti-nuclear, Ri Unknown

Yong et al. (28) Pancreatic Adenocarcinoma Female 1 70 Singapore GAD65 Unknown

McHugh et al. (25) Renal cell carcinoma Male 1 53 Ireland GAD65 Unknown

Butler et al. (26) Mediastinic canceran undifferentiated
carcinoma

Male 1 58 USA Anti-nuclear, NCC-ST 439,
Gephyrin

Unknown

McKeon et al. (22) Thyroid, renal cell, and colon cancer Unknown 59 Unknown USA GAD65 Unknown

Komandla et al. (27) Embryonal carcinoma Male 1 34 USA Amphiphysin Unknown

Vacaras et al. (28) An invasive no special type carcinoma Female 1 68 Romania Amphiphysin Unknown

Yeoh et al. (29) Non-functioning pituitary
microadenoma, endometrial cancer

Female 1 53 USA ANA, GAD65 Unknown

Piccolo et al. (30) Colon cancer Unknown 3 54 - 60 Italy AchR Unknown

Alboniga-Chindurza et al.
(31)

Small cell carcinoma of the bladder Male 1 46 Spain GAD65 Unknown

Hylan et al. (32) Colon cancer Female 1 56 USA Unknown Unknown

Jun et al. (33) Pleuropulmonary Blastoma Female 1 3.5 Korea Unknown Unknown

Carvajal-Gonzalez et al.
(34)

Malignant melanoma (21, 34, 39, 41) Unknown

Koca et al. (35) Malignant mesothelioma Female 1 58 Turkey GAD65 Unknown

Badzek et al. (36) Colon cancer, Hürthle cell adenoma Female 1 55 Croatia GAD65 Unknown

Clow et al. (89) Multiple myeloma Female 1 31 Canada GAD65 Unknown

SLS Silverman et al. (90) Metastatic adenocarcinoma Unknown

Schiff et al. (86) Multiple myeloma Female 1 47 USA GAD65, anti-islet cell Unknown

PERM Shugaiv et al. (91) Renal cell carcinoma Male 1 46 Spain GAD65, VGKC-complex,
LGI1

Unknown

Progressive
dizziness and
unstable gait

Maimaiti et al. (87) Malignant glioma Male 1 62 China GAD65 Unknown

NMDAR-SPS Gharedaghi et al. (9) Ovarian teratoma Female 1 26 USA NMDAR, GAD65 Unknown
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TABLE 5 GAD65 associated with cancer or SPSSD.

SPSD
subtype

Carcinoma References Coexist with
other cancer

Coexist with
other
autoantigen

Classic SPS Breast cancer (21, 39, 42, 46, 47, 50, 51, 56) Colon cancer,
non-Hodgkin
lymphoma

Amphiphysin

Thymoma (11, 80, 92–99) Non-Hodgkin
lymphoma

Amphiphysin

Lung cancer (68, 69, 73) Unknown Unknown

Lymphoma (77, 80) Thymoma Unknown

Mediastinal liposarcoma (22) Unknown Unknown

Metastatic adenocarcinoma (23) Unknown Unknown

Pancreatic adenocarcinoma (24) Unknown Unknown

Renal cell carcinoma (100) Unknown Unknown

Thyroid, renal cell, and colon cancer (21) Unknown Unknown

Non-functioning pituitary
microadenoma, endometrial cancer

(29) Unknown ANA

Small cell carcinoma of the bladder (31) Unknown Unknown

Malignant melanoma (34) Unknown Unknown

Malignant mesothelioma (35) Unknown Unknown

Colon cancer, Hürthle cell adenoma (36) Unknown Unknown

Multiple myeloma (89) Unknown Unknown

Metastatic adenocarcinoma (90) Unknown Unknown

Multiple myeloma (86) Unknown Anti-islet cell

MG-SPS Thymoma (8, 55, 101–103) Unknown AchR, gastric parietal
cell, ssDNA dsDNA

SLS Breast cancer (57) Unknown Unknown

PERM Thymoma (104–106) Unknown AchR

Renal cell carcinoma (91) Unknown VGKC-complex, LGI1

Progressive
dizziness and
unstable gait

Malignant glioma (87) Unknown Unknown

NMDAR-SPS Ovarian teratoma (9) Unknown NMDAR

4.2. Amphiphysin

4.2.1. Amphiphysin superfamily
Amphiphysins are members of the Bin-Amphiphysin-Rvsp

(BAR) family of proteins, which includes the mammalian bridging-
integrators (Bin1 and Bin2), amphiphysins, and yeast Rvs161p and
Rvs167p (139). Some members of the amphiphysin superfamily
have conserved BAR domains, mainly in the N-terminus, and an
SH3 domain in the C-terminus (139). Amphiphysin I is expressed
in chicken and mammalian brains (140) and is associated with
SPS and breast cancer (49, 55). Two members of amphiphysin
II are also expressed in the brain. Amphiphysin II, also known
as BIN1 (MYC box-dependent interacting protein-1 or bridging
integrator-1) or SH3P9, is associated with cancer progression,
several myopathies, heart failure, and late-onset Alzheimer’s
disease (141). Amphiphysin IIa shares a brain-specific domain
with amphiphysin I (142, 143), and amphiphysin IIb has a

skeletal muscle-specific domain with a tumor suppressor that
interacts with the c-Myc oncoprotein (142, 144). In several
cancers, such as breast, colon, prostate, and lung cancers, as
well as hepatocarcinoma and neuroblastoma, the expression of
amphiphysin II is reduced or altered (145–148). In addition,
the ablation of amphiphysin II is linked to a poor cancer
prognosis and increased metastasis (145, 148–151). Amphiphysin
II can also inhibit Myc-dependent transformation and
tumorigenesis (145, 148–151).

4.2.2. Association with carcinomas or SPSSD
subtypes

The major SPSSD subtype is classic SPS (28, 37, 38, 43–45, 47–
50, 52–56, 135), followed by SLS (58, 65) and PERM (62, 72).
Moreover, the major carcinoma associated with SPSSD is breast
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TABLE 6 Amphiphysin associated with cancer or SPSSD.

SPSD
subtype

Carcinoma References Coexist with
other cancer

Coexist with
other
autoantigen

Classic SPS Breast cancer (28, 37, 38, 43–45, 47, 49, 50, 52–55, 96, 140) Unknown GAD65

Lung cancer (66) Unknown Unknown

SLS Breast cancer (58, 65) Unknown Unknown

PERM Breast cancer (62) Unknown Unknown

Lung cancer (72) Unknown Unknown

TABLE 7 GlyR associated with cancer or SPSSD.

SPSD subtype Carcinoma References Coexist with
other cancer

Coexist with other
autoantigen

Classic SPS Breast cancer (34) Unknown GAD65

Lymphoma (21, 34, 78) Unknown Unknown

SLS Lymphoma (81) Unknown Unknown

PERM Breast cancer (61) Unknown Unknown

Lymphoma (82) Unknown Unknown

cancer (28, 37, 38, 43–45, 47–50, 52–56, 58, 135), followed by
thymoma (66, 95, 99) and lung cancer (66, 72) (Table 6).

4.3. Glycine receptors

4.3.1. Biological studies on GlyR
As an inhibitory neurotransmitter, glycine, as well as its

receptor (GlyR), is critical for CNS development (152). Glycine
is synthesized via serine hydroxymethyl transferase or a glycine
synthase (glycine cleavage, GCS) enzyme, located between carbon
dioxide, ammonium ion, N5, N10-methylene tetrahydrofolate,
NADH, and a proton, producing glycine, tetrahydrofolate, and
NAD+ (153), as confirmed from a rat study (154). Furthermore,
the biological function of glycine requires specific transporters
such as GlyT1 (glial cells) and GlyT2 (neurons) (155, 156). GlyT1
also regulates glutamatergic neurotransmission through NMDA
receptors, affecting brain function and diseases (157).

There are four α subunits and one β unit in GlyR, and
these are expressed in the spinal cord and retina, respectively
(158–160). Microglia secrete glycine, enhance NMDA receptor-
mediated responses (161), and express GlyR to induce membrane
depolarization, increasing intracellular calcium and proliferation
(162). In addition, glial cells modulate synaptic development by
participating in the induction of the action potential conduction
in white matter via GlyRs (163). Importantly, glycine has also been
linked to rapid cancer cell proliferation due to glycine metabolism
(164). For example, α1 and α3 GlyR subunits were found to be
expressed in human brain tumor biopsies, and the lack of α1
GlyR protein expression resulted in inhibition of the self-renewal
capacity and tumorigenicity of GL261 glioma cells (165). GlyR
knockdown can increase P53 tumor suppressor protein expression
(166, 167).

4.4. Association with carcinomas or SPSSD
Subtypes

The major associated SPSSD subtype has been reported to be
classic SPS (34, 78, 85), followed by SLS (61) and PERM (61, 82)
(Table 7). Moreover, the major associated carcinoma is lymphoma
(34, 61, 78, 85), followed by breast cancer (34, 61).

5. Clinical characteristics of malignant
tumor-related SPSSDs

5.1. Breast Cancer

Breast cancer is themost common carcinoma linked to SPSSDs.
Table 1 shows that from 29 studies on breast cancer, six SPSSD
subtypes, including classic SPS (21, 30, 37–47, 50, 63, 64), SLS
(57, 58, 65), paraneoplastic cerebellar degeneration (59), subacute
sensory neuronopathy, subacute cerebellar degeneration (60), and
PERM (61), among which classic SPS is the major SPSSD subtype,
were found to be involved. Patients with breast cancer and PSSD
were determined to have other carcinomas, such as colon cancer,
non-Hodgkin lymphoma, thymoma and lymphoma, andmalignant
melanoma (21, 34, 39, 41). Furthermore, patients with breast
cancer and SPSSD were found to have other diseases, including
autoimmune diseases, such as paraneoplastic encephalomyelitis,
type 1 diabetes, thyroid disease, pernicious anemia, vertigo,
psoriasis, thyroid disease, rheumatoid arthritis, sarcoidosis, mixed
connective disease, limbic encephalitis, myelopathy, HIV, and
ischemic cardiomyopathy (21, 34, 41, 45, 58, 59, 65). Amphiphysin
(55) is the most common autoantigen in patients with breast cancer
and SPSSD, followed by GAD65, Ri, acetylcholine receptor (AChR),
and glycine receptor (GlyR). Notably, Connolly et al. reported a
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53-year-old male patient with breast cancer and classic SPS who
harbored the GAD65 autoantibody (42).

5.2. Lung cancer

Lung cancer has also been linked to SPSSD. This has been
reported in nine studies, involving six SPSSD subtypes, including
classic SPS (66–69), subacute sensory neuronopathy, subacute
cerebellar degeneration (60), paraneoplastic neurologic syndromes
(70), and PERM (71–73) (Table 2). Sinha et al. reported that
thymoma coexists with lung cancer and SPSSD (76). Table 2 shows
that GAD65 is the most common autoantigen reported in patients
with lung cancer and SPSSD, followed by amphiphysin, GABABR,
and Hu.

5.3. Lymphoma and similar hematological
carcinomas

Lymphoma and similar hematological carcinomas have been
reported to be associated with SPSSD. In total, 10 studies involving
three SPSSD subtypes, such as classic SPS (21, 34, 77–80), SLS (81),
and PERM (82–84), have been reported (Table 3). Some authors
have reported the coexistence of thymoma and breast cancer with
lymphoma and SPSSD (34, 80). Table 3 shows that GlyR is the most
commonly reported autoantigen in patients with lymphoma and
similar hematological carcinomas and SPSSD, followed by GAD65,
PCA-1, PCA-Tr, and striational antibodies.

5.4. Other carcinomas

SPSSD is also associated with other carcinomas, such as
mediastinal liposarcoma (22), metastatic adenocarcinoma (23),
pancreatic adenocarcinoma (24), renal cell carcinoma (25),
mediastinal cancer, undifferentiated carcinoma of an undetermined
origin (26), multiple myeloma (86), embryonal carcinoma (27),
malignant glioma (87), ovarian adenocarcinoma (88), prostate
carcinoma (88), testicular seminoma and germ cell neoplasia (88),
pancreatic cancer (88), melanoma (88), an invasive carcinoma of
no special type (28), ovarian teratoma (9), small cell carcinoma
of the bladder (31), pleuropulmonary blastoma (33), malignant
mesothelioma (35), colon cancer, and Hürthle cell adenoma (36).
It is also associated with overlapping cancers, such as breast
cancer with colon cancer (30, 39), chronic lymphocytic leukemia
(81), thymoma and non-Hodgkin lymphoma (80), non-functioning
pituitary microadenoma, and endometrial cancer (29) (Table 4).
Table 5 shows the other carcinomas included in 25 studies involving
six SPSSD subtypes, namely, classic SPS (21–36), SLS (86, 90),
PERM (91), progressive dizziness and unstable gait (87), and
NMDAR-SPS (9). Furthermore, thyroid and renal cell cancers
reportedly coexist with colon cancer and SPSSD (21). Table 4 shows
that GAD65 is themost common autoantigen in patients with other
carcinomas and SPSSD, followed by anti-nuclear, Ri, NCC-ST 439,
amphiphysin, gephyrin, AchR, anti-islet cell, VGKC-complex, and
LGI1 antigens.

6. Treatment and outcomes of
paraneoplastic SPSSD

For patients with paraneoplastic SPSSD, the carcinoma
is typically detected and identified prior to treatment while
concurrently managing and addressing symptoms.

6.1. GABAergic therapy

In patients with SPSSD, antibodies attack the GAD enzyme,
which is essential for GABA production. Therefore, drugs targeting
GABAergic neurons can be effective in treating SPSSD; by
inhibiting the attack on GAD, GABA levels are reduced (168).

6.1.1. Benzodiazepines
Benzodiazepines are the first-line treatment for patients with

SPS. These drugs enhance the neurotransmitter effect of GABA
at its receptor. Furthermore, benzodiazepines are widely used
for their sedative, muscle-relaxant, and anticonvulsant effects
(21). Long-term benzodiazepine therapy has been shown to
benefit patients with classic or partial SPS and reduce GAD-65-
positive Ab-mediated stiffness and spasm symptoms; however, this
improvement might also be due to other adjunct medications.

The major drug for SPSSD treatment is diazepam, which results
in a good response in most patients at high doses of up to 60mg
daily (169). However, owing to concerns about withdrawal from
long-term use and high doses of diazepam therapy, tizanidine
has emerged as a good candidate for alternative therapy. As an
NMDAR, tizanidine is an α2 inhibitor that inhibits glutamate
release and prevents glutamatergic hyperactivity, thereby resolving
convulsions in patients with SMS. Nevertheless, the dose of
tizanidine should be individualized (21, 169).

6.1.2. Baclofen
Baclofen is an agonist of GABA type B receptors that inhibits

reflexive muscle contraction by blocking the release of excitatory
neurotransmitters through voltage-gated calcium channels (170).
It is also a second-line therapy for patients with SPS. However,
to date, the use of oral baclofen therapies is still being debated.
In one report, high doses (however, the dose is unknown) of oral
baclofen therapy were found to result in serious side effects, such as
sedation and respiratory depression (171). However, oral baclofen
had good effects on SPS patients without serious side effects. For
example, oral baclofen therapy (5mg, three times per day) plus
clonazepam resulted in improvements in a 69-year-old man with
SPS and amphiphysin antibodies (172). Symptomatic treatment
initiated with oral clonazepam and baclofen (5mg Bid), followed
by intravenous immunoglobulin (IVIG) resulted in improvements
in a 60-year-old man with SPS associated with critical illness
polyneuropathy (173). Baclofen (30 mg/day) combined with oral
diazepam and steroids resulted in improvements in a 55-year-old
GAD-Ab-positive female patient with SLS and breast carcinoma
(57). For childhood-onset SMS, three SMS patients had good
clinical responses with oral baclofen (dose range, 60–80mg)
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combined with diazepam, IVIG, plasma exchange or dantrolene,
and botulinum toxin (174).

Alternatively, intrathecal therapy is an effective route for
baclofen treatment (2). The chronic infusion of intrathecal baclofen
can improve SPS patient outcomes, including the pain Numeric
Rating Scale, Spasm Frequency Scale, and lower extremityModified
Ashworth Scale (171). Intrathecal baclofen (100 µg) followed
by a rehabilitation program resulted in substantial clinical and
functional improvements in a 59-year-old female SPS patient,
who had no therapeutic response with oral benzodiazepines and
botulinum toxin injections (175). In addition, intrathecal baclofen
(started from 50 µg/d up to 100 µg/d) improved motor functions
in a 48-year-old male GAD-negative SPS patient (176). Baclofen
can be used to effectively treat SPS because it is a direct agonist
of GABA-B receptors and does not require endogenous GABA to
induce presynaptic inhibition (176).

6.1.3. Levetiracetam
Levetiracetam binds to synaptic vesicle glycoprotein 2A

(SV2A), resulting in the release of the neurotransmitter stored
within the vesicle, rapidly inhibiting firing neurons and potassium
and N-type calcium channels (177, 178). In a previous study,
three patients with high anti-GAD65 Ab levels did not respond
satisfactorily to IVIG and diazepam treatment with or without
plasmapheresis (179). These patients were treated with 500mg
oral levetiracetam twice daily, which improved axial rigidity and
the disappearance of paroxysmal respiratory arrest within 3 days
of therapy initiation, with markedly reduced leg stiffness and
ameliorated walking difficulties (179). However, to date, there is
no evidence of the effects of long-term levetiracetam therapy. The
possible mechanism by which levetiracetam achieves its effects
could be by stabilizing and strengthening GABAA and decreasing
hyperexcitability in spinal cord neurons (179).

6.1.3. Pregabalin
Structurally, pregabalin is classified as a GABA analog or

gabapentinoid (180). In a previous study, a female patient with SMS
who did not respond to diazepam treatment, owing to excessive
sedation, was successfully treated with a 3-month pregabalin
regimen (181). The possible mechanism underlying the effects of
pregabalinmight be the inhibition of calcium influx and subsequent
release of excitatory neurotransmitters, including glutamate and
norepinephrine, resulting in compensation for the imbalance
between inhibitory and excitatory intracortical circuits (181).

6.1.4. Propofol
The mechanism of action of propofol in the CNS is unclear.

Propofol might enhance the function of GABA receptors, evoking
the chloride current in central neurons at clinically relevant
concentrations, ultimately activating the GABA receptor–chloride
ionophore complex (182). Notably, a low dose of propofol improves
symptoms in patients with SPS who do not respond to high-dose
benzodiazepines, baclofen, corticosteroids, levetiracetam, IVIG, or
IV ethanol. Furthermore, propofol is effective for patients with

SMS that is refractory to therapy (183). Unfortunately, long-
term propofol therapy has unsatisfactory effects in patients with
SPS (184).

6.2. Immunotherapy

6.2.1. Rituximab
Rituximab binds to the CD20 antigen on mature B cells,

leading to B cell lysis, while sparing precursor B cells. Rituximab
improves SPS and other neurological autoimmune disorders, such
as Devic’s disease, myasthenia gravis, autoimmune neuropathies,
and inflammatorymyopathies (185). SPS is associated with elevated
titers of anti-GAD65 Abs and glycine receptor α-subunits in
patients (186). Four reports have demonstrated the benefits of
rituximab for patients with SPS (186–189). Although rituximab
improved the clinical conditions of patients, the decrease in the
anti-GAD titer was inconsistent in different reports. Some reports
demonstrated that after rituximab treatment, the anti-GAD titer
was rapidly (17 days, from positive to undetectable) or slowly (1
year, from 1,000 to 400 U/mL) reduced (187). However, another
case report showed that the anti-GAD Ab titer remained elevated,
even during treatment with rituximab (188).

6.2.2. Tacrolimus
Tacrolimus inhibits the calcium calcineurin pathway and exerts

its immunosuppressive effect by reducing the proliferation of
activated T cells (190). Furthermore, tacrolimus decreases IL-2
levels and impairs T-helper cell functions, finally reducing the
activation of B cells to produce antibodies. It also suppresses
the function of anti-GAD Abs, thereby blocking GABAergic
neurotransmission and interfering with GABA synthesis (191).
Tacrolimus directly blocks calcineurin in the GABAergic inhibitory
system. Nonetheless, the neuroprotective effect of tacrolimus
therapy on SPS demonstrated based on the reduced density of
neurons with somal areas and improved pathological conditions,
remains debatable (192); evidence that macrolide antibiotics inhibit
the function of immunophilins and provide neuroprotective
and neuroregenerative effects contradicts this assertion (184).
Tacrolimus combined with IVIG or prednisone treatment greatly
improved symptoms and reduced Ab titers in two patients who
showed no response to other medicines (192). After 4 weeks of
treatment with tacrolimus, serum anti-GAD Ab titers in patients
with SPS were decreased, with an increase in motor ability, and the
patients became completely self-dependent (191).

6.3. IVIG therapy

IVIG is the initial immunomodulator for patients with SPS
with severe symptoms or unsatisfactory symptom improvements
on other medications (193). IVIG therapy for patients with SPS
partially improves symptoms (193) or the patient quality of life
(194). It is also safe, with the duration of improvement being 6
weeks to 1 year (2).
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6.4. Plasma exchange (plasmapheresis)
therapy

Plasma exchange therapy is an option for patients with SPS who
have failed to respond to other treatments (194). Plasmapheresis
is usually conducted in one cycle with five sessions of plasma
exchange. In a previous study, plasma exchange was used to
treat two patients with SPS who had failed to respond to other
treatments, resulting in improved symptoms and increased anti-
GAD levels (195). Albahra et al. reported that among 10 patients
with SPS, three had completely resolved symptoms, whereas seven
had only partially relieved symptoms (196).

The outcomes of SPS treatment were reported to vary, resulting
in a large range of improvements and moderate walking disability
(21, 118). Limited reports have shown that patients with CA
undergoing treatment have exhibited considerable improvements
when assessed using the modified Rankin score. However, walking
disability was still observed (197). Unfortunately, there were only
modest outcomes for patients with LE following treatment (110,
138, 198–200), with symptoms, such as seizures and cognitive
impairment, remaining (199).

6.5. Changes in autoantibody titers after
treatment

6.5.1. Anti-GAD65
After immune globulin therapy, 11 patients with SPS showed

improvements in their movement disorder and decreased serum
anti-GAD65 Ab titers (169). As we previously described, serum and
CSF anti-GAD65 Ab titers were found to decrease, with those of
CSF decreasingmore rapidly than those of serum after patients with
SPS received immunotherapy (138).

6.5.2. Ovarian teratoma
A 26-year-old woman with anti-NMDAR encephalitis and SPS

with an ovarian teratoma was successfully treated via laparoscopic
removal of the ovarian tumor. She received immune-suppressant
medications (methylprednisolone followed by a combination with
baclofen) preoperatively and postoperatively, and her symptoms
were gradually resolved (9).

6.5.3. Breast cancer
A 53-year-old male patient had anti-amphiphysin-positive SPS

and breast cancer, as previously mentioned. After undergoing
surgery to excise the cancer, he received adjuvant chemotherapy
with cyclophosphamide, methotrexate, and 5-fluorouracil, followed
by post-mastectomy radiation and adjuvant endocrine therapy
with tamoxifen. After 1 year of surgery, the stiffness in his upper
extremity, but not his lower extremities, greatly improved (42).
However, for a 30-year-old female patient with anti-amphiphysin,
GAD Ab-negative SPS, and breast cancer symptoms were not
alleviated following surgery (41).

6.5.4. Lung cancer
A 56-year-old woman with anti-amphiphysin-positive SPS

associated with small-cell lung cancer received treatment with
benzodiazepines and corticosteroids, followed by cancer therapy
with cisplatin/etoposide and radiotherapy. Following treatment,
she exhibited signs of improved stiffness and was able to walk
independently for short distances (72).

7. Animal models of SPSSD

There are some reports of SPS animal models (13, 113, 114,
201–209). For example, the animal models of anti-GAD65 SPS
comprise two major types, specifically an in vitro animal tissue
model and an in vivo animal model (13). Some studies have focused
on in vitro (113, 114, 201–209) and in vivo SPS animal models
(13, 132, 208, 210–213). Unfortunately, the results of these studies
were not satisfactory, and further development is needed.

7.1. In vitro animal tissue studies

In vitro SPSSD studies are usually divided into three
assays, enzymatic assays, whole-cell patch clamp recordings, and
immunofluorescence-using cultures. The major samples in studies
using enzymatic assays have been rat pancreatic islet extracts
(201), crude rat cerebellar extracts (202), and recombinant human
GAD65 (113). These studies demonstrated that high titers of GAD
Abs are associated with SPS, whereas few cases (2/12) of high
GAD Ab titers were reported in type I diabetes (202). Furthermore,
the studies revealed that GAD65 can recognize conformational
epitopes in the C-terminus (113).

The major samples for studies using whole-cell patch
clamp recordings have been rat cerebellar slices (203, 204), rat
hippocampal neurons (205), mouse hippocampal neurons (206),
and rat hippocampal slices (207). These studies revealed that
presynaptic GABAergic transmission is inhibited by GAD Abs
in the CSF of patients with SPS and selectively suppressed (203,
204). In addition, these studies demonstrated that post-synaptic
inhibitory potentials are increased byGAD-positive epileptic serum
(205) but not by serum from patients with GAD65 Ab-associated
LE (206) or with GAD65 Ab-associated epilepsy (206, 207). The
major sample for studies using immunofluorescence based on
cultures has been rat hippocampal neurons (114, 208, 209). These
studies found that GAD Abs from some patients with SPS do not
bind to the neuronal surface or that GAD Abs are not internalized
by live neurons, suggesting the presence of other Abs specific to
unknown antigens, rather than GAD (13).

7.2. In vivo animal model

The two major reported types of in vivo SPSSD animal models
are passive transfer animal models, where transfer is induced
using the serum or CSF antibodies from patients with SPS, and
active immunized animal models induced using the humanGAD65
protein (13).
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7.2.1. Passive transfer animal model
The main reported methods for passive transfer animal models

using rats or mice are single cerebellar or paraspinal injections
(132) and intrathecal (210, 211) or intraperitoneal injections (208,
211). Unfortunately, these animal models do not effectively mimic
the clinical symptoms of SPS. However, some symptoms, such
as paraspinal electrophysiological evidence of continuous motor
activity (132), increased anxiety-like behavior (212), worsened
rotarod results, and deficits in postural control (211), were
partially matched.

7.2.2. Animal model of active immunization
Active immunization using the human GAD65 protein has

been effectively performed in type I diabetes studies; however, it has
failed for neurologic diseases, including SPS, despite the high titers
of GAD Abs (213) developing in these studies. This suggests that
the GAD65 protein is also important for the pathogenesis of SPS;
however, it is regulated by other autoantigens that contribute to the
pathogenesis of SPS.

8. Conclusion

This review demonstrated that the relationship among cancers,
autoantigens, and SPSSDs is complicated, and new information
in this field is still being revealed globally. Our findings would
facilitate the development of an open-minded approach to updating
information on novel cancer subtypes, autoantigens, and SPSSDs
to renew our database. Future investigations are urgently required
to reveal the mechanism by which cancers, autoantigens, and
SPSSDs interact, which will facilitate the early prediction of cancer
outcomes and the discovery of new therapeutic modalities.
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