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Background: Acute ischemic stroke (AIS) and acute myocardial infarction (AMI)

share several features on multiple levels. These two events may occur in

conjunction or in rapid succession, and the occurrence of one event may

increase the risk of the other. Owing to their similar pathophysiologies, we aimed

to identify immune-related biomarkers common to AIS and AMI as potential

therapeutic targets.

Methods: We identified di�erentially expressed genes (DEGs) between the AIS

and control groups, as well as AMI and control groups using microarray data

(GSE16561 and GSE123342). A weighted gene co-expression network analysis

(WGCNA) approach was used to identify hub genes associated with AIS and/or

AMI progression. The intersection of the four gene sets identified key genes, which

were subjected to functional enrichment and protein–protein interaction (PPI)

network analyses. We confirmed the expression levels of hub genes using two

sets of gene expression profiles (GSE58294 and GSE66360), and the ability of

the genes to distinguish patients with AIS and/or AMI from control patients was

assessed by calculating the receiver operating characteristic values. Finally, the

investigation of transcription factor (TF)-, miRNA-, and drug–gene interactions led

to the discovery of therapeutic candidates.

Results: We identified 477 and 440 DEGs between the AIS and control groups

and between the AMI and control groups, respectively. Using WGCNA, 2,776 and

2,811 genes in the key modules were identified for AIS and AMI, respectively. Sixty

key genes were obtained from the intersection of the four gene sets, which were

used to identify the 10 hub genes with the highest connection scores through

PPI network analysis. Functional enrichment analysis revealed that the key genes

were primarily involved in immunity-related processes. Finally, the upregulation of

five hub genes was confirmed using two other datasets, and immune infiltration

analysis revealed their correlation with certain immune cells. Regulatory network

analyses indicated that GATA2 and hsa-mir-27a-3p might be important regulators

of these genes.

Conclusion: Using comprehensive bioinformatics analyses, we identified

five immune-related biomarkers that significantly contributed to the

pathophysiological mechanisms of both AIS and AMI. These biomarkers can

be used to monitor and prevent AIS after AMI, or vice versa.
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Introduction

Cardiovascular diseases (CVDs)—including stroke and
ischemic heart diseases—pose a significant global health burden,
affecting millions of people and causing substantial morbidity and
mortality (1). Two of the most severe CVDs, acute ischemic stroke
(AIS) and acute myocardial infarction (AMI), frequently become
a heavy burden on families and society (2). Although the causes
of AIS and AMI are unclear, their pathophysiologies are similar in
principle: deficient blood and oxygen supply to the brain or heart.
They are typically caused by sudden arterial blockage, which can
be caused by the formation of a blood clot (thrombus) or plaque
buildup (atherosclerosis). This blockage results in the deprivation
of oxygen and nutrients to the surrounding tissues, leading to
ischemia and necrosis of the affected tissues (3). The concurrence
of AIS and AMI has also been reported in one patient (4, 5). They
can occur simultaneously or in close temporal succession and
are risk factors for one another (6). For example, the incidence
of ischemic stroke (IS) after AMI is 4–5% (7, 8), while patients
with AMI who concomitantly experience AIS are at a substantially
higher risk of both in-hospital (>8-fold increase) and 1-year
mortality (>3-fold increase) than patients with AMI alone (9).
Similar treatments, such as reperfusion therapy or catheter-based
thrombectomy, are used to treat AIS and AMI; however, these
diseases occur suddenly and have a narrow therapeutic window.
To improve patient outcomes, attempts, e.g., faster and more
convenient diagnoses, are needed to shorten the treatment delay.

Inflammation is a key contributor to the development and
progression of both cardiac and brain ischemia, and immune
cells play a crucial role in the pathophysiology of CVDs as they
are involved in inflammation and tissue injury (10–13). The
systematic inflammatory response is activated after AIS or AMI
and is involved in the entire process of these two diseases (14, 15).
The neuroinflammatory response disrupts the blood–brain barrier
in AIS, leading to the migration of macrophages, monocytes,
lymphocytes, and other inflammatory cells to the ischemic site
(16, 17). Studies have also shown that peripheral immune cells can
contribute to secondary neurodegeneration after AIS by infiltrating
the brain and interacting with resident brain cells (18). For AMI,
various immune cells and genes participate in immunomodulation
after an acute event, working together to rebuild injured areas
and remove necrotic tissue (15). Chronic inflammation can also
contribute to the development of atherosclerosis, which is a major
risk factor for both conditions. Therefore, exploring the immune
microenvironment and inflammatory mechanisms of AIS and AMI
may identify potential immunoregulatory therapies as alternative
treatment methods.

Genetic factors can influence the expression and activity of
various immune and inflammatory molecules, which in turn can
affect the severity and outcome of AIS and AMI. Certain genetic
variants have been associated with an increased risk of AIS (19).
Several studies have shown that dysregulated genes, long non-
coding RNAs, and miRNAs are potential biomarkers of either
AIS or AMI (20–22). For example, elevated expression of MMP9

has been detected in patients with AMI when compared with
controls, and plasma levels of MMP9 and NT-proBNP have a
time-dependent relationship (23). Understanding the genetic basis
of immunoinflammatory mechanisms involved in AIS and AMI

may help identify new therapeutic targets and improve patient
outcomes. However, only a limited number of studies have focused
on identifying biomarkers for the diagnosis of these diseases (14,
24). According to a family study, AIS and AMI share several genetic
characteristics (25); therefore, there is an urgent need to screen for
immune-related biomarkers of both diseases.

In our study, we acquired two datasets (GSE16561 and
GSE123342) for identifying differentially expressed genes (DEGs)
between individuals diagnosed with AIS or AMI and their
respective control groups. Using weighted gene co-expression
network analysis (WGCNA), we aimed to identify hub genes
associated with AIS/AMI progression. Important genes were
further analyzed using gene ontology (GO) and protein–protein
interaction (PPI) network analyses, and CIBERSORT was used
to analyze immune cell infiltration in AIS and AMI. Finally, the
investigation of transcription factor (TF)-, miRNA-, and drug–gene
interactions discovered the possible therapeutic candidates.

Materials and methods

Acquisition of expression data

Figure 1 shows the basic workflow of our study for identifying
potential biomarkers of AIS and/or AMI. By searching for
expression data related to AIS and AMI in the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), we
decided to focus on two datasets that contain sufficient samples to
perform a comparative study: GSE16561 was acquired using the
GPL6883 platform and contained a total of 39 AIS samples and
24 control samples; GSE123342 was obtained using the GPL17586
platform and consisted of 67 AMI samples and 22 control samples
with stable coronary heart disease. These two datasets were used to
identify key biomarkers of AIS and AMI.

We downloaded another two datasets from GEO to validate
gene expression. GSE58294, which included 69 IS and 23 control
samples, was created using the GPL570 platform. Onset among the
69 IS samples included three time points (3 h, 5 h, and 24 h). In this
study, the 23 IS samples in the 3 h group were treated as AIS, while
the 5 h and 24 h groups were treated as post-AIS. GSE66360, which
included 49 patients with AMI and 50 healthy controls, was also
created using the GPL570 platform.

GSE123342 contained additional myocardial infarction (MI)
samples 30 days (n = 64) and 365 days (n = 37) after AMI.
We used this dataset in conjunction with GSE66360 to investigate
the temporal expression patterns of key genes identified in AIS
and/or AMI.

Data pre-processing and screening of DEGs

The microarray data were pre-processed before analysis. We
found that the series matrix file of GSE16561 contained numerous
NA values; therefore, we downloaded the raw profiling file.
Expression values were then log2 transformed. For genes targeted
by more than one probe, the median expression levels were
calculated. We only retained protein-coding genes with a stable
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FIGURE 1

Workflow of the study.

gene symbol and the Ensembl gene id; other genes, such as long
non-coding RNAs and pseudogenes, were excluded.

The identification of DEGs in GSE16561 and GSE123342 was
based on the limma package in R. DEGs in AIS and AMI were
filtered using the following cutoff criteria: an adjusted p-value of
<0.05 and |log2FC| > 0.5.

Construction of WGCNA

The gene expression matrix was standardized by scaling after
pre-processing. Subsequently, the WGCNA package in R was
used to identify hub genes. The initial dataset consisted of the
highest variance genes, which comprised the top 25% of genes
in the normalized gene expression matrix file. The samples were
clustered using the average linkage method in WGCNA. The
scale independence and average connectivity were calculated and
used to obtain a scale-free network. The similarity matrix was

converted into an adjacency matrix, which was then used to
calculate the topological overlap matrix (TOM) values. Genes
were hierarchically clustered based on the dissimilarity measure
(1-TOM) derived from the TOM values, and the dynamic tree-
cut (DTC) method was used to identify modules. The minimum
module size for the resulting dendrogram was set to 30 genes. Close
modules with a threshold of 0.25 were merged.

Functional enrichment analysis

After retrieving four gene sets, the DEGs of AIS and AMI
and hub genes of AIS and AMI in the key modules of WGCNA,
the clusterProfiler R package was used to perform functional
enrichment analysis, i.e., GO. Significantly enriched terms were
identified based on an adjusted p-value of <0.01. GO enrichment
analysis included biological processes (BPs), cellular components
(CCs), and molecular functions (MFs). Common GO terms
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FIGURE 2

Expression profile of DEGs in AIS and AMI. (A) Volcano map of DEGs in AIS. (B) Volcano map of DEGs in AMI. (C) Clustered heatmap of DEGs in AIS.

(D) Clustered heatmap of DEGs in AMI.

among the four gene sets were identified by overlapping the
aforementioned results.

PPI network

From the four gene sets, 60 key genes were identified
and subjected to the construction of the PPI network in the
STRING database (26), where a threshold of 0.4 was set as the
minimum confidence interaction score. The PPI network was
visualized and analyzed using Cytoscape 3.9.1 (27). Functional

enrichment analyses of the PPI network, including BP analysis,
Reactome pathway analysis, and annotated keywords in UniProt
were conducted using STRING. The MCC method in Cytoscape
was employed to identify the 10 hub genes with the highest
connection scores.

Immune cell infiltration analysis

The CIBERSORT algorithm is a widely used computational
tool that enables the estimation of the infiltration levels of 22
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FIGURE 3

Co-expression networks in AIS and AMI. (A) Gene dendrogram obtained by average linkage hierarchical clustering in AIS. The row underneath the

dendrogram shows the module assignment determined by the dynamic tree cut. (B) Gene dendrogram obtained by average linkage hierarchical

clustering in AMI. (C) Relationship among all modules in AIS. (D) Relationship among all modules in AMI. (E) Correlation coe�cients of the WGCNA

modules between the control and AIS groups. (F) Correlation coe�cients of the WGCNA modules between the control, AMI, and post-AMI groups.
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FIGURE 4

Functional analyses of the important genes. (A) GO enrichment analysis of DEGs in AIS. (B) GO enrichment analysis of DEGs in AMI. (C) GO

enrichment analysis of hub genes in AIS. (D) GO enrichment analysis of hub genes in AMI.
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different immune cell types in various diseases.We downloaded the
default LM22 signature matrix file and R package according to the
instructions on the CIBERSORT website. The relative proportion
of immune cells was calculated for AIS and AMI samples, and
Spearman’s correlation coefficient was used to determine the
strength and direction of the relationship between genes and
immune cells.

TF-, miRNA-, and drug–gene interaction
analyses

After validation, five upregulated genes in AIS and AMI
were selected as target genes. Three networks—including the
TF-gene, miRNA-gene, and drug–protein interaction networks—
were analyzed for the target genes in NetworkAnalyst using
the JASPAR, TarBase (version 8.0), and DrugBank (version 5.0)
software packages.

Results

DEGs in AIS and AMI

We used the limma package in R to conduct DEG analysis on
the microarray transcriptome data of the AIS and control samples
or AMI and control samples. In total, 477 and 440 DEGs were
identified in the AIS and AMI samples, respectively (Figures 2A,
B). The expression profiles of these DEGs are shown in Figures 2C,
D; among them, 225 were downregulated and 252 were upregulated
in the AIS samples, whereas 165 were downregulated and 275 were
upregulated in the AMI samples (Figures 2A, B). These DEGs were
further considered to be candidate transcriptional signatures.

Key modules and hub genes

To identify groups of genes with highly correlated expression
patterns across the AIS and AMI samples, we performed a co-
expression analysis of all genes using the WGCNA R package. As
no obvious outlier samples were detected in the sample clustering,
we did not exclude any samples from the subsequent WGCNA.
The top 25% of genes with the highest degree of variation
in both datasets were subsequently chosen as the input. We
selected soft thresholds of 7 for AIS and 10 for AMI when R2 >

0.85 (Supplementary Figure 1) and identified 16 and 10 modules,
respectively (Figures 3A–D). Based on the correlation coefficients
between the sample groups and modules, we selected the key
modules as those significantly related to AIS and AMI (Figures 3E,
F). A total of 2,776 and 2,811 genes were incorporated into these
key modules, respectively.

Functional enrichment analysis

Four gene sets were included for gene enrichment analysis:
the DEGs and hub genes identified through WGCNA in AIS
and AMI. Generally, the most important genes are enriched

in immune-related processes (Figures 4A–D). We then selected
the most common GO terms among the four gene lists,
with a p-value of <0.01 as the cutoff. Among the 77 BP
terms shared by all four datasets, 54 (70.1%) were related
to immunity (Supplementary Table 1), for example, positive
regulation of cytokine production, lymphocyte differentiation,
positive regulation of leukocyte activation, regulation of T-
cell activation, and leukocyte-mediated immunity. CC outcomes
showed that most proteins were located on the membrane
(Supplementary Table 1), suggesting that they may participate in
immune responses.

PPI of the key genes

Overlaps between the four datasets identified 60 key genes
(Figure 5A), with 60 nodes and 63 edges in the PPI network
(Figure 5B and Supplementary Figure 1). Functional enrichment
in the network also demonstrated that the key genes were
immune-related. The top five BP terms were T-cell differentiation
involved in immune response, positive T-cell selection, triglyceride
biosynthetic process, response to oleic acid, and positive regulation
of myeloid dendritic cell activation (Figure 5C). The significantly
enriched Reactome pathways included the immune system, innate
immune system, neutrophil degranulation, immunoregulatory
interactions between a lymphoid and a non-lymphoid cell, and
toll-like receptor 4 (TLR4) cascade (Figure 5D). Significantly
enriched annotated keywords in UniProt were transmembrane
helix, glycoprotein, disulfide bond, innate immunity, immunity,
and adaptive immunity (Figure 5E). Finally, a topological analysis
helped identify the top 10 hub genes: ITGAM, CD2, CD3E, CD163,
GZMK, ARG1, CD3G, HIF1A, ACSL1, and CD96 (Figure 5F).

Validation of the hub genes

We found that five hub genes were upregulated (expressed
at a significantly higher level in patients with AIS/AMI than
in control samples), whereas five other genes were significantly
downregulated in patients with AIS/AMI (Figures 6A, B). The
expression patterns of these genes were validated using two other
microarray transcriptome datasets from patients with AIS and
AMI. The upregulated expression patterns of ITGAM, CD163,
ARG1, HIF1A, and ACSL1 were confirmed in both datasets
(Figures 6C, D). Moreover, samples from GSE58294 were classified
into three time groups: 3 h, 5 h, and 24 h after AIS. The results
showed that these genes were consistently upregulated in all three
IS groups compared with the control group; the highest expression
level was usually reached at 5 h post-AIS (Figure 6E). Similarly,
samples from GSE123342 were classified into three time groups:
acute phase, 30 days after AMI, and 365 days after AMI. Five genes
were upregulated in the acute phase, and their expression levels
decreased to normal after 30 days when compared with the control
group (Figure 6F). Combining these results, we concluded that the
high expression of these genes can last up to 24 h, after which their
expression levels begin to decrease to normal levels.
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FIGURE 5

Identification of the key genes. (A) Venn diagram of the four gene sets. (B) PPI network of the 60 key genes. Colors from yellow to red represent the

low-to-high MCC score. (C) GO enrichment analysis in the PPI network. (D) Reactome pathway analysis in the PPI network. (E) Annotated keywords

in UniProt enrichment analysis in the PPI network. (F) Top 10 genes in the PPI network ranked by the MCC method.

The potential of hub genes as diagnostic
markers

To evaluate the diagnostic power of the five immune-related
biomarkers for AIS and AMI, receiver operating characteristic
(ROC) analysis was performed on multiple datasets. The AUC
values were then obtained for ITGAM, CD163, ARG1, HIF1A,
and ACSL1, which were 0.89, 0.97, 0.94, 0.79, and 0.79 in
GSE16561 (Figure 7A); 0.78, 0.78, 0.80, 0.77, and 0.73 in GSE58294
(Figure 7B); 0.75, 0.90, 0.89, 0.72, and 0.85 in GSE123342

(Figure 7C); and 0.72, 0.85, 0.66, 0.77, and 0.88 in GSE66360
(Figure 7D), respectively.

Immune infiltration analysis

To further investigate the significance of the identified genes,
we examined the levels of infiltrating immune cells in AIS and
AMI as suggested by GO analysis, highlighting their immune-
related functionality. In the AIS samples, the most prominent
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FIGURE 6

Expression pattern of the hub genes. (A) Expression profiles of the 10 hub genes in the control and AIS groups (GSE16561). (B) Expression profiles of

the 10 hub genes in the control and AMI groups (GSE123342). (C) Expression profiles of the 10 hub genes in the control and AIS groups (GSE58294).

(D) Expression profiles of the nine hub genes in the control and AIS groups (GSE66360). CD96 does not have a probe in GSE66360. (E) Expression

profiles of the five hub genes among di�erent time points for AIS (GSE58294). (F) Expression profiles of the five hub genes among di�erent time

points for AMI (GSE123342). *P < 0.05, **P < 0.01, ***P < 0.001, and ****
P < 0.0001.

infiltrating immune cells were monocytes, neutrophils, and CD8+
T cells (Figure 8A); the AMI samples were characterized by an
abundance of neutrophils (Figure 8B). Compared with the control
group, patients with AIS and AMI exhibited significantly elevated
levels of neutrophils and lower levels of memory B cells and
CD8+ T cells (Figures 8C, D). Investigation of the relationship
between the five genes and immune cells revealed that all genes
exhibited a significantly positive correlation with neutrophils and
a significantly negative correlation with CD8+ T cells in both the
AIS and AMI samples (Figures 8E, F).

Construction of TF-, miRNA-, and
drug–gene interactions

We identified 34 TFs that targeted the five hub genes using
the JASPAR software package in NetworkAnalyst. Nine key TFs—
GATA2, NR2F1, FOXC1, YY1, MEF2A, NFIC, SRF, NFKB1, and
IRF2—have a node degree value of ≥2 (Figure 9A).

One hundred and thirty-eight miRNAs targeting the five
hub genes were obtained from NetworkAnalyst using TarBase.
Hsa-mir-27a-3p and hsa-mir-1-3p targeted three genes, whereas
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FIGURE 7

ROC curve analysis. (A) ROC curve of the five hub genes in AIS (GSE16561). (B) ROC curve of the five hub genes in AMI (GSE123342). (C) ROC curve

of the five hub genes in AIS (GSE58294). (D) ROC curve of the five hub genes in AIS (GSE66360).

hsa-mir-30a-5p, hsa-mir-107, hsa-mir-7-5p, hsa-mir-34a-5p, hsa-
mir-191-5p, hsa-mir-429, hsa-mir-10b-5p, hsa-mir-373-3p, hsa-
mir-124-3p, hsa-mir-16-5p, hsa-mir-27a-5p, and hsa-mir-26a-5p
targeted two genes (Figure 9B).

Drug-targeting proteins encoded by ARG1 and HIF1A were
identified in NetworkAnalyst using DrugBank (version 5.0). Eleven
therapeutic drugs interacted with ARG1 (Figure 9C), and three
drugs interacted with HIF1A (Figure 9D); no drugs targeted
ITGAM, CD163, or ACSL1.

Discussion

As two of the most prominent causes of mortality and disability
worldwide, AIS and AMI share several genetic characteristics (25).
A growing consensus has been reached regarding the importance of
early prevention of AIS and AMI. Microarray analysis is a valuable
tool for identifying susceptibility genes for AIS and AMI and may
ultimately lead to improved diagnosis, prevention, and treatment
of the disease. In the present study, we identified five hub genes
(ITGAM, CD163, ARG1, HIF1A, and ACSL1) using integrated

analyses of AIS and AMI datasets, including DEG, WGCNA, GO
enrichment, PPI network, and regulatory network analyses. We
also verified the upregulation of these five genes in AIS and AMI
samples. On the one hand, these identified genes have the potential
to serve as biomarkers for the diagnosis of patients with AIS or
AMI. On the other hand, studies have shown that these diseases
could be risk factors for one another. Therefore, these biomarkers
can be used to monitor and prevent AIS after AMI or vice versa.

Atherosclerosis, characterized by inflammatory cell
accumulation in the arterial walls, is a well-known instance
of chronic arterial inflammation and is commonly regarded as the
pathological foundation for both AIS and AMI (28). The arterial
narrowing can result in decreased blood flow and oxygen supply
to the heart muscle, ultimately leading to the development of
AIS and/or AMI. Immune cells play a fundamental role in the
pathophysiology of atherosclerosis (10), and there is a genetic
basis for the inflammatory pathogenesis of AIS and/or AMI. For
example, the plasma levels of specific immune-inflammatory
markers were reduced with atorvastatin treatment in AIS (29).
Certain KIR genes and HLA alleles may modulate cytokine and
cell-mediated inflammatory activation, which could contribute
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FIGURE 8

Immune cell infiltration analysis. (A) Percentage distribution of 22 immune cell subtypes in GSE16561. (B) Percentage distribution of 22 immune cell

subtypes in GSE123342. (C) The di�erence in immune cell infiltration between the control and AIS groups. (D) The di�erence in immune cell

infiltration between the control and AMI groups. (E) Correlation between the five hub genes and immune cells in AIS. (F) Correlation between the five

hub genes and immune cells in AMI.
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FIGURE 9

Regulation of the hub genes. (A) TF-gene interaction for the five hub genes. (B) MiRNA-gene interaction for the five hub genes. (C) Drug-ARG1

interaction. (D) Drug-HIF1A interaction.

to stroke occurrence and severity after AIS (19, 30). Similarly,
we found that important genes (DEG and WGCNA) were always
enriched in immune responses, representing an important medium
between inflammation and atherosclerosis. They are involved in
the regulation of multiple immune cell types, such as B cells,
T cells, lymphocytes, and leukocytes (Figure 4), suggesting that
the migration of these cells to AIS and AMI sites may release
pro-inflammatory factors and help disrupt the blood barrier.

When concentrating on the Reactome enrichment of the
PPI network, several signaling pathways were detected, such
as the TLR4 cascade and neutrophil degranulation (Figure 5D).
Activation of TLR4 triggers the biosynthesis of diverse mediators
of inflammation (31), and neutrophil degranulation is a common
feature of many inflammatory disorders, including AIS and AMI
(32). Coincidentally, we found a significantly greater proportion

of neutrophils in the AIS/AMI group than in the control group
(Figures 8C, D). Neutrophils are the first to be recruited to AIS and
AMI sites (33, 34) and have pathophysiological relevance in AIS
and AMI; for example, the presence of neutrophils in the brain
can exacerbate impairment of the blood–brain barrier. We found
that gene expression levels were significantly positively correlated
with the proportion of neutrophils among the 22 immune cells
(Figures 8E, F). For the first time, we demonstrated that immune
modulation by neutrophils in AIS and AMI could potentially target
ITGAM, CD163, ARG1, HIF1A, and ACSL1, thereby establishing
a theoretical rationale for immune-targeted interventions in AIS
and AMI.

The immune functions of these five genes in AIS and AMI
were partially elucidated in previous studies. ITGAM encodes the
integrin alpha M chain, which binds neutrophils and monocytes
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to the stimulated endothelium; additionally, it was demonstrated
to function as a receptor for complement component 3, thereby
contributing to the inflammatory response (35). In particular,
the upregulation of ITGAM expression, which indicates increased
inflammatory activation of immune cells, has been observed in
patients with thrombus (36) and is thus associated with AIS and
AMI (37, 38).

CD163, which is primarily expressed by monocytes and
macrophages, serves as a scavenger of haptoglobin–hemoglobin
complexes. Specifically, CD163 is considered a marker of
alternatively activated or anti-inflammatory macrophages. Studies
have shown that the soluble form of CD163 could be a potential
biomarker in AIS and AMI (39, 40).

ARG1 is an enzyme that can modulate the synthesis of nitric
oxide (NO) in the immune system. By suppressing the release
of NO from macrophages, ARG1 can inhibit the production
of pro-inflammatory cytokines (41). Similar bioinformatics-based
approaches identified ARG1 as a potential biomarker in AIS and
AMI (24, 42).

HIF1A is a TF that governs oxygen availability during
inflammatory responses in the pathogenesis of AIS. Moreover,
it is responsible for NLRP3 inflammasome-initiated pyroptosis
following IS (43). An experiment in transgenic mice demonstrated
that overexpression of HIF1A led to reduced infarct size and
enhanced cardiac function 4 weeks after AMI (44).

Elevated triglyceride levels were observed in the peripheral
white blood cells of patients with AMI. This finding can be
attributed to the upregulation of ACSL1, which suppresses fatty
acid β-oxidation via the PPARγ pathway, resulting in increased
triglyceride levels (45). However, the functional role of ACSL1 in
AIS remains still unclear.

Our investigation revealed that gene expression levels
increased within the first 3–24 h of AIS onset (Figure 6E).
Consistently, another study based on microarray data showed
that a comprehensive alteration in the gene expression profile,
including that of ARG1, was discernible in the peripheral
blood cells of patients with AIS within 3–24 h after onset (46).
Subsequently, the gene expression decreased to normal levels after
30 days (Figure 6F), indicating an instantaneous role of these genes
after AMI. In the future, sequencing data of both AIS and AMI at
more time points should be obtained to reveal clearer molecular
dynamics and physiological details during IS and MI development.

In our study, we found that GATA2 interacts with three
biomarkers: ARG1, CD163, and HIF1A. Similarly, hsa-mir-27a-
3p regulates these three biomarkers. As a vital TF in multilineage
hematopoiesis, mutations in GATA2 induce several hematological
diseases (47). GATA2 is upregulated in ischemia-reperfusion injury
(48); additionally, there is a link between GATA2 deficiency and
AIS (49). Interestingly, hsa-mir-27a-3p alleviates cerebral ischemia-
reperfusion injury by targeting FOXO1 (50), therefore playing a
significant therapeutic role in the management of AIS. According
to our results, both GATA2 and hsa-mir-27a-3p can target ARG1,
CD163, and HIF1A; thus, it is possible that they may function
in the same pathway in AIS and AMI. Further investigations are
required to elucidate themechanism bywhichGATA2 and hsa-mir-
27a-3p co-modulate ARG1, CD163, and HIF1A expression in AIS
and AMI.

We identified 12 drugs targeting HIF1A, and three drugs
targeting ARG1, which have therapeutic potential to treat patients

with AIS and AMI. Conducting a range of laboratory-based trials
can thus facilitate the determination of the efficacy of a compound
and offer alternative solutions to immunotherapy for AIS and AMI.

In conclusion, we have addressed the scarcity of studies
investigating common biomarkers derived from the shared
pathological characteristics of both AIS and AMI using
comprehensive bioinformatics analyses. Second, we have
delved into potential targets for five biomarkers in the immune
microenvironment of AIS and AMI, such as neutrophils, which
expanded our understanding of these diseases. Third, while
previous studies have provided partial elucidation of these five
biomarkers primarily through experiments, we not only confirmed
their importance in the pathophysiology of AIS and AMI but
also established the value of microarray analysis for identifying
susceptibility genes associated with both conditions. Finally, the
identification of GATA2 and hsa-mir-27a-3p as agents capable
of targeting ARG1, CD163, and HIF1A suggest that these two
elements may function within the same pathway in both AIS
and AMI.

There are limitations in our study as well. The analysis was
conducted using data from public databases that originated from
various platforms, which had different inclusion criteria and lacked
corresponding clinical data in general. Additionally, it is important
to note that our study is confined to the transcriptome level, and
further validation of the findings is necessary through prospective
clinical and basic experiments.
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