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Background: Asymptomatic chronic cerebrovascular steno-occlusive disease is 
common, but the cognitive function and alterations in the brain’s structural and 
functional profiles have not been well studied. This study aimed to reveal whether 
and how patients with asymptomatic middle cerebral artery (MCA) steno-
occlusive disease and normal-appearing white matter differ in brain structural 
and functional profiles from normal controls and their correlations with cognitive 
function.

Methods: In all, 26 patients with asymptomatic MCA steno-occlusive disease 
and 22 healthy controls were compared for neurobehavioral assessments, brain 
volume, cortical thickness, fiber connectivity density (FiCD) value, and resting-
state functional connectivity (FC) using multimodal MRI. We also investigated the 
associations between abnormal cortical thicknesses, FiCD values, and functional 
connectivities with the neurobehavioral assessments.

Results: Patients performed worse on memory tasks (Auditory Verbal Learning 
Test-Huashan version) compared with healthy controls. Patients were divided 
into two groups: the right group (patients with right MCA steno-occlusive 
disease) and the left group (patients with left MCA steno-occlusive disease). The 
left group showed significant cortical thinning in the left superior parietal lobule, 
while the right group showed significant cortical thinning in the right superior 
parietal lobule and caudal portion of the right middle frontal gyrus. Increased 
FiCD values in the superior frontal region of the left hemisphere were observed 
in the left group. In addition, a set of interhemispheric and intrahemispheric FC 
showed a significant decrease or increase in both the left and right groups. Many 
functional connectivity profiles were positively correlated with cognitive scores. 
No correlation was found between cortical thickness, FiCD values, and cognitive 
scores.

Conclusion: Even if the patients with MCA steno-occlusive disease were 
asymptomatic and had normal-appearing white matter, their cognitive function 
and structural and functional profiles had changed, especially the FC. Alterations 
in FC may be  an important mechanism underlying the neurodegenerative 
process in patients with asymptomatic MCA steno-occlusive disease before 
structural changes occur, so FC assessment may promote the detection of 
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network alterations, which may be used as a biomarker of disease progression 
and therapeutic efficacy evaluation in these patients.
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Introduction

Chronic carotid or cerebral artery severe (>70%) stenosis or 
occlusion disease are the common causes of chronic cerebral 
hypoperfusion (CCH) (1–5), which has been positively identified as a 
key mechanism leading to vascular cognitive impairment and 
dementia (2, 6–9). Many studies have shown the changes in the 
structure, brain network, cognitive function, and their relationships 
in patients with chronic carotid artery severe stenosis or occlusion 
disease (10–16). One study showed neither a clear pattern of reduced 
cortical thickness nor an association of cortical thickness with 
cognitive function in patients with severe asymptomatic carotid 
stenosis (SACS) (17). These patients can be clinically asymptomatic or 
symptomatic. Symptoms include sensorimotor, pure sensory, and 
cognitive impairment and depression. Furthermore, patients with 
subtle cognitive impairment (including attention, memory, processing 
speed, and executive function) may be  neglected due to normal-
appearing white matter in general MRI and little attention in the 
clinical setting. However, the cognitive impairment can gradually 
progress, and finally lead to subsequent dementia (3). However, the 
underlying pathophysiology remains unclear and is multifactorial.

Despite promising results revealing the changes in the structure 
and network in patients with severe asymptomatic carotid stenosis, 
studies have some shortcomings. A major limitation is that current 
diffusion tensor imaging (DTI) studies cannot provide a direct 
comprehensive analysis of the structural connectivity of the whole 
cortex. A recent technique named fiber connectivity density (FiCD) 
mapping was proposed to map the structural connectivity properties 
(e.g., fractional anisotropy, or mean diffusivity) to the cortical surface, 
to create a common space for comparison with results from brain 
functional analysis and cortical thickness analysis, which can 
automatically identify brain regions with significant differences at the 
whole-brain level without defining ROIs (18, 19). Studies had shown 
that FiCD values were significantly changed in cerebral small-vessel 
disease (CSVD) patients (20) with mild cognitive impairment (MCI) 
and in patients with end-stage renal disease (ESRD) (21). FC can 
reveal brain activity, which has become an important tool in the study 
of neurological diseases (22), and numerous studies proved that 
decreased FC was related to impaired cognition in various diseases.

For another aspect, diffusion and metabolic changes in regions of 
cerebral artery obstruction in patients with symptomatic MCA steno-
occlusive disease (defined as >70% stenosis on maximum intensity 
projection images or a complete signal loss of the middle cerebral 
artery trunk on magnetic resonance angiography) and normal-
appearing white matter have been revealed (23, 24). Nonetheless, 
structural changes, FiCD values, FC, and the relationships between 
them and cognitive function in these patients have not been 
investigated, which would likely provide more pathophysiological 

information that can lead to a better understanding of the mechanisms 
of cognitive impairment in these patients.

In this study, we recruited a group of patients with asymptomatic 
MCA steno-occlusive disease and normal-appearing white matter. 
Multimodal MRI (structural, diffusion, and resting-state functional 
MRI) measures were compared for brain volume, cortical thickness, 
fiber connectivity density (FiCD) value, and functional connectivity 
(FC) between patients and an age-, sex-, and education-matched 
healthy control (NC) group. The associations between abnormal 
cortical thicknesses, FiCD values, and functional connectivities with 
the neurobehavioral assessments were performed.

Materials and methods

Participants

A total of 26 patients were recruited between January 2017 and 
June 2021 and were divided into two groups, namely, the right group 
(patients with right MCA steno-occlusive disease) and the left group 
(patients with left MCA steno-occlusive disease), as discovered by 
Magnetic Resonance Angiography (MRA). The inclusion criteria were 
as follows: (a) unilateral MCA stenosis >70%, (b) free of stroke, TIA, 
or dementia, (c) right-handed, (d) capable of completing the MRI 
examination with a qualifying high-resolution MRI image, (e) no 
history of drug use that could affect cognitive function, and (f) 
normal-appearing white matter (apparently normal brain 
parenchymal signals or lacunar infarcts<3 mm in diameter on 
T2-weighted and FLAIR sequences). The exclusion criteria were as 
follows: (a) any other cerebral arteries stenosis ⩾30%, (b) a history of 
severe systemic diseases and neuropsychiatric diseases, (c) a history 
of frequent dizziness and headache, (d) a history of acute or chronic 
cerebral infarction, bleeding, tumor, infectious disease, or metabolic 
disease detected by MRI, (e) a history of drug or alcohol dependence 
during the last 6 months, and (f) contraindications for MRI. A total of 
22 age-, sex-, and education-matched healthy subjects were recruited 
from the community as an NC group. The inclusion criteria for the 
control group were as follows: MMSE score ≥ 27 and ADL score = 14, 
with other criteria being the same as the inclusion criteria of the 
patient group. The exclusion criteria were as follows: (a) White matter 
hyperintensity or/and lacunar infarcts ≥3 mm in diameter and (b) any 
cerebral artery stenosis ⩾30%; with other criteria being the same as 
(b) ~ (f) of the exclusion criteria of the patient group. The present 
study was approved by the Medical Ethics Committee of the Qilu 
Hospital (Qingdao) of Shandong University and informed consent 
was obtained for all participants.

Detailed demographic characteristics of the subjects are listed in 
Table 1.
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Neurobehavioral assessments

Neurobehavioral assessments were performed within 2 days of 
MRI scanning, including the Mini-mental State Examination (MMSE) 
(25), which was used to assess global cognition. Language proficiency, 
processing speed, cognitive flexibility, verbal learning/memory, and 
activities of daily living were assessed, respectively, with the Boston 
Naming Test (BNT) (9), Trail-Making Test (TMT) A and B (9), 
Auditory Verbal Learning Test-Huashan version (AVLT-H) (26), and 
Activity of Daily Living Scale (ADL) (27).

MRI data acquisition

All data were collected using a 3T MRI scanner (Ingenia, Philips 
Medical Systems, Netherlands). The matched head coil with foam 
padding and earplugs was used to reduce head motion and scanner 
noise. The scanning sessions included: (1) T2WI (TR/
TE = 2369/107 ms, matrix = 352 × 352, 18 axial slices, 6-mm slice 
thickness with a 1-mm gap), (2) (T2WI-FLAIR) (TR/
TE = 7000/125 ms, matrix = 288 × 163, 18 axial slices, 6-mm slice 
thickness with a 1-mm gap), (3) DWI (TR/TE = 2235/76 ms, 
matrix = 176 × 134, 18 axial slices, 6-mm slice thickness with a 1-mm 
gap), (4) three-dimensional T1-weighted imaging (3D-T1WI) (TR/
TE = 6.7/3.0 ms, 170 sagittal slices, 1-mm slice thickness with no gap), 
(5) DTI (TR/TE = 4900/95 ms, matrix = 122 × 110, 70 axial slices, 2 mm 
slice thickness with no gap, b values =1000s/mm2) in 32 directions, 
and (6) resting state functional magnetic resonance imaging (r-fMRI) 
(TR/TE = 2000/30 ms, FA = 90°, FOV = 230 × 230 mm2, data 
matrix = 68 × 66, Voxel = 3.5 × 3.5 × 4 mm3, 32 axial slices, 4-mm slice 
thickness with a 0.5-mm gap, 240 time points).

MRI data processing

3D-T1WI images were processed using AccuBrain® IV2.0 
(Brainnow Medical Company Limited, Shenzhen, PR China), a 
brain quantification tool that performs brain structure and tissue 
volume quantification in a fully automatic mode. Its segmentation 

accuracy has been validated (28). AccuBrain® IV2.0 provides 66 
quantitative brain regional volumetric indexes including the 
volumes of the hippocampus, lateral ventricle, amygdala, etc. It 
also divided the cerebral cortex into 12 lobular regions, including 
the frontal lobe (L/R), temporal lobe (L/R), parietal lobe (L/R), 
occipital lobe (L/R), cingulate lobe (L/R), and insular lobe (L/R); 
and the atrophy of each was measured as the ratio of the CSF 
volume to the parenchyma volume within that lobular region.

To perform cortical thickness analysis, 3D-T1WI images were also 
processed using FreeSurfer20 (29) with the automatic “recon-all” 
pipeline. The cortical thickness was measured individually and 
compared between groups.

DTI data were processed using the FiCD pipeline (19). The FiCD 
mapping method was based on a combination of a diffusion fiber 
tracking technique and cortical surface-based analysis (30, 31). First, 
the GM-WM interface was extracted and parcellated into 1,000 
cortical units (CUs). Second, the WM tractography was constructed, 
and the CUs were transformed into tractography space. Third, 
association fibers (AFs) were tracked and the FiCD value was 
calculated for each CU, then the whole-cortex FiCD map was 
generated. Fourth, the FiCD map in volume space was projected onto 
the cortical surface, then registered to the standard brain surface and 
smoothed with Gaussian kernels at a series of full width at half-
maximum (FWHM). Preprocessing of the diffusion data was 
performed using the FSL (PANDA) toolbox (32), whereas 
preprocessing of the 3D-T1WI images was performed using the 
Freesurfer software.

In addition to structural image analysis, r-fMRI data was also 
analyzed using the CONN toolbox (33). It first preprocessed the 
r-fMRI and 3D-T1WI images using a standard pipeline, including 
susceptibility distortion correction, motion correction/realignment, 
slice-timing correction, outlier identification, coregistration, tissue-
class segmentation, MNI-normalization, and smoothing. Moreover, 
r-fMRI data were denoised using the regression of confounding 
factors characterized by white matter time series, cerebrospinal fluid 
time series, motion parameters, and linear trends within each function 
run. Temporal filtering with a band of 0.009–0.08 Hz was conducted 
to the time series of each voxel to reduce the impact of low-frequency 
drifts and high-frequency noise.

TABLE 1 The demographic characteristics of the subjects.

NC 
(n =  22)

Patient group NC vs Left NC vs Right

Left (n =  14) Right (n =  12) z/t(d) p-value z/t(d) p-value

Age (years, median, IQR) 61.0 (11.00) 64.5 (13.25) 59.0 (11.50) 1.764 0.083a 0.489 0.631a

Sex (female, %) 11 (50.00%) 8 (57.14%) 5 (41.67%) N 0.742b N 0.729b

Education (years, mean, SD) 9.3 (2.98) 9.4 (3.28) 9.4 (4.14) −0.175 (−0.032) 0.862c 0.106(−0.028) 0.916c

Hypertension (%) 7 (31.82%) 10 (71.43%) 8 (66.67%) N 0.039b N 0.075b

Diabetes (%) 3 (13.64%) 8 (57.14%) 3 (25.00%) N 0.010b N 0.641b

Hyperlipidemia (%) 5 (22.73%) 7 (50.00%) 5 (41.67%) N 0.148b N 0.271b

Current smoker (%) 1 (4.54%) 3 (21.43%) 5 (41.67%) N 0.277b N 0.014b

Current drinker (%) 8 (36.36%) 2 (14.29%) 4 (33.33%) N 0.255b N 1.000b

aMann–Whitney U test.
bFisher’s exact test.
cIndependent-samples t-test.p-value significant cut-off 0.05.
IQR, Interquartile range; SD, Standard deviation; d, Cohen’s d; N, no χ2.
Bold values: p-value < 0.05.
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Seed-based correlation (SBC) and region-of-interest to region-of-
interest (ROI-to-ROI) analysis were performed. The ROIs were 
derived from the Harvard-Oxford Atlas, including 132 ROIs of the 
whole brain, e.g., frontal pole right (FP r), frontal pole left (FP l), 
insular cortex right (IC r), and insular cortex left (IC l). Group-level 
statistical analysis was implemented using correlation analysis. A 
standard second-level General Linear Model analysis of r-fMRI 
connectivity matrices produced a single statistical matrix of T- or F- 
values, characterizing the effect of interest (e.g., the difference in 
connectivity between two groups) among all possible pairs of ROIs.

The overall data processing pipeline is shown in Figure 1.

Statistical analysis

Fisher’s exact test, independent-samples t-test, and Mann–
Whitney U test were performed to determine if there were statistically 
significant differences between groups. Statistical analysis of 
demographic characteristics and neurobehavioral assessment results 
were performed using the Statistical Package for the Social Sciences, 
version 25 (SPSS 25, Chicago, Illinois) with a significance level set at 
p < 0.05.

The Mann–Whitney U test was used to compare differences in 
brain structural volume quantification between groups. The results 
were reported with false discovery rate (FDR) multiple-comparison 
corrections. FDR corrected p < 0.05 was considered 
statistically significant.

For r-fMRI, parametric multivariate statistics (cluster-level 
inferences) were reported, with cluster-level p-FDR corrected 
threshold set as p < 0.05.

The statistical analysis on surface-based results, i.e., cortical 
thickness and FiCD, was processed using Qdec included in the 
Freesurfer toolbox. It was intended to perform inter-group averaging 
and inference on the morphometry data (cortical surface and volume) 
produced by the FreeSurfer processing stream. For each hemisphere, 
the General Linear Model (GLM) was computed vertex-by-vertex to 
analyze cortical FiCD values. The cortical maps were smoothed using 
a 10 mm FWHM Gaussian kernel before comparison to reduce the 
noise caused by spatial normalization. A significant threshold of 
p < 0.05 was adopted (Monte Carlo Null-Z simulation was used to 
correct for multiple comparisons).

Pearson and Spearman correlation analysis was used to assess the 
relationships between neurobehavioral assessment results with 
cortical thickness, FiCD values, and FC. Then, multifactor linear 
regression analysis controlling confounding factors such as 
hypertension and smoking was performed to investigate whether the 
correlations were affected by confounding factors.

Results

Neurobehavioral assessment results

The scores of AVLT-H (immediate, short-delayed, and long-
delayed) in the left group and AVLT-H (immediate and long-delayed) 
in the right group were significantly lower compared to healthy controls. 
The patient groups did not show a significant decline in global cognition 
and other multidomain neurobehavioral assessments. Detailed 
neurobehavioral assessment results of the subjects are listed in Table 2. 
The ADL scores of the left group and the right group were 14.

FIGURE 1

MRI data processing pipeline.
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Structural volumetric results

Brain structural volume quantification results showed no 
significant difference after FDR correction between the left group and 
NC group, and the right group and NC group.

Cortical thickness results

In terms of cortical thickness measurement, as shown in Figure 2, 
in the left group and NC group comparison, the left group showed 
significant cortical thinning of the left superior parietal lobule (cluster 
1: p = 0.0104), while in the right group and NC group comparison, the 
right group showed significant cortical thinning of the caudal portion 
of the right middle frontal gyrus (cluster 1: p = 0.0003) and superior 
parietal lobule (cluster 2: p = 0.0357). No correlation was found 
between cortical thickness and AVLT-H scores.

FiCD results

With FiCD measurement, FiCD values increased in the left 
superior frontal region (cluster 1: p = 0.0279) in the left group 
compared with the NC group, as shown in Figure 3, while there was 
no significant difference between the right group and the NC group. 
No correlation was found between FiCD values and AVLT-H scores.

Functional connectivity

In our patients, FC of many interhemispheric and 
intrahemispheric regions showed changes in the left and right groups. 
Compared with the NC group, 71 interhemispheric and 10 
intrahemispheric (including 9 of the left hemisphere and 1 of the right 
hemisphere) functional connectivity profiles significantly decreased 
and 6 interhemispheric and 17 intrahemispheric (including 12 of the 
left hemisphere and 5 of the right hemisphere) functional connectivity 
profiles significantly increased (FDR corrected, p < 0.05) in the left 
group. There were 230 interhemispheric and 75 intrahemispheric 

functional connectivity profiles that significantly decreased and 14 
interhemispheric and 30 intrahemispheric (including 28 of the right 
hemisphere and 2 of the left hemisphere) functional connectivity 
profiles that significantly increased (FDR corrected, p < 0.05) in the 
right group. The results of functional connectivity between different 
groups are shown in Figures 4, 5. We found 5 functional connectivity 
profiles were correlated with AVLT-H, immediate scores, 3 functional 
connectivity profiles were correlated with AVLT-H, short delayed 
scores, and 7 functional connectivity profiles were correlated with 
AVLT-H, long-delayed scores in the left group. In the right group, 
there were 19 functional connectivity profiles that correlated with 
AVLT-H, immediate scores, and 7 functional connectivity profiles that 
correlated with AVLT-H, long-delayed scores. Then, multifactor linear 
regression analysis controlling confounding factors was performed, 
discovering 3 functional connectivity profiles correlated with AVLT-H, 
immediate scores, 2 functional connectivity profiles correlated with 
AVLT-H, short-delayed scores, and 3 functional connectivity profiles 
correlated with AVLT-H, long-delayed scores in the left group. The 
detailed results are listed in Table 3. In the right group, there were 18 
functional connectivity profiles that correlated with AVLT-H, 
immediate scores, and 6 functional connectivity profiles that 
correlated with AVLT-H, long-delayed scores. The detailed results are 
listed in Table 4.

Discussions

This study systematically conducted a cross-sectional 
neuroimaging analysis of asymptomatic MCA steno-occlusive disease 
patients with NAWM to increase knowledge about the possible 
changes in brain volume, cortical thickness, FiCD value, FC, and 
cognition associated with this condition. Our study focused on the 
main effects of groups than on the differences between the left and 
right sides of the brain on account of the effect of the 
dominant hemisphere.

We found that brain structural volume quantification showed no 
difference among the left group, right group, and NC group. 
Nevertheless, the left group showed significant thinning of the left 

TABLE 2 The neurobehavioral assessment results of the subjects.

NC 
(n =  22)

Patient Group NC vs Left NC vs Right

Left (n =  14) Right (n =  12) z/t(d) p-value z/t(d) p-value

MMSE (median, IQR) 28.0 (1.25) 28.0 (3.25) 28.0 (2.75) −1.283 0.215a −1.594 0.127a

BNT (median, IQR) 25.5 (3.50) 26.5 (4.75) 28.0 (4.75) 1.176 0.253a 1.324 0.191a

TMT-A (median, IQR) 40.0 (24.75) 44.0 (31.25) 50.0 (31.00) 0.715 0.490a 0.667 0.511a

TMT-B (median, IQR) 50.5 (27.00) 72.5 (43.75) 73.0 (42.25) 1.948 0.053a 0.955 0.345a

AVLT-H, immediate (mean, SD) 18.5 (3.62) 14.6 (5.56) 15.3 (4.70) 2.575 (0.831) 0.015b 2.193 (0.763) 0.036b

AVLT-H, short delayed (5 min), 

(mean, SD)
6.7 (2.21) 4.9 (2.54) 5.1 (2.84) 2.338 (0.756) 0.025 1.874 (0.629) 0.070b

AVLT-H, long delayed (20 min), 

(mean, SD)
6.6 (2.02) 4.0 (3.44) 4.7 (2.81) 2.597 (0.922) 0.018b 2.369 (0.776) 0.024b

aMann–Whitney U test.
bIndependent-samples t-test.p-value significant cut-off 0.05.
IQR, Interquartile range; SD, standard deviation; MMSE, Mini-mental state examination; BNT, Boston naming test; TMT-A/B, Trail-making test A and B; AVLT-H, Auditory Verbal Learning 
Test-Huashan version; d, Cohen’s d.
Bold values: p-value < 0.05.
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superior parietal lobule, while the right group showed significant 
thinning of the right superior parietal lobule and caudal portion of the 
right middle frontal gyrus in cortical thickness. This phenomenon 
may be  caused by hypoperfusion and different susceptibility to 
hypoperfusion. First, with respect to hypoperfusion, previous 

investigations confirmed that patients with the carotid steno-occlusive 
disease had an increased risk of cerebral hypoperfusion (3, 4, 16, 34–
36), which, gradually, may lead to cerebral atrophy (11, 14, 37, 38). 
Second, Marshall et al. (16) found that even if the posterior circulation 
regions also showed hypoperfusion in vertebrobasilar disease, the 

FIGURE 2

Group effect on cortical thicknesses. (A) Left superior parietal lobule (cluster 1) in the left group showed significant thinning of cortical thickness 
compared with the NC group. (B) Caudal portion of the right middle frontal gyrus (cluster 1) and right superior parietal lobule (cluster 2) regions in the 
right group showed significant thinning of cortical thickness compared with the NC group.

FIGURE 3

Group effect on cortical FiCD values. The left superior frontal region showed increased FiCD values in the left group compared with the NC group.
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occipital and cerebellar cortices were barely affected, which led them 
to speculate that the anterior circulation region, but not the posterior 
circulation, is susceptible to hypoperfusion. Moreover, we only found 
two regions with decreased cortical thickness in our study, which may 
reflect the different susceptibility to hypoperfusion in different 

cerebral regions and even the same regions in different hemispheres. 
Ordinarily, neurodegenerative diseases tend to begin with a single 
vulnerable brain region, followed by trans-synaptic spread (39). 
Therefore, further longitudinal follow-up studies are needed. Studies 
have shown that atrophy of different regions in patients with CAS may 

FIGURE 4

ROI-to-ROI functional connectivities between the left group and the NC group. The decreased (orange) and increased (blue) functional connectivities 
in left MCA steno-occlusive patients after FDR correction are shown. Patients showed more significantly decreased functional connectivities in the left 
and right parts of the regions such as PT, PO, CO, IC, HG, MTG, and CG, while increased connectivities in the left and right parts of SMA, between the 
right part of PO, PT, and SMA, and between the left part of STG and HG, PT, PO, CO, and IC. ROI-to-ROI, region-of-interest to region-of-interest; NC, 
normal control; MCA, Middle cerebral artery; FDR, False discovery rate; PT, Planum Temporale; PO, Parietal Operculum Cortex; CO, Central Opercular 
Cortex; IC, Insular Cortex; HG, Heschl’s Gyrus; MTG, Middle Temporal Gyrus; CG, Cingulate Gyrus; SMA, formerly Supplementary Motor Cortex; STG, 
Superior Temporal Gyrus.

FIGURE 5

ROI-to-ROI functional connectivities between the right group and the NC group. The decreased (orange) and increased (blue) functional 
connectivities in right MCA steno-occlusive patients after FDR correction are shown. Patients showed more significant decreased functional 
connectivities in the left and right parts, e.g., PT, PO, CO, IC, CG, HG, PP, FO, and FOrb, while showing increased connectivity between the right AG and 
HG, PT, PO, CO, IC, and SMG, and between the right MTG and PP, HG, PT, PO, CO, IC, and SMG. ROI-to-ROI, region-of-interest to region-of-interest; 
NC, normal control; MCA, Middle cerebral artery; FDR, False discovery rate; PT, Planum Temporale; PO, Parietal Operculum Cortex; CO, Central 
Opercular Cortex; IC, Insular Cortex; CG, Cingulate Gyrus; HG, Heschl’s Gyrus; PP, Planum Polar; FO, Frontal Operculum Cortex; FOrb, Frontal Orbital 
Cortex; AG, Angular Gyrus; SMG, Supramarginal Gyrus, MTG, Middle Temporal Gyrus.
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result in different kinds of cognitive impairments (2, 14, 37, 38) and 
plenty of studies had reported memory decline in patients with CAS 
(40, 41). In our study, patient groups had lower scores in AVLT-H, 
suggesting memory decline, whereas no correlations were found 
between cortical thickness and AVLT-H scores. It may be related to a 
small sample size, or our neurobehavioral assessments could not 
discover their subtle cognitive impairments related to these regions 
with cortical thickness thinning, which needs further study.

We did not find any decreased FiCD value in the left and right 
groups. We  interpreted the lack of decrease in FiCD value as an 
indicator of the robustness of the white matter to CCH, which may 
benefit from the lower oxygen demand compared with gray matter. 
Furthermore, compensatory circulation and neurovascular coupling 
may help maintain white matter’s structural and functional metabolism. 
Besides, the left group showed increased FiCD values in the superior 
frontal region of the left hemisphere, which reflected the increased 
fibrous connections in this region. This may be  a compensatory 
mechanism in the brain that has not been reported previously. 
Otherwise, we were not sure whether it was caused by a small sample 
size, other confounding factors, or an analytical method in our study. 
Thus, further studies are needed to evaluate this speculation.

With regard to FC, we observed that functional connectivity of 
many interhemispheric and intrahemispheric regions showed 
decrements, especially between interhemispheric regions and 
intrahemispheric regions of the stenotic side in the left and right 
groups. Compatible with our current findings, one article about 
patients with asymptomatic MCA steno-occlusive disease indicated 
significant decreases in network strength, global efficiency, and the 
clustering coefficient, as well as a longer characteristic path length (42). 
We  found many functional connectivity profiles were positively 
correlated with AVLT-H scores, thus we speculated that the subtle 
cognitive impairment may be attributed to the combined effect of the 
decreased FC profiles. Many studies showing decreased functional 
connectivity and increased risk of cognitive fragility in patients with 
SACS (12, 13, 15, 36, 43, 44) confirmed our speculation. Moreover, 
we  found hyper-connectivity in many brain regions between the 
ipsilateral and bilateral hemispheres of patients in our study, reflecting 

compensatory effects for maintaining better cognitive function. Studies 
had reported compensatory hyper-connectivity in the healthy 
hemisphere and a few hyper-connectivity in the stenotic sides of 
patients with SACS (45, 46). Thus, we  speculated that hyper-
connectivity may be an important mechanism that maintains clinical 
asymptomatic performance and better cognition function. In addition, 
the collateral network (primary and secondary) may be  another 
compensatory mechanism, which had not been discovered in our study 
and needs further research. Furthermore, we found that the decrement 
of FC in the right group was much more diffuse than that in the left 
group, which may also reflect the different susceptibility to 
hypoperfusion in different cerebral regions. The effect of the dominant 
hemisphere may be another explanation because we only recruited 
right-handed patients, therefore, further studies involving left-handed 

TABLE 3 ROI-to-ROI functional connectivities correlated with AVLT-H 
scores in the left group.

ROI-to-
ROI

B (95% CI) p-value

AVLT-H, 

immediate

IC r-pp l 22.244 (4.020 ~ 40.468) 0.022

CO r-aSTG l 15.350 (1.506 ~ 29.194) 0.033

pSTG r-pSTGl 19.081 (0.769 ~ 37.393) 0.043

AVLT-H, short 

delayed (5 min)

pSTG r-pSTG l 13.028 (7.296 ~ 18.760) 0.006

IFG oper l-to 

lTG l

12.999 (3.525 ~ 22.474) 0.012

AVLT-H, long 

delayed (20 min)

pSTG r-pSTG l 14.555 (1.662 ~ 19.006) 0.011

CO r-aSTG l 10.334 (4.107 ~ 25.007) 0.024

IFG oper l-to 

ITG l

14.658 (0.125 ~ 29.129) 0.048

ROI-to-ROI, region-of-interest to region-of-interest; CI, confidence interval; AVLT-H, 
Auditory Verbal Learning Test-Huashan version; ICr, Insular Cortex Right; PPl, Planum 
Polar Left; COr, Central Opercular Cortex Right; aSTGl, Superior Temporal Gyrus, anterior 
division Left; pSTGr, Superior Temporal Gyrus, posterior division Right; pSTGl, Superior 
Temporal Gyrus, posterior division Left; IFG operl, Inferior Frontal Gyrus, pars opercularis 
Left; toITGl, Inferior Temporal Gyrus, temporooccipital part Left.

TABLE 4 ROI-to-ROI functional connectivities correlated with AVLT-H 
scores in the right group.

ROI-to-
ROI

B (95% CI) p-value

AVLT-H, 

immediate

PT r-PT l 23.563 (16.084 ~ 31.043) 0.000

HG r-Putamen l 23.479 (10.771 ~ 36.186) 0.002

CO r-HGl 17.224 (7.304 ~ 27.145) 0.003

PO r-Putamen l 17.224 (2.272 ~ 34.610) 0.003

PT r-HG l 19.501 (8.230 ~ 30.771) 0.004

IC r-HG l 15.626 (6.478 ~ 24.775) 0.004

pMTG l-AG l 16.847 (6.985 ~ 26.709) 0.004

PostCG 

r-Putamen l

18.823 (7.715 ~ 29.931) 0.004

PP r-CO l 24.339 (9.039 ~ 39/638) 0.006

sLOC r-pPaHC r 34.313 (10.820 ~ 57.805) 0.009

PP r-IC l 21.765 (6.724 ~ 36.807) 0.010

PT r-Putamen l 14.260 (3.517 ~ 25.003) 0.015

PreCG 

r-Putamen l

17.537 (3.545 ~ 31.530) 0.020

PP r-MidFG r 32.222 (6.326 ~ 58.114) 0.020

IC r-PT l 17.723 (3.429 ~ 32.017) 0.021

PT r-AC 11.767 (1.448 ~ 22.087) 0.030

PP r-HG l 15.232 (1.042 ~ 29.422) 0.038

CO r-Putamen l 17.683 (0.706 ~ 34.660) 0.043

AVLT-H, long 

delayed 

(20 min)

HG r-AC 10.816 (1.468 ~ 20.163) 0.028

sLOC r-pPaHC r 18.120 (2.499 ~ 33.740) 0.028

HG r-Putamen l 11.164 (1.336 ~ 20.993) 0.030

PT r-AC 6.770 (0.504 ~ 13.036) 0.037

PO r-Putamen l 10.504 (0.623 ~ 20.385) 0.040

IFGtri r-PaCiG l 9.844 (0.479 ~ 19.209) 0.041

ROI-to-ROI, region-of-interest to region-of-interest; CI, confidence interval, AVLT-H, 
Auditory Verbal Learning Test-Huashan version; PTr, Planum Temporale Right; PTl, Planum 
Temporale Left; HGr, Heschl’s Gyrus Right; Putamen l, Putamen Left; COr, Central 
Opercular Cortex Right; HGl, Heschl’s Gyrus Left; ICr, Insular Cortex Right; pMTGl, Middle 
Temporal Gyrus, posterior division Left; AGl, Angular Gyrus Left; PostCGr, Postcentral 
Gyrus Right; PPr, Planum Polar Right; COl, Central Opercular Cortex Left; sLOCr, Lateral 
Occipital Cortex, superior division Right; pPaHCr, Parahippocampal Gyrus, posterior 
division Right; ICl, Insular Cortex Left; PreCGr, Precentral Gyrus Right; MidFGr, Middle 
Frontal Gyrus Right; AC, Cingulate Gyrus, anterior division; HGr, Heschl’s Gyrus Right; 
sLOCr, Lateral Occipital Cortex, superior division Right; IFGtrir, Inferior Frontal Gyrus, 
pars triangularis Right; PaCiGl, Paracingulate Gyrus Left.
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patients are needed to evaluate this speculation. Otherwise, one study 
also showed that part of the FC alterations gradually recovered to the 
normal condition after carotid artery stenting in patients with carotid 
stenosis (46). So, FC may be used as a biomarker of disease progression 
and therapeutic efficacy evaluation in these patients’ chronic 
cerebrovascular steno-occlusive disease. Notably, it was difficult to 
directly compare these studies because the functional measures differed.

In the present study, we found numerous regions with decreased 
FC in regions without declined cortical thickness and FiCD value, 
thus, we  speculated that decreases in FC may exist prior to the 
structural changes including white and gray matter, which represented 
a higher sensitivity of FC. The alterations in FC may be an important 
mechanism underlying the neurodegenerative process in patients with 
carotid or cerebral arterial diseases causing early cognition 
impairment, which may promote the detection of network alterations, 
helping provide guidance for early clinical interventions in advance 
and reduce the impairment of higher brain functions in patients with 
carotid or cerebral arterial diseases.

There were several limitations in this study. First, our number of 
patients was small, limiting the statistical ability to identify small effect 
size variations. Second, our neurobehavioral assessments were 
relatively simple, and more elaborate neurological scales could 
be conducted in the future. Third, we did not evaluate the small vessels 
or microvessels of the patients, because the interval time between 
perfusion imaging and multimodal MRI was too long. Finally, the 
acquisition time of r-fMRI in this study was relatively short, and 
longer scanning time is preferred to provide more robust information 
on functional connectivity.

Conclusion

Even if the patients with MCA steno-occlusive disease were 
asymptomatic and had normal-appearing white matter, their 
cognitive function, structural and functional profiles had changed, 
especially the FC. And, alterations in FC in patients with 
asymptomatic MCA steno-occlusive disease occurred before 
structural changes. Hyper-connectivity may act as the 
compensation factor in neuroplasticity, maintaining clinical 
asymptomatic performance and better cognitive function. So, FC 
assessment may promote the detection of network alterations, 
which may be  used as a biomarker of disease progression and 
therapeutic efficacy evaluation in patients with chronic 
cerebrovascular steno-occlusive disease.
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