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Background: The presence of diffusion-weighted imaging (DWI) and fluid-
attenuated inversion recovery (FLAIR) mismatch was used to determine eligibility 
for intravenous thrombolysis in clinical trials. However, due to the restricted 
availability of MRI and the ambiguity of image assessment, it is not widely 
implemented in clinical practice.

Methods: A total of 222 acute ischemic stroke patients underwent non-contrast 
computed tomography (NCCT), DWI, and FLAIR within 1 h of one another. Human 
experts manually segmented ischemic lesions on DWI and FLAIR images and 
independently graded the presence of DWI-FLAIR mismatch. Deep learning (DL) 
models based on the nnU-net architecture were developed to predict ischemic 
lesions visible on DWI and FLAIR images using NCCT images. Inexperienced 
neurologists evaluated the DWI-FLAIR mismatch on NCCT images without and 
with the model’s results.

Results: The mean age of included subjects was 71.8 ± 12.8  years, 123 (55%) were 
male, and the baseline NIHSS score was a median of 11 [IQR, 6–18]. All images 
were taken in the following order: NCCT – DWI – FLAIR, starting after a median of 
139 [81–326] min after the time of the last known well. Intravenous thrombolysis 
was administered in 120 patients (54%) after NCCT. The DL model’s prediction 
on NCCT images revealed a Dice coefficient and volume correlation of 39.1% 
and 0.76 for DWI lesions and 18.9% and 0.61 for FLAIR lesions. In the subgroup 
with 15  mL or greater lesion volume, the evaluation of DWI-FLAIR mismatch from 
NCCT by inexperienced neurologists improved in accuracy (from 0.537 to 0.610) 
and AUC-ROC (from 0.493 to 0.613).

Conclusion: The DWI-FLAIR mismatch may be  reckoned using NCCT images 
through advanced artificial intelligence techniques.
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1. Introduction

The decision for intravenous thrombolysis administration 
strongly depends on the time elapsed since the onset of the stroke (1, 
2). The time-based decision is based on findings from a group 
modeling study that demonstrated diminishing survival of ischemic 
penumbra and recanalization therapy benefits with increasing time 
since onset (3, 4). However, individual variation in infarct progression 
is likely a result of a balance between collateral status, the frailty of 
brain tissue, and the severity of the ischemic injury (5–7).

In lieu of the time from onset, which may be  an inadequate 
surrogate for tissue ischemia, the mismatched lesion on the diffusion-
weighted imaging (DWI) and fluid-attenuated inversion recovery 
(FLAIR) image has been proposed as a means of measuring the 
extent of individual ischemic brain injury (8, 9). Due to the fact that 
DWI images were more sensitive to early ischemic changes than 
FLAIR images, the phrase “tissue clock” was coined to describe its 
potential to use as criteria for thrombolysis (10). Randomized clinical 
trials that chose intravenous thrombolysis candidates in unclear onset 
time based on the diffusion-FLAIR mismatch demonstrated the 
feasibility and applicability of the tissue clock in acute decision-
making (11–13).

However, the DWI-FLAIR mismatch is not commonly accepted 
in acute stroke care. The mismatch necessitates magnetic resonance 
image (MRI) scans, which have limited accessibility in acute stroke 
care around the world (14). Instead, computed tomography (CT) is 
the de facto standard for neuroimaging of acute stroke. Nevertheless, 
non-contrast CT (NCCT) has inferior spatial resolution and signal 
differentiation in comparison to MRI (15). Therefore, no report has 
tried to evaluate the DWI-FLAIR mismatch on NCCT scans of acute 
ischemic stroke suspects. With the development of artificial 
intelligence (AI) modeling for medical imaging, it is possible to create 
an AI model with automated image interpretation capability 
equivalent to that of human experts (16). In this study, the authors 
analyzed data from patients presenting with acute ischemic stroke 
who completed NCCT and MR images within an hour to build a 
deep-learning model that could predict the DWI-FLAIR mismatch 
using NCCT. The performance of this model was then compared to 
inexperienced human raters.

2. Materials and methods

2.1. Study participants

Between 01/2009 and 05/2020, a total of 11,548 consecutive acute 
stroke patients were enrolled in a prospective stroke registry at a single 
academic center (17). A total 453 patients were selected for this study 
who completed NCCT, DWI, and FLAIR image scans within 1 h of 
each other by the acquisition time (DICOM tag; 0008, 0032). Excluded 
patients were those with (1) no DWI lesion (n = 64); (2) DWI lesion 

volume smaller than 2 mL (n = 154); (3) significant motion artifacts 
(n = 5), irreparable misregistration (n = 6) and severe beam hardening 
artifacts (n = 2). The final analysis included 222 image sets of NCCT, 
DWI, and FLAIR images. Further, 130 image sets (104 training and 
26 validation) were randomly assigned to the development set and the 
remaining 92 image sets were assigned to the test set (Figure 1).

Acute stroke management, including baseline and follow-up 
imaging, was undertaken in accordance with the current clinical 
guidelines at the time of care and at the discretion of treating 
physicians (1, 2, 18). The institutional stroke care protocol 
recommends taking CT images (includes NCCT, multiphase CT 
angiography, and CT perfusion) for patients suspected of having an 
acute stroke. If no contraindications, intravenous thrombolysis was 
administered after NCCT. Following CT, patients undergo acute MR 
scans (including DWI, FLAIR, MRA angiography, and MR perfusion) 
prior to admission to a stroke unit. If deemed suitable for endovascular 
therapy, the patient could directly proceed to the angiography suite 
following CT or MR scans.

Clinical information was retrieved from the prospective acute 
stroke registry. The institutional review board of the Seoul National 
University Bundang Hospital approved the data analysis, image 

FIGURE 1

Study profile.
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evaluation, and modeling process (B-2102/667-106). Included patients 
or their next of kin provided written consent for the prospective 
clinical stroke registry to record and for the collection of their data 
(B-1401/236-007, B-1706/403-303).

2.2. Data availability statement

The data supporting this study’s findings are available from the 
corresponding author upon reasonable request.

2.3. Image acquisition

All patients had their NCCT scans using 64- or 256-channel 
scanners (Brilliance, the IQon, and the iCT, Philips Healthcare, Best, 
The Netherlands). The imaging parameters were as follows: tube 
voltage of 120 kV; effective tube current of 250 mAs; collimation of 
64 × 0.625; pitch of 0.39; rotation time of 0.5; raw slice thickness/
increment of 0.9/0.45 mm; and axial reconstruction slice thickness/
increment of 5/5 mm. The scan range extended from the base of the 
skull to the vertex. Stroke MR images were taken at 3 Tesla scanners 
(Achieva or Ingenia, Philips Healthcare, Best, The Netherlands) with 
8-channel or 32-channel head coils, using the following image 
parameters; for DWI, repetition time = 3,000 ms, echo time = 72 ms, 
flip angle = 90°, number of excitation = 2, a field of view = 230 × 230 mm, 
matrix size = 160 × 160, and slice thickness = 5 mm; for FLAIR, 
repetition time = 11,000 ms, echo time = 125 ms, flip angle = 90°, 
number of excitation = 1, a field of view = 182 × 230 mm, matrix 
size = 352 × 263 mm, and slice thickness = 5 mm.

2.4. Development of reference standards 
and quantification of the diffusion-FLAIR 
mismatch

NCCT images were initially pre-processed by skull stripping, 
cropping, and intensity normalization. The DWI and FLAIR images 
were skull-stripped and automatically co-registered onto the 
pre-processed NCCT images using rigid body transformation (the 
SimpleITK packages in Python) (19, 20). The NCCT, DWI, and 
FLAIR images were, therefore, spatially aligned in the same space. An 
experienced neuroradiologist visually inspected the registration 
results and made manual adjustments using the ITK-SNAP (version 
3.81) when the co-registration was suboptimal (21). Board-certified 
vascular neurologists (BJK, NS), a neuroradiologist (RM), and 
interventional neuroradiologists (FB and PC) manually segmented 
high signal lesions on every slice on DWI and FLAIR images referring 
to ADC images using the ITK-SNAP.

DWI-FLAIR mismatch was defined as a region where DWI 
revealed a high signal intensity implying ischemic injury but no or only 
slight changes on the FLAIR image, indicating potentially minute 
irreversible infarction (22). Raters were recommended to compare the 
area of high signal intensity on the DWI with the corresponding area of 

1 http://www.itksnap.org/

low signal intensity on the apparent diffusion coefficient (ADC) map. 
However, no specific ADC threshold was given, considering the 
relatively greater ADC value in the ischemic penumbra (23). In 
evaluating FLAIR images, a high signal intensity of less than 15% greater 
than the contralateral intact region was not considered indicative of a 
FLAIR lesion (24). When the FLAIR high signal intensity lesion 
occupied more than one-third of the corresponding DWI lesion, the 
DWI-FLAIR mismatch was not counted.

After achieving a consensus on the DWI-FLAIR mismatch with a 
random sample of 50 image sets, three raters independently evaluated 
the remainder. Disputes between raters were settled by majority vote. 
The interclass correlation coefficient for DWI-FLAIR mismatch on MR 
images was 0.94 [95% CI, 0.73–1.00]. Six months following the 
segmentation of the lesion, DWI-FLAIR mismatch was rated based on 
the presence or absence of the mismatch.

2.5. Deep learning model

An automated lesion segmentation framework was built based on 
the nnU-net architecture (25, 26). The proposed DL model employed 
a full-resolution training strategy with a deep-supervision mechanism. 
Specifically, a channel and spatial attention block were designed to 
enable the model to focus on the salient areas of images at different 
scales and acquire compact and conducive features (27). To fully 
utilize multi-scale context information, a scale-aware pyramid fusion 
module with three parallel dilated convolutions with varying dilation 
rates of 1, 2, and 4 was employed and fused the information at different 
scales (Figure 2) (28).

To train and choose the optimum model, a five-fold cross-
validation was executed. Spatial augmentations, including rotation, 
scaling, and low-resolution simulation, were applied in three 
dimensions to boost the diversity of training data. Dice and cross-
entropy loss functions were utilized to supervise the learning (29).

2.6. Evaluation metrics

The proposed segmentation method was quantitatively evaluated 
using a spatial overlap metric of the Dice Coefficient (DC), and two 
boundary distance error metrics, average symmetric surface distance 
(ASSD) and 95th percentile of the Hausdorff Distance (HD95), were 
compared to the reference standard of manual segmentation. DC is a 
spatial overlap index ranging from 0 to 1; 1 indicates a perfect overlap 
between the reference standard and predicted segmentation and 0 
indicates no overlap. The ASSD computes the average difference 
between the segmented object’s surface and the reference in three-
dimensional space. The HD95 represents the greatest Hausdorff 
distance and ignores the top 5% with the biggest surface distance 
error. For ASSD and HD95, 0 mm indicates a perfect segmentation. 
Depending on the distribution of the dataset, Pearson and Spearman’s 
correlations were used to compare the segmented lesion volumes. 
Interclass coefficients were calculated to estimate the interobserver 
agreement of the DWI-FLAIR mismatch rating. A confusion matrix 
was created to assess the classification performance, from which the 
sensitivity, specificity, accuracy, and AUC-ROC score were derived. 
All of these metrics were computed in 3D space at the level of 
the patient.
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2.7. Application of the developed model to 
the practice

After developing the image prediction model, we  tested the 
performance and practicality of the model in a quasi-practice setting. 
Vascular neurologists with more than 10 years of practice (BJK) and 
vascular fellows in training (YSK and JWK) evaluated the presence of 
DWI-FLAIR mismatch from NCCT images without clinical 
information or the model’s prediction (evaluation round #1). Two 
weeks later, they re-evaluated NCCT images while the model’s 
prediction outputs were provided (evaluation round #2). Human 
raters were blinded to clinical information, time from onset, location 
of ischemic lesion, and the presence of the DWI-FLAIR mismatch. A 
discrepancy was settled by a majority vote, and the consensus ratings 
were evaluated against the prediction model’s output.

2.8. Statistical analysis

Baseline characteristics of study participants were summarized 
as means ± standard deviations, medians [interquartile ranges], and 
frequencies (percentages), as appropriate. Distributions of variables 
were compared using t-tests for interval variables and chi- 
squared tests for categorical variables. Using the bootstrap method 
for the area-under-the-curve of receiver-operating-characteristics 
(AUC-ROC) analysis, the AI model’s performance was tested (30). 
The statistical significance thresholds were set at a two-tailed 
p-value < 0.05. Statistical analyses were performed using R version 
4.1.2 (R Foundation for Statistical Computing).

3. Results

3.1. Patient characteristics

Of 453 acute ischemic stroke patients who had taken NCCT – 
DWI – FLAIR images within 1 h of one another during the 10-year 
study period, 222 (49%) cases met the prespecified selection criteria 
for the current study. The mean age of the study population was 
71.8 ± 12.8 years, and 123 (55%) of them were male. The baseline 
NIHSS score at arrival was a median of 11 [IQR, 6–18]. 149 (67%) 
received acute stroke treatment [120 (54%) intravenous thrombolysis 
and 77 (35%) endovascular recanalization]. Baseline characteristics 
were comparable between the derivation and validation cohort except 
that atrial fibrillation was more prevalent, and blood pressure and 
glucose levels were higher in the validation set (Table 1).

All stroke images were taken in the order of NCCT – DWI – 
FLAIR sequences. The image scan was commenced after a median of 
139 [81–326] min after the time last known well (LKW); the median 
time from the first NCCT and the last FLAIR image was 39 [32–50] 
min (Table 2). The time indices were similar between derivation and 
validation sets. The DWI-FLAIR mismatch was detected in 43 
patients (47%).

3.2. Automated segmentation of DWI and 
FLAIR lesions

A deep-learning model to segment ischemic lesions on the DWI 
and FLAIR images was initially developed. When the derived deep 

FIGURE 2

The proposed full-resolution deep learning architecture.
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learning model was applied to the 92 patients in the test set, the DCs 
were a mean of 39.1% (95% CI, 31.4–46.8) for DWI lesions and 18.9% 
(95% CI, 12.3–25.6) for FLAIR lesions; the ASSDs were 9.1 mm (95% 
CI, 5.0–13.1) for DWI lesions and 10.6 mm (95% CI, 6.3–14.8) for 
FLAIR lesions; the HD95 was 29.3 mm (95% CI, 22.0–36.6) for DWI 
and 29.3 mm (22.5–36.1) for FLAIR lesions. The differences between 

predicted and reference area volumes were − 11.4 mL (95% CI, −17.3 
to −5.4) for DWI and −4.5 mL (95% CI, −6.6 to −2.4) for FLAIR 
lesions. Considering the low spatial resolution and delayed appearance 
of ischemia on NCCT images, image sets with their DWI lesion 
≥15 mL were selected, and the DL model’s performance was 
re-evaluated. In general, the model output showed a greater similarity 

TABLE 1 Clinical characteristics of study subjects.

Variables All patients (n, 222) Development set (n, 130) Test set (n, 92) P-for-difference

Male sex 123 (55%) 73 (56%) 50 (54%) 0.90

Age 71.8 ± 12.8 71.1 ± 13.0 70.3 ± 12.7 0.68

Baseline NIHSS score 11 [6–18] 11 [6–18] 11 [6–16] 0.45

LKW to arrival (minutes) 109 [57–291] 101 [54–251] 119 [60–315] 0.47

Pre-stroke functional 

dependency (mRS ≥1)

27 (12%) 17 (14%) 10 (11%) 0.77

Stroke mechanisms 0.14

Large artery atherosclerosis 57 (26%) 37 (29%) 20 (22%)

Small vessel occlusion 3 (1%) 0 3 (3%)

Cardioembolism 122 (55%) 67 (52%) 55 (60%)

Other determined etiology 14 (6%) 9 (7%) 5 (6%)

Undetermined etiology 25 (11%) 17 (13%) 8 (9%)

Hypertension 160 (72%) 93 (72%) 67 (73%) 0.95

Diabetes 67 (30%) 36 (28%) 31 (34%) 0.42

Dyslipidemia 58 (26%) 35 (27%) 23 (25%) 0.87

Habitual smoking 70 (32%) 44 (34%) 26 (28%) 0.46

Atrial fibrillation 99 (45%) 49 (38%) 50 (54%) 0.02

Occlusion location 0.32

Internal carotid artery 16 (7%) 9 (7%) 7 (8%)

Middle cerebral artery 149 (67%) 83 (64%) 66 (72%)

Anterior cerebral artery 5 (2%) 5 (4%) 0

Posterior cerebral artery 11 (5%) 9 (7%) 2 (2%)

Vertebrobasilar artery 13 (6%) 6 (5%) 7 (8%)

Multiple occlusion 28 (12%) 18 (14%) 10 (10%)

Recanalization treatment 149 (67%) 89 (69%) 60 (65%) 0.72

Intravenous thrombolysis 144 (65%) 87 (67%) 57 (62%) 0.53

Endovascular therapy 78 (35%) 43 (33%) 35 (38%) 0.53

Hemoglobin (mg/dL) 13.5 ± 2.2 13.4 ± 2.4 13.5 ± 1.9 0.78

Blood urea nitrogen (mg/dL) 18 ± 8 18 ± 10 17 ± 6 0.36

Creatinine (mg/dL) 0.9 ± 0.4 1.0 ± 0.5 0.9 ± 0.4 0.57

Total cholesterol (mg/dL) 162 ± 41 161 ± 39 163 ± 42 0.67

Low-density lipoprotein (mg/dL) 95 ± 33 95 ± 31 95 ± 36 0.88

Hemoglobin A1c (%) 6.1 ± 1.1 6.0 ± 1.0 6.3 ± 1.3 0.12

Blood glucose on arrival (mg/dL) 139 ± 57 132 ± 44 148 ± 71 0.03

Systolic blood pressure (mm Hg) 155 ± 26 150 ± 25 162 ± 27 <0.01

Diastolic blood pressure 83 ± 17 81 ± 16 87 ± 17 0.01

NIHSS score at discharge 5 [2–11] 5 [3–10] 5 [2–11] 0.56

Early neurological deterioration 39 (18%) 18 (14%) 21 (23%) 0.12

mRS score 0–1 at 3 months 70 (34%) 46 (38%) 24 (29%) 0.21

https://doi.org/10.3389/fneur.2023.1201223
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kim et al. 10.3389/fneur.2023.1201223

Frontiers in Neurology 06 frontiersin.org

to DWI and FLAIR lesions in the larger ischemic lesion subgroup 
(Table 3; Figure 3).

3.3. Pixelwise prediction models for the 
DWI-FLAIR mismatch on NCCT

An expert panel of vascular neurologists and neuroradiologists 
judged the presence of DWI-FLAIR mismatch from the NCCT 
images, yielding moderate prediction with an accuracy of 0.63 and an 
AUC-ROC of 0.635 [95% CI, 0.554–0.713]. Experts’ evaluations were 
similar by the size of the DWI lesion; AUC-ROC of 0.586 for DWI 
lesions between 2–15 mL and 0.596 for DWI lesions ≥15 mL. A novice 
panel with only 1 or 2 years of clinical vascular neurology fellowship 
training evaluated the NCCT images and showed relatively mediocre 
predictability even for image sets from DWI lesions ≥15 mL. However, 
when provided with the DL model’s output, the novice panel’s 
evaluation of DWI-FLAIR mismatch from NCCT images improved 
in accuracy (from 0.537 to 0.610) and AUC-ROC (from 0.493 to 
0.613) in the larger lesion subgroup (Table 4; Figure 4).

4. Discussion

Through 222 NCCT – DWI – FLAIR image sets of acute ischemic 
stroke patients acquired within 1 h of one another, we constructed a 
deep learning model predicting DWI-FLAIR lesions and applied these 

to the NCCT images. The predictability of the AI model remained 
modest, with increased specificity in a larger infarct group with a DWI 
lesion volume greater than 15 mL. The model was demonstrated to 
support the interpretation of stroke physicians with limited clinical 
expertise in the large infarction group of ≥15 mL.

The purpose of acute stroke imaging is, among other things, to 
distinguish viable brain tissue from irreparable infarctions to 
maximize the benefit of recanalization treatment and minimize the 
risk of hemorrhagic complications (31). MR scans are generally 
thought to demonstrate great accuracy in characterizing ischemic 
injuries. The signal change on FLAIR has been attributed to vasogenic 
edema following the initial cytotoxic edema visualized on DWI. The 
DWI-FLAIR mismatch, a high signal lesion on DWI in contrast to a 
normal or minimally increased signal intensity on FLAIR, may imply 
potentially reversible ischemia. However, it is not entirely accepted in 
clinical practice yet. The safety and efficacy of intravenous 
thrombolysis based on the DWI-FLAIR mismatch were documented 
in randomized clinical trials (11, 12). A single-center study showed 
the utility of the DWI-FLAIR mismatch as a case selection for 
endovascular recanalization treatment (10). Therefore, DWI-FLAIR 
mismatch may be considered a tissue clock, beyond the role of a time 
clock, that may guide the reperfusion treatment.

However, the diffusion-FLAIR mismatch is not generally utilized 
in real-world clinical decisions due to (1) the limited accessibility of 
MR scanners for acute stroke care and (2) the ambiguity in 
determining ischemic signals on FLAIR images. Our study aims to 
develop a practical AI model to aid hyperacute stroke treatment 

TABLE 2 Lesion volume and image acquisition metrics.

Variables All patients (n, 222) Development set (n, 130) Test set (n, 92) P-for-difference

Lesion volume on DWI (mL) 11.0 [4.4–35.7] 11.8 [4.4–35.0] 10.6 [4.4–36.3] 0.66

Lesion volume on FLAIR (mL) 1.9 [0.5–7.0] 2.1 [1.0–8.1] 1.1 [0–5.0] <0.01

LKW to CT (minute) 139 [81–326] 128 [76–317] 146 [90–330] 0.86

LKW to DWI (minute) 170 [111–351] 164 [107–334] 175 [118–353] 0.83

LKW to FLAIR (minute) 183 [125–362] 175 [119–343] 188 [129–366] 0.66

CT to DWI (minute) 29 [24–35] 30 [23–35] 29 [25–34] 0.92

CT to FLAIR (minute) 39 [32–50] 40 [31–50] 39 [34–50] 0.69

DWI to FLAIR (minute) 9 [5–17] 10 [5–17] 7 [5–18] 0.63

*DWI, diffusion-weighted image; FLAIR; fluid-attenuated inversion recovery; CT, computed tomography; LKW, last known well.

TABLE 3 The prediction ability of DWI and FLAIR lesions by a deep learning model in the test cohort (92 cases).

DWI lesion volume  < 15  mL DWI lesion volume  ≥ 15  mL All samples

DWI FLAIR DWI FLAIR DWI FLAIR

Lesion volume 

(ground truth; mL)

7.27 (5.44–9.11) 2.56 (1.16–3.96) 65.37 (43.61–87.13) 13.33 (8.03–18.62) 36.13 (23.12–49.14) 7.62 (4.61–10.62)

Prediction volume 

(mL)

8.53 (−0.29 to 17.35) 0.5 (0.0–0.99) 45.07 (25.73–64.42) 6.0 (2.92–9.09) 24.78 (13.79–35.77) 3.16 (1.47–4.84)

δVdiff (mL)
1.26  

(−6.67 to 9.19)

−2.06  

(−3.21 to −0.91)

−20.3  

(−30.81 to −9.78)

−7.32  

(−11.27 to −3.37)

−11.35  

(−17.26 to −5.43)

−4.46  

(−6.56 to −2.36)

δVdiff (mL)
8.53 (2.25–14.81) 2.08 (0.94–3.22) 26.77 (18.26–35.27) 8.56 (4.93–12.18) 16.82 (11.75–21.89) 5.09 (3.08–7.1)

Volume correlation 0.6 (0.38–0.81) 0.42 (0.18–0.65) 0.84 (0.78–0.9) 0.67 (0.58–0.76) 0.76 (0.68–0.84) 0.61 (0.52–0.7)

Data are the mean values with the 95% confidence interval in parentheses. 
DWI, diffusion-weighted image; FLAIR, fluid-attenuated inversion recovery; δVdiff , difference in volume; δVdiff , absolute difference in volume.
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FIGURE 3

The proposed model obtained three segmentation examples. The images are shown as NCCT overlaid with the manually or algorithm-segmented 
DWI and FLAIR lesions colored in red and green, respectively. Case example of mismatch (I) and no mismatch (II and III).

TABLE 4 Human raters’ estimation of the DWI-FLAIR mismatch on NCCT images with or without the deep learning model’s output.

Precision Recall Accuracy Specificity Sensitivity AUC-ROC 
[95% CI]

P-for-
difference of 
AUC-ROC’s

All image sets

Experts Without model’s output 0.585 0.692 0.630 0.551 0.721 0.635 [0.554–0.713] <0.01

Novices Without model’s output 0.528 0.571 0.554 0.653 0.442 0.547 [0.466–0.629] Reference

Novices With model’s output 0.500 0.548 0.533 0.694 0.349 0.522 [0.441–0.601] <0.01

DWI lesions, 2–15 mL

Experts Without model’s output 0.578 0.833 0.608 0.208 0.963 0.586 [0.515–0.664] 0.01

Novices Without model’s output 0.609 0.536 0.569 0.625 0.519 0.567 [0.451–0.674] reference

Novices With model’s output 0.500 0.463 0.471 0.792 0.185 0.489 [0.394–0.581] 0.01

DWI lesions >15 mL

Experts Without model’s output 0.625 0.667 0.659 0.880 0.313 0.596 [0.490–0.701] <0.01

Novices Without model’s output 0.385 0.607 0.537 0.680 0.313 0.493 [0.368–0.615] reference

Novices With model’s output 0.500 0.714 0.610 0.600 0.625 0.613 [0.481–0.745] <0.01

DWI, diffusion-weighted image; FLAIR, fluid-attenuated inversion recovery; AUC-ROC, area-under-curve of receiver-operating characteristics.
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FIGURE 4

Receiver-operator characteristic (ROC) curves for each radiologist 
using DWI and FLAIR images and NCCT with or without the model’s 
prediction for detecting DWI/FLAIR mismatch. (A) DWI volume range 
(2, 15) mL; (B) DWI volume range ≥15 mL (C) All data.

decisions in rural hospitals without MR machines. Our model’s 
output, solely based on NCCT images, showed a reasonable correlation 
to DWI and FLAIR lesions (correlation coefficient, 0.84 and 0.67) in 
a group of DWI lesions greater than 15 mL.

The goal of current AI models for medical image interpretation is 
to provide a comparable reading to human experts (32). The 
DWI-FLAIR mismatch, by definition, requires MR scans to 
be determined. Recognition of the mismatch in NCCT images may 
not be  feasible to the naked human eye due to its limited spatial 
resolution and discrimination of radiodensity signals (33). We tried 
to sidestep the technical limitation by constructing separate models 
for DWI and FLAIR lesions and summed together those outputs to 

make a final decision. The developed deep learning technique made 
use of the sophisticated convolutional neural network architecture 
while applying the attention mechanism and multi-resolution 
supervision strategy (25). Our model demonstrated that the proposed 
strategy was able to pick up the weak mismatch signals on NCCT, 
notably for the lesions ≥15 mL.

Although the DWI-FLAIR mismatch is not commonly used in 
clinical practice, the “tissue clock” visualized on NCCT may facilitate 
intravenous thrombolysis in rural settings where MR scanners, 
experienced staff, and timely transfer are not always accessible. 
We provided the output of our AI model from NCCT to vascular 
neurology fellows with only 1 or 2 years of clinical practice experience. 
Their judgment of a larger DWI-FLAIR mismatch on NCCT 
significantly improved with aid from the AI model, from an AUC-ROC 
curve of 0.49 without output to 0.61 with output. The greater 
discrimination values imply our model’s feasibility and applicability in 
general clinical practice with restricted resource conditions.

This study has several limitations. The predictability of our model 
in terms of lesion volume and Dice coefficient is modest. Developing a 
deep learning model with greater accuracy requires large data. However, 
the NCCT – DWI – FLAIR image sets acquired within 1 h are scarce in 
real-world clinical practice, as only 5% of more than 8,000 acute stroke 
patients produced such sets. Our study was based on single-center data 
without an external cohort to validate. We excluded cases with tiny DWI 
lesions of less than 2 mL, considering the limited spatial resolution of 
NCCT images. We supposed no substantial pathologic changes during 
the 1-h image acquisition period from NCCT to FLAIR images. 
Intravenous alteplase was given in 65% of cases, but no endovascular 
treatment was attempted during the 1 h.

5. Conclusion

We developed a deep learning model predicting the 
DWI-FLAIR mismatch on NCCT images in 222 acute ischemic 
stroke patients who acquired all the images within a 1-h period. The 
AI model modestly predicted both DWI and FLAIR lesions on 
NCCT images, and the output enhanced inexperienced readers’ 
interpretation. We  were able to demonstrate that the AI model 
discerned minute ischemic changes in the NCCT image. Our study 
may suggest that deep learning technology may improve acute 
stroke care and critical decision-making on the intravenous 
thrombolysis for ischemic stroke patients with substantial 
ischemic lesions.
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