We aimed to evaluate the spontaneous neuronal activity and functional connectivity pattern variations using resting-state functional magnetic resonance imaging (rs-fMRI) measures, such as amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), and functional connectivity (FC), in patients with thyroid-associated ophthalmopathy (TAO).
A total of 24 active TAO patients, 26 inactive TAO patients, and 27 matched healthy controls (HCs) were included. First, ALFF and fALFF were used to detect local neural activity changes, the MRI data were analyzed, and regions with group differences were taken as seeds. Second, FC analysis was performed to explore the altered connection between seeds and other brain regions. A correlation analysis was performed to assess the relationship between functional brain activity and clinical indices and neuropsychiatric behaviors.
Compared to HCs, both active and inactive TAO patients exhibited significantly lower ALFF values in the right calcarine (Calcarine_R) and left postcentral gyrus (Postcentral_L). Active TAO patients also showed significantly higher ALFF values in the left caudate nucleus (Caudate_L) and increased fALFF values in the superior lobe of the right cerebellum (Cerebelum_Crus1_R). Moreover, both active and inactive TAO patients demonstrated decreased FC within the left postcentral gyrus (Postcentral_L) compared to HCs. Additionally, active TAO patients exhibited lower FC compared to inactive TAO patients. The ALFF values in the Calcarine_R of active TAO patients positively correlated with disease duration (r = 0.5892,
We found that the Caudate_L and Cerebelum_Crus1_R related to motor control and coordination in active TAO patients exhibit significant compensatory mechanisms; whereas, the Calcarine_R and Postcentral_L related to visual and somatosensory cortices show varying degrees of impairment. Our findings complement the functional neural mechanism of TAO.