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Background: To analyze the clinical phenotype of hereditary spastic paraplegia 
(HSP) caused by SPG11 mutations (SPG11-HSP).

Methods: Among the 17 patients with sporadic HSP who performed whole 
exome sequencing analysis, six were diagnosed with SPG11-HSP. The clinical and 
radiologic findings and the results of the electrodiagnostic and neuropsychologic 
tests were reviewed retrospectively.

Results: The median age at onset was 16.5 years (range, 13–38 years). Progressive 
spastic paraparesis was a core feature, and the median spastic paraplegia 
rating scale score was 24/52 (range, 16–31 points). Additional major symptoms 
were pseudobulbar dysarthria, intellectual disability, bladder dysfunction, and 
being overweight. Minor symptoms included upper limbs rigidity and sensory 
axonopathy. The median body mass index was 26.2 kg/m2 (range, 25.2–32.3 kg/m2). 
The thin corpus callosum (TCC) was predominant at the rostral body or anterior 
midbody, and the ears of the lynx sign was seen in all. The follow-up MRI showed 
the worsening of periventricular white matter (PVWM) signal abnormalities with 
ventricular widening or the extension of the TCC. Motor evoked potentials (MEP) 
to the lower limbs showed an absent central motor conduction time (CMCT) in 
all subjects. The upper limb CMCT was initially absent in three subjects, although 
it became abnormal in all at the follow-up. The mini-mental state examination 
median score was 27/30 (range, 26–28) with selective impairment of the attention/
calculation domain. The median score of the full-scale intelligence quotient was 
48 (range, 42–72) on the Wechsler Adult Intelligence Scale test.

Conclusion: Attention/calculation deficits and being overweight as well as 
pseudobulbar dysarthria were common additional symptoms in patients with 
SPG11-HSP. The rostral body and anterior midbody of the corpus callosum were 
preferentially thinned, especially in the early stage of the disease. The TCC, PVWM 
signal changes, and MEP abnormality worsened as the disease progressed.
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Introduction

Hereditary spastic paraplegia (HSP) is a group of inherited 
neurological disorders characterized by progressive spastic weakness 
of the lower limbs due to degeneration of the corticospinal tracts (1). 
HSP is clinically divided into two subtypes: (a) pure or uncomplicated 
HSP, which is characterized by difficulty walking due to progressive 
spastic paraplegia of insidious onset; (b) complicated HSP, which is 
associated with additional neurologic symptoms or medical 
conditions, including intellectual disability, dementia, ataxia, 
extrapyramidal disorders, optic atrophy, peripheral neuropathy, 
amyotrophy, or epilepsy (1–3). The biallelic mutations in the SPG11 
gene encoding the spatacsin protein can lead to complicated HSP 
(SPG11-HSP). SPG11-HSP is a rare disease with an incidence of 0.35 
per 100,000 people and is known to account for 19%–31% of 
autosomal recessive HSP (4–6). SPG11-HSP may clinically manifest 
as various neurological symptoms or signs associated with the central 
and peripheral nervous involvement (5, 7). The thin corpus callosum 
(TCC) is known as a radiologic hallmark of SPG11-HSP (5, 8). 
However, TCC cannot be pathognomonic, considering that it is also 
observed in HSP with other genotypes (8, 9), and several cases of 
SPG11-HSP without TCC have been reported (10). Thus, a more 
comprehensive study is needed to understand this rare disease with 
phenotypic diversity. This study aimed to comprehensively analyze the 
phenotype of SPG11-HSP, including clinical, radiological, 
electrodiagnostic, and neuropsychologic features.

Materials and methods

Subjects

We searched for patients undergoing follow-ups at the outpatient 
neurology clinic after being diagnosed with sporadic HSP. Whole exome 
sequencing (WES) was performed to identify the causative gene in 17 
patients, of which 5 were classified into pure HSP and 12 were into 
complicated HSP. Six patients with complicated HSP were considered as 
having SPG11-HSP. In this study, the diagnosis of SPG11-HSP is defined 
as the presence of slowly progressive spastic paraparesis, TCC on MRI 

scan, identification of pathogenic mutations in the SPG11 gene, but no 
significant variants identified in more than 80 other HSP-related genes. 
We retrospectively reviewed the medical records of six subjects, including 
two (subject number (SN)-5 and SN-6) identical twins. Five known 
pathogenic and two novel variants in the SPG11 gene were identified 
(Table  1). The twins carried an additional pathogenic heterozygous 
c.950G > A/p.Arg317Gln variant in the CLCN1 gene (11, 12). A detailed 
description of the WES analysis, the flowchart of patient selection, and 
information on all genetic variants found in the SPG11 gene in this study 
are provided in the Supplementary materials. This project was approved 
by the institutional review board of the Chonnam National University 
Hospital (CNUH-2020-018).

Methods

The clinical characteristics were established by obtaining the 
following: (1) Clinical findings included demographic information, 
including body mass index (BMI), subjective symptoms, and 
neurological examinations. The spastic paraplegia rating scale (SPRS) 
was measured (13). (2) Radiological findings included the TCC and 
periventricular white matter (PVWM) signal abnormalities. 
Midsagittal T1-weighted images were selected to assess the affected 
regions of the corpus callosum, which was divided into seven 
subdivisions according to Witelson’s guidelines: region 1 (rostrum), 
region 2 (genu), region 3 (rostral body), region 4 (anterior midbody), 
region 5 (posterior midbody), region 6 (isthmus), and region 7 
(splenium) (14, 15). PVWM signal abnormalities were evaluated on 
an axial fluid-attenuated inversion recovery (FLAIR) image, and 
ventricular widening was investigated. (3) Electrodiagnostic findings 
included the results from the motor evoked potentials (MEP) and 
somatosensory evoked potentials (SEP), the nerve conduction study 
(NCS), and electromyography (EMG). Central motor conduction time 
(CMCT) was measured by subtracting the peripheral motor 
conduction time (PMCT) from the onset latencies of the MEP. PMCT 
was calculated by adding F-wave latency and M-wave latency 
measured in the posterior tibial and ulnar nerves and then subtracting 
1 msec, reflecting the turnaround time at the anterior horn cell and 
dividing by two. Thus, the formula used for calculating the CMCT is 

TABLE 1 Variants identified in the SPG11 gene.

Patient Exon c.DNA change Amino acid 
change

Zygosity ACMG-AMP 
criteriaa

ACMG 
classification

dbSNP No.

SN-1 Intron c.3291+1G>T NA Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262753

25 c.4307_4308delAA p.Gln1436Argfs Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262759

SN-2 Intron c.3291+1G>T NA Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262753

SN-3 1 c.200_203delCTTT p.Ser67fs Heterozygous PVS1 + PM2 + PP3/4 Pathogenic NA

39 c.7010T>G p.Val2337Gly Heterozygous PM2 + PP3/4 VUS NA

SN-4 16 c.2987_2989delGTT p.Cys996del Heterozygous PVS1 + PM2/4 + PP3-5 Pathogenic NA

SN-5 11 c.2163dupT p.Ile722Tyrfs Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262738

30 c.5410_5411delTG p.Cys1804Profs Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262766

SN-6 11 c.2163dupT p.Ile722Tyrfs Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262738

30 c.5410_5411delTG p.Cys1804Profs Heterozygous PVS1 + PM2 + PP3-5 Pathogenic rs312262766

SN, subject number; ACMG, the American College of Medical Genetics and Genomics; AMP, the Association for Molecular Pathology; VUS, variant of uncertain significance; NA, not 
available; SN-5 and SN-6 are identical twins. aEvidence of pathogenicity very strong (PVS), strong (PS), moderate (PM), supporting (PP).
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as follows: CMCT (msec) = MEP – (F-latency + M-latency – 1)/2 (16). 
(4) Neuropsychologic findings included the results of the Korean 
version of the mini-mental state examination (K-MMSE) and the 
Korean Wechsler Adult Intelligence Scale (K-WAIS) test for the 
evaluation of the intelligence quotient (IQ).

Results

The subjects were between 17 and 41 years old. All subjects had no 
family history of neurodegenerative diseases. Three subjects (SN-1, SN-2, 
and SN-3) had a history of intellectual disability. Five subjects were 
educated for over 9 years, including the highly educated one (SN-4) who 
graduated from university. The median BMI was 26.2 kg/m2 (range, 
25.2–32.3 kg/m2). All subjects presented with slowly progressive spasticity 

in the lower limbs. The median age at the onset of gait disturbance was 
16.5 years (range, 13–38 years); it developed in late adolescence in five 
subjects, while the other (SN-4) experienced it in her late thirties. Five of 
the six subjects could walk independently at the initial examination. All 
became dependent on ambulatory assistive devices (AAD) with time, 
and the median duration from onset to use of AAD was 5 years. The 
median SPRS score was 24/52 (range, 16–31 points). Learning difficulties 
and urinary or bowel incontinence were common. One subject (SN-1) 
complained of rigidity or stiffness in the upper limbs, another (SN-4) had 
paresthesia in the lower limbs, and the twins (SN-5 and SN-6) had 
experienced painful muscle stiffness in their calves since their early teens. 
Neurological examinations generally revealed pseudobulbar dysarthria, 
positive Babinski sign and ankle clonus on both sides, and Achilles 
tendon contracture. Calf muscle hypertrophy was seen in the twins. The 
clinical manifestations are summarized in Table 2.

TABLE 2 Clinical findings of the enrolled patients in this study.

Subjects SN-1 SN-2 SN-3 SN-4 SN-5 SN-6

Gender F M M F M M

Age at onset (years) 16 13 13 38 17 17

Age at examination (years) 18 17 22 41 21 21

Follow-up period (years) 13 3 2.5 4 8 8

Family history − − − − + +

BMI (kg/m2) 28.4 26.5 25.8 32.3 25.2 25.8

Ambulatory status

  At examination Self Self Crutch Self Self Self

  Onset to AAD (years) 4 6 UNK 4 5 5

Clinical manifestation

  Slurred speech + + + + + +

  Learning difficulties + + + ± + +

  Urinary incontinence + + + + + +

  Fecal incontinence + + + + − −

  Myalgia − − − − + +

Neurologic examination

  SPRS score 18 24 31 16 24 25

  Lower limb spasticity + + + + + +

  Achilles contracture + + + + + +

  Pseudobulbar dysarthria + + + + + +

Deep tendon reflex

  Upper limbs 2+/2+ 2+/2+ 2+/2+ 2+/2+ 2+/2+ 2+/2+

  Lower limbs 4+/4+ 4+/4+ 4+/4+ 4+/4+ 4+/4+ 4+/4+

Babinski sign +/+ +/+ +/+ +/+ +/+ +/+

Ankle clonus +/+ +/+ +/+ +/+ +/+ +/+

Hoffman’s sign −/− −/− −/− −/− −/− −/−

Upper limb rigidity + − − − − −

Extrapyramidal sign − − − − − −

Sensory loss − − − + − −

Calf muscle hypertrophy − − − − + +

Muscle atrophy − − − − − −

SN, subject number; F, female; M, male; +, present; −, absent; BMI, body mass index; AAD, ambulatory assistive devices; UNK, unknown; SPRS, spastic paraplegia rating scale.
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Radiologically, TCC was observed in all subjects. Three subjects 
(SN-1, SN-5, and SN-6) showed focal thinning limited to region 3, and 
another (SN-2) showed thinning in regions 3 and 4. The other two 
(SN-3 and SN-4) showed diffuse thinning involving the entire or 
anterior half of the corpus callosum, respectively (Figure  1). The 
FLAIR hyperintensities at the forceps minor, called ears of the lynx 
sign, were found in all subjects, PVWM signal abnormalities at the 
forceps major were seen in three (SN-2, SN-3, and SN-4), and the 
widening of the lateral ventricles was found in one (SN-3; Figure 2). 
A follow-up brain MRI was performed after 12 years in one subject 
(SN-1) and 3 years in the other (SN-4). In SN-1, the thinning of region 
3 had further progressed and the corpus callosum had become 
diffusely thinned. More pronounced FLAIR signal abnormalities at 
the forceps minor and major were accompanied by the enlargement 
of the lateral ventricles (Figures  3A–D). In SN-4, TCC did not 
significantly worsen, although PVWM signal abnormalities 
accompanied by ventricular widening became prominent 
(Figures  3E–H). The spine MRI performed on three subjects was 
unremarkable. In the electrodiagnostic studies, MEP to the lower 
limbs showed an absent response in all subjects, and MEP to the upper 
limbs was absent in three subjects (SN-1, SN-2, and SN-3). In the 
follow-up MEP tests performed 2 years later, upper limb CMCT was 
absent in one subject (SN-4) and prolonged in two subjects (SN-5 and 
SN-6). SEP revealed unremarkable results in both the upper and lower 
limbs. NCS was unremarkable, except for one subject (SN-4) who had 

distal symmetric axonal sensory polyneuropathies in the legs. Needle 
EMG showed myotonic discharges typical of non-dystrophic 
myotonia in the twins. Concerning neuropsychologic studies, the 
median K-MMSE score was 27 (range, 6–28), all of which were 
deducted in the serial sevens task. Cognitive ability was examined 
using WAIS-III in two (SN-1 and SN-2) or WAIS-IV in the others, and 
the median full-scale IQ was 48 (range, 42–76). The detailed 
information on the radiological, electrodiagnostic, and 
neuropsychologic findings is summarized in Table 3.

Discussion

In addition to spastic weakness in the legs, a core feature of HSP, 
the major additional symptoms of SPG11-HSP were learning 
difficulties, pseudobulbar dysarthria, bladder dysfunction, and being 
overweight. A few subjects complained of rigidity in their upper limbs 
or neuropathic pain, which are known as possible accompanying 
manifestations (4, 5, 17, 18). The twins presented myotonic muscle 
stiffness, which has been reported in a family with autosomal recessive 
HSP (19). However, it could be due to an incidental coexistence of 
myotonia congenita rather than an additional symptom of SPG11-HSP, 
given that a pathogenic CLCN1 mutation was identified. Intriguingly, 
all subjects had abnormal BMI scores of 25 kg/m2 or higher, indicating 
they were overweight according to the WHO classification, yet implying 

FIGURE 1

Sagittal T1-weight MR images of the enrolled patients. (A) SN-1, 18 years of age, has focal thinning of region 3 in the corpus callosum. (B) SN-2, 17 years 
of age, has thinning of regions 3 and 4. (C) SN-3, 22 years of age, has thinning of the entire corpus callosum involving regions 1–7. (D) SN-4, 41 years of 
age, has thinning of the anterior half of the corpus callosum involving regions 1–4. (E,F) SN-5 and SN-6, 21-year-old identical twins, have focal thinning 
of region 3. The corpus callosum was divided into seven regions according to Witelson’s guidelines. SN, subject number.
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FIGURE 2

Axial FLAIR MR images of the enrolled patients. (A–F) All subjects have hyperintensities at the forceps minor region called the ears of the lynx sign. 
(B–D) SN-2, SN-3, and SN-4 have forceps major region signal abnormality. (C) SN-3 has the widening of the lateral ventricle.

FIGURE 3

The initial and follow-up images of two patients. (A–D) MR images of SN-1. (A,B) The focal thinning of region 3 in the initial image was further thinned and 
other regions of the corpus callosum were also slenderized on the MRI performed 12 years later. (C,D) The forceps minor region signal abnormality became 
more distinct in the subsequent image, and the forceps major region signal abnormality with ventricular widening was observed in the follow-up image. (E–H) 
MR images of the SN-4. (E,F) The thinning in the anterior half of the corpus callosum was still observed on the MRI performed 3 years later, although there was 
no significant change. (G,H) The forceps minor and major regions signal abnormalities with ventricular widening were more distinct in the follow-up image.
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obesity when applying the refined cut-off for Asian-Pacific populations 
(20, 21). Although metabolic aspects have not been well implicated in 
SPG11-HSP, recent studies have suggested a relationship between 
bodyweight changes and hypothalamic dysfunction in this disease (22, 
23). Therefore, weight gain may not be  simply because of physical 
inactivity following gait disturbance but an additional manifestation of 
SPG11-HSP (22). Furthermore, since body composition and the related 
metabolic profile of the Asian population can differ from Western 
society (24), further investigations into changes in bodyweight among 
SPG11-HSP patients by race may be warranted.

The distinct radiologic finding in this study was TCC. We divided 
the corpus callosum into subregions to identify the thinning pattern 
since the callosal fibers of the corpus callosum are thought to have a 
topographic organization in accordance with projecting cortical areas 
(25, 26). The most commonly affected area was region 3 or 4, which 

contains commissural fibers to the premotor and motor cortex (12, 
27). Considering that a patient’s serial MRI images spaced over 10 
years showed aggravation of TCC, the thinning may extend from the 
rostral or anterior midbody to the entirety of the corpus callosum with 
disease progression (5, 18, 28, 29). In addition, all subjects had PVWM 
signal abnormalities in common, even those who had mild and focal 
TCC. Notably, these signal changes worsened without further thinning 
of the corpus callosum on the follow-up MRI of SN-4. Thus, PVWM 
signal abnormality, including the ears of the lynx sign, seemed to 
parallel or precede the worsening of TCC (30). The enlargement of 
lateral ventricles observed in three subjects has been rarely described 
before (31, 32), and is presumed to be related to the decreased white 
and grey matter volume (31).

Peripheral neuropathy has been infrequently reported in 
SPG11-HSP (5). Its clinical symptoms are usually mild, but it has 

TABLE 3 Laboratory findings of the enrolled patients in this study.

Subjects SN-1 SN-2 SN-3 SN-4 SN-5 SN-6

Radiologic study

  TCC + + + + + +

   Involved region R3 R3,R4 R1-R7 R1-R4 R3 R3

  PVWM signal change + + + + + +

   Forceps minor + + + + + +

   Forceps major − + + + − −

  Ventricular widening − → + − + − → + − −

  Spinal cord NL NL ND NL ND ND

Electrodiagnostic study

  Initial MEP

   Lower limb CMCT Absent Absent Absent Absent Absent Absent

   Upper limb CMCT Absent Absent Absent NL NL NL

  Follow-up MEP

   Lower limb CMCT Absent Absent Absent Absent Absent Absent

   Upper limb CMCT Absent Absent Absent Absent Prolonged Prolonged

  SEP NL NL NL NL NL NL

Nerve conduction study

  Motor NL NL NL NL NL NL

  Sensory NL NL NL Axonopathy NL NL

Neuropsychologic study

  Education (years) 11 9 7 16 9 9

  K-MMSE (points) 27 26 26 28 27 27

   Attention/calculation 2/5 1/5 1/5 3/5 2/5 2/5

  FSIQ on K-WAIS 51a 42b 43 72 47 49

   VCI NA NA 51 88 62 59

   PRI NA NA 50 74 53 68

   WMI NA NA 54 84 52 52

   PSI NA NA 50 69 50 50

TCC, the thinning of the corpus callosum; PVWM, periventricular white matter; MEP, motor evoked potentials; CMCT, central motor conduction time; SEP, somatosensory evoked potentials; 
K-MMSE, the Korean version of the mini-mental state examination; K-WAIS, Korean Wechsler Adult Intelligence Scale; FSIQ, full-scale intellectual quotient; VCI, verbal comprehension 
index; PRI, perceptual reasoning index; WMI, working memory index; PSI, processing speed index; R, region; ND, not done; NL, normal; NA, not available. 
aK-WAIS-III in SN-III revealed 57 of verbal IQ, and 53 of performance IQ.
bK-WAIS-III in SN-IV revealed 44 of verbal IQ and 40 of performance IQ.
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been reported that severe axonopathy, neuropathic pain, or 
autonomic dysfunction may be accompanied in the late stage of the 
disease (17). In this study, NCS was abnormal in the only patient 
with neuropathic pain, which is inconsistent with a large cohort 
study of 25 SPG11-HSP subjects, in which 96% subjects showed 
non-length dependent motor neuropathy (33). Interestingly, all 
subjects showed absent lower limb CMCT regardless of SPRS scores 
or disease duration, similar to the many studies on the 
neurophysiologic features of HSP that have reported abnormal 
lower limb MEP (34). Meanwhile, less attention has been paid to 
MEP in the upper limbs, and investigations specific to SPG11-HSP 
are still lacking, even though it is the most common subtype of 
autosomal recessive HSP. In this study, the frequency of abnormal 
findings in the upper limb MEP was relatively high compared to an 
abnormal rate of 26% in a systemic review covering HSP patients 
with variable genotypes (34). MEP is thought to reflect the neuronal 
integrity of the upper motor neurons and has been proposed as a 
disease severity marker (34–36). Therefore, rapid conversion of the 
upper limb CMCT abnormalities may reflect progressive 
neurodegeneration of SPG11-HSP, and its longitudinal evaluation 
of the MEP test could provide a clue to assess the clinical course of 
this disease.

Intellectual disability is known as one of the non-motor symptoms 
of SPG11-HSP (37). The MMSE scores of the subjects were slightly 
lower for age and education, which is in line with the fact that 
intellectual disability is a frequent feature of SPG11-HSP (38). The 
MMSE is a 30-point questionnaire composed of several domains, 
although few papers on HSP have described it in detail by domain. 
Notably, all subjects exclusively showed impairment in the attention/
calculation domain, which evaluates working memory. Contrarily, IQ 
was conspicuously lower than the age-matched population in five 
patients, and one showed borderline intellectual functioning. A 
similar discrepancy between the Montreal Cognitive Assessment and 
MMSE was observed in a study of four patients with SPG11-HSP (39). 
Thus, additional comprehensive assessments of intellectual function 
would be  needed, even if the MMSE score seems satisfactory. 
Nonetheless, since the MMSE is the most widely used cognitive 
screening tool in clinical settings, the serial sevens task may be a 
straightforward and useful method to identify cognitive impairment 
in those suspected of complicated HSP.

This study has several limitations. First, small number of patients 
were studied. Second, this study was designed retrospectively. Third, 
copy number variants are known to account for about 19% of 
pathogenic SPG11 alleles (40), but no further genetic tests, such as 
multiplex ligation-dependent probe amplification and segregation 
analysis, were performed. Nevertheless, the subjects had 
clinicoradiological features consistent with SPG11-HSP, and they only 
carried one or two pathogenic variants in the SPG11 gene without 
clinically or genetically significant variants in other HSP-related genes. 
Additional prospective studies with larger sample sizes are necessary 
to comprehensively understand the clinical features of patients with 
SPG11-HSP.
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