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Hypoxia is characterized by low oxygen levels in the body or environment, 
resulting in various physiological and pathological changes. The brain, which 
has the highest oxygen consumption of any organ, is particularly susceptible 
to hypoxic injury. Exposure to low-pressure hypoxic environments can cause 
irreversible brain damage. Hypoxia can occur in healthy individuals at high 
altitudes or in pathological conditions such as trauma, stroke, inflammation, and 
autoimmune and neurodegenerative diseases, leading to severe brain damage and 
impairments in cognitive, learning, and memory functions. Exosomes may play a 
role in the mechanisms of hypoxic injury and adaptation and are a current focus 
of research. Investigating changes in exosomes in the central nervous system 
under hypoxic conditions may aid in preventing secondary damage caused by 
hypoxia. This paper provides a brief overview of central nervous system injury 
resulting from hypoxia, and aimed to conduct a comprehensive literature review 
to assess the pathophysio-logical impact of exosomes on the central nervous 
system under hypoxic conditions.

KEYWORDS

exosome, hypoxia, ischaemia, hypoxic-ischaemic injuries, neural ischaemia, neural 
tissue hypoxic injuries, hypoxic preconditioning, neurorehabilitation

1. Introduction

Molecular oxygen is essential for many biological energy and biochemical processes within 
cells, and many species cannot survive in anoxic environments (1, 2). Hypoxia, which is a 
condition in which the oxygen content in the body or environment is lower than normal, results 
in a series of physiological and pathological reactions (3). Although the brain accounts for only 
2% of the body’s weight, it consumes 20% of the body’s oxygen, making it the organ that 
consumes the most energy (4). Hypoxia is a common pathological stress at all stages of central 
nervous system (CNS) development and can occur in various pathological conditions, including 
ischaemia, trauma, chronic neurodegenerative diseases, and brain tumours. Hypoxia can affect 
the physiology of all types of cells in complex ways, including the cell cycle, morphological 
structure, metabolism, proliferation, differentiation, autophagy, and apoptosis. Thus, hypoxia is 
a potential environmental factor associated with cell death (5). Reducing oxygen levels in the 
blood can be harmful to the CNS and lead to neurological diseases with significant medical and 
socioeconomic implications (6–9).
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Human exposure to hypoxia or ischaemia in extreme 
environments such as high altitudes, deep diving, closed operations, 
or sudden illness can damage nerve cells and cause irreversible 
damage to CNS function. Altitude hypoxic encephalopathy is a 
plateau-specific disease characterized by increased intracranial 
pressure due to hypoxia, altitude cerebral oedema, and 
neuropsychiatric abnormalities. The root cause is direct hypoxic 
injury to brain tissue and dysfunction of brain cell energy metabolism, 
which reduces the function of the sodium pump on the membrane. 
The plateau hypoxic environment has a significant impact on the 
brain. High-altitude encephalopathy can be divided into acute altitude 
hypoxic encephalopathy and chronic hypoxic encephalopathy based 
on the onset time and degree of development. Additionally, the 
pathological effects of hypoxia on the central nervous system can 
be divided into multiple stages according to the length of time, such 
as acute hypoxia during the first 14 days, subacute hypoxia for 
3–11 weeks, early chronic hypoxia for 3–6 months, and chronic 
hypoxia for more than 6 months (10, 11).

In recent years, increased exosome release has been detected in 
various experimental models of hypoxia. Exosomes are extensively 
engaged in the mechanisms of hypoxic injury and adaptation by 
providing hypoxia-specific information (12). However, the 
mechanisms by which hypoxia affects the secretion, composition, and 
function of exosomes in the CNS remain unclear.

This paper presents the mechanisms of high-altitude 
encephalopathy and summarizes the progress on the influence of 
hypoxic exosomes and the mechanisms of exosome release in the CNS 
under hypoxic conditions.

2. The impact of hypoxia on the CNS

In traumatic and nontraumatic conditions, the physiology of all 
types of cells is intricately affected by hypoxia at all stages of CNS 
development. The pathological effects of hypoxia on the CNS are 
acute, subacute, and chronic based on the duration of hypoxia.

Microglial cells play an important role in defending against 
microbial attacks and are involved in synaptic germination, 
neurogenesis, and brain homeostasis (13, 14). Astrocytes play an 
essential role in maintaining the integrity of the blood–brain barrier 
and the neurologic environment. These cells also play important 
homeostatic roles in the central nervous system through neurogenesis, 
neuroprotection, immune regulation, and antioxidant effects (15).

After hypoxia, the neuroplasticity and connectivity of the CNS 
can be easily impaired. Long-term exposure to hypoxia is associated 
with neuropsychiatric symptoms and an increased risk of depression 
(16). Demyelination, which is a vital pathological change in the CNS 
that can occur in depression, has been associated with the failure of 
oligodendrocyte progenitor proliferation and differentiation and 
increased oligodendrocyte apoptosis (17). However, recent research 
has demonstrated that inhibition of the RhoA/ROCK pathway during 
the early stages of hypoxia exhibits potential for enhancing 
oligodendrocyte progenitor cells (OPCs) proliferation and 
differentiation while reducing cell apoptosis (16). These findings 
suggest that targeting this pathway in early hypoxic conditions could 
augment the efficacy of antidepressants, ameliorate demyelination, 
and improve depressive-like behavior in chronic hypoxia. The white 
matter tracts of the brain, which consist of axons and myelin 

oligodendrocytes, can be damaged by hypoxia, resulting in neonatal 
cerebral palsy and delayed hypoxic leukoencephalopathy (DPHL) in 
adults (18).

After cerebral ischaemia, cerebral lactate concentrations increase 
and promote the formation of reactive astrocytes, which are a vital 
component of the neuroinflammatory response and functional 
recovery. Lactic acid has been shown to play an important anti-
inflammatory role by inhibiting TNFα expression through the 
stabilization of NDRG2 under oxygen–glucose deprivation (OGD) 
conditions, which is conducive to nerve function recovery (19).

2.1. Characteristics and functions of 
exosomes

Extracellular vesicles (EVs), which are lipid bilayer-encapsulated 
vesicles secreted by almost all cells in living organisms, include 
exosomes that originate from the endosome system and have a 
diameter of 30-140 nm (20, 21). Early endosomes are generated 
through the reciprocal fusion of primary endocytic vesicles, which 
arise from the internalization of plasma membrane constituents. 
Subsequently, early endosomes mature into multivesicular bodies that 
harbor intraluminal vesicles. Upon fusion with the plasma membrane, 
these internal vesicles are released as exosomes into the extracellular 
milieu. Exosomes contain specific subsets of proteins from the plasma 
membrane, endosomes, and cytoplasm, as well as lipids, DNA, mRNA, 
miRNA (microRNA), and lncRNA (long noncoding RNA) (22). 
Exosome cargo molecules exhibit significant variability across 
different cell types and pathophysiological conditions.

The heterogeneity and biological function of exosomes is 
associated with the type of cell from which they were derived and the 
state of the cell at the time of exosome release. Initially, thought to 
remove waste from cells, exosomes have been shown to play important 
roles in various biological processes such as intercellular signalling, 
apoptosis, antigen presentation, coagulation, homeostasis, 
inflammation, and angiogenesis. These roles are mediated their ability 
to transport proteins, lipids, ribonucleic acid, and deoxypentose-
nucleic acid, which influence physiological and pathological processes 
in a variety of diseases including neurodegenerative diseases, tumours, 
autoimmune diseases, and infections (23).

2.2. Exosomes of the central nervous 
system under hypoxic conditions

Under physiological and pathological conditions, exosomes can 
be delivered by most central nervous system (CNS) cells, such as 
neurons and glial cells in the brain, in a manner that relies on 
intracellular Ca2+ concentrations. These exosomes have been shown 
to have positive effects on neuroprotection, regeneration, 
development, and synaptic plasticity (24).

Currently, the purification of CNS-derived exosomes from 
peripheral blood has been widely used in the study of adult 
neurological diseases. However, their application in neonatal 
neurological diseases, particularly in the context of hypoxic-ischaemic 
encephalopathy (HIE), warrants further investigation. The cargo of 
CNS exosomes has the potential to serve as a biomarker for the 
severity of brain injury and response to therapeutic hypothermia, as 
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well as for quantifying pharmacological responses to neuroactive 
therapeutic agents or adjuncts (25).

Exosomes mediate intercellular communication (see Figure 1) 
through surface interactions and intercellular miRNA shuttle 
mechanisms (26). Thus, exosomes not only reflect the mechanisms 
underlying pathological changes in the CNS but also provide a novel 
therapeutic agent for neuroprotection.

Oxygen-glucose deprivation (OGD) a widely accepted in vitro 
model of stroke that simulates apoptosis and necrosis caused by 
hypoxia (27). Wang et al. showed that oxygen-glucose deprivation 
(OGD) induced XIST expression, suppressed miR-455-3p expression 
and promoted TIPARP mRNA and protein expression in neurons 
(28). XIST affected cell proliferation and apoptosis through the 
miR-455-3p/TIPARP axis in OGD-induced neuronal cells. Li et al. 

FIGURE 1

Exosomes contain proteins, lipids, DNA, mRNA, miRNA, and lncRNA. 2. Exosomes could be delivered by CNS cells in a manner that relies on 
intracellular Ca2+ concentrations. 3. Exosomes derived from OGD-treated cortical neurons reduce the expression of chemokine ligand 1 and 
inflammatory cytokines in astrocytes by delivering miR-181c-3p, thereby blocking the activation of inflammatory bodies in the CNS. 4. The exosome-
mediated shuttling of miR-92b-3p from pretreated astrocytes to neurons. 5. MiRNA-133b in exosomes derived from cortical neurons and astrocytes 
inhibit the expression of growth factors and Ras homologous gene family members A. 6. Human-derived exosomes significantly increased the 
expression of HIF-1α and VEGF in the cerebral cortex of newborn mice, facilitating tube formation and the migration of HUVECs in vitro OGD model.
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showed that human-derived exosomes significantly increased the 
expression of HIF-1α and VEGF in the cerebral cortex of newborn 
mice, facilitating tube formation and the migration of HUVECs in an 
in  vitro OGD model and alleviating hypoxic encephalopathy in 
newborn mice (29).

Exosomes derived from OGD-treated cortical neurons reduce the 
expression of chemokine ligand 1 and inflammatory cytokines in 
astrocytes by delivering miR-181c-3p, thereby blocking the activation 
of inflammatory bodies in the CNS (30). Furthermore, exosomes 
derived from OGD-treated astrocytes can be absorbed by neurons and 
attenuate OGD-induced neuronal death and apoptosis. This process 
involves the exosome-mediated shuttling of miR-92b-3p from 
pretreated astrocytes to neurons (31).

The investigators discovered that M1 microglia subtype actively 
facilitate the astrocyte-mediated deposition of chondroitin sulfate 
proteoglycan through the TGFβ1/SOX9 pathway, thereby impeding 
axonal regeneration and functional recovery. Interestingly, previous 
studies have demonstrated that virus-induced expression of miR133b 
can effectively diminish the accumulation of chondroitin sulfate 
proteoglycan to enhance axonal regeneration following injury (32, 33). 
The findings of other researchers have demonstrated that miR-379-5p 
possesses the ability to impede astrocyte expression, reduce CSPG 
expression, and suppress oxidative stress and apoptosis, ultimately 
promoting the recovery of motor function in rat spinal cord injury 
(SCI) (34).

Although reactive astrocytes tend to have detrimental effects on 
neighbouring cells under pathological conditions, recent research 
suggests that they may also play a protective role or promote brain 
remodelling following brain injury (35). Connective tissue growth 
factors and Ras homologous gene family member A can damage nerve 
cells under hypoxic/ischaemic conditions. However, the high 
expression of miRNA-133b in exosomes derived from cortical neurons 
and astrocytes has been shown to have a positive inhibitory effect on 
these factors, thereby alleviating the degree of nerve damage caused 
by hypoxia/ischaemia (33).

MiRNA-126 and miRNA-296 can be  detected in exosomes 
derived from endothelial progenitor cells. These miRNAs upregulate 

angiogenic factors and promote the differentiation and proliferation 
of endothelial cells (36). Other studies have shown that human 
microvascular endothelial cells and exosomes released from these cells 
contain abundant delta-like ligand 4 (DLL4), which binds to and 
stimulates the Notch3 receptor. This interaction effectively maintains 
the stability of cerebrovascular structures and regulates vascular 
regeneration mediated (see Figure  2) by the vascular endothelial 
growth factor (VEGF) pathway (37). Thus, exosomes promote 
angiogenesis by mediating the VEGF signalling pathway and maintain 
the stability of vascular structures to restore blood flow and oxygen 
supply, effectively improving nerve damage caused by hypoxia/
ischaemia (See Table 1).

In vitro experiments and animal models have demonstrated that 
exosomes can play a vital role in neuroprotection, angiogenesis, 
neurogenesis, and the inhibition of inflammation and apoptosis 
following ischaemic stroke. For example, it has been shown that 
miR-124  in exosomes derived from M2-type microglial cells can 
be  scavenged by neurons and exert a neuroprotective effect by 
regulating the downstream target ubiquitin-specific peptidase 14 
(USP14) to inhibit nerve cell apoptosis (47). Jiang et al. reported that 
exosomes secreted by adipose-derived stem cells (ADSCs) play a vital 
role in the treatment of ischaemic injury. MiR-30d-5p in exosomes 
derived from ADSCs significantly reduced the area of brain infarction 
by inhibiting autophagy and promoting M2 microglia/macrophage 
polarization (48). Other researchers have demonstrated that 
miR-22-3p within extracellular vesicles derived from adipose 
mesenchymal stem cells could alleviate ischaemic injury by inhibiting 
the lysine-specific demethylase 6B/bone morphogenetic protein 2/
Bcl-2 modifying factor (KDM6B/BMP2/BMF) pathway (see Figure 3) 
reducing the volume of cerebral infarction and promoting the 
recovery of neural mechanisms (49). Exosomes have also been shown 
to reduce neuronal death and improve neural deficits by regulating 
hypoxia-induced autophagy (50).

These findings reveal the role of miRNAs in exosomes in the 
treatment of ischaemic brain injury and suggest that exosomes are 
important intercellular mediators that protect against hypoxic/
ischaemic nerve injury and postinjury repair.

FIGURE 2

These miRNAs upregulate angiogenic factors and promote the differentiation and proliferation of endothelial cells. 2. Ligand 4 (DLL4) binds to and 
stimulates the Notch3 receptor. This interaction effectively maintains the stability of cerebrovascular structures and regulates vascular regeneration 
mediated by the vascular endothelial growth factor (VEGF) pathway.
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2.3. Association of exosomes with 
hypoxia-inducible factor-1α

The major regulator of the cellular response to hypoxia is hypoxia-
inducible factor-1 (HIF-1), which is a protein that controls the 
expression of more than 700 target genes involved in adaptive and 
pathological processes (51, 52). Genes involved in angiogenesis and 
energy metabolism are major targets of HIF-1. Specifically, HIF-1 
regulates the expression of genes encoding erythropoietin (EPO) and 
vascular endothelial growth factor (VEGF), as well as genes involved 
in glucose transport and glycolysis, such as glucose transporter 1 
(GLUT1), pyruvate dehydrogenase kinase 1 (PDK1), and lactate 
dehydrogenase A (LDHA) (53). HIF plays a certain role in the 
physiological processes of neurogenesis, nerve cell differentiation and 
neuronal apoptosis in the central nervous system.

Hypoxia promotes the expression and nuclear translocation of 
hypoxia-inducible factor 1α (HIF-1α) and hypoxia-inducible factor 

2α (HIF-2α) in cells. This leads increases the protein levels of glucose 
transporter and epidermal growth factor receptor, which can promote 
plasma membrane remodelling through changes in receptor 
expression. Increased receptor expression can directly promote 
receptor activation and internalization, thereby inducing endocytosis. 
Ultimately, hypoxia-induced exosome release depends on HIF-1α. 
However, the regulation of exosome function by HIF-1α is a new area 
of research. The direct mechanisms by which HIF-1α regulates 
exosome formation, content selection, transport, and release have not 
yet been determined. Exosomes derived from various cell types have 
been shown to play a protective and therapeutic roles in different types 
of hypoxic diseases by reducing oxygen stress, inhibiting fibrosis, 
promoting angiogenesis, and inhibiting apoptosis. For example, 
exosomes secreted by mesenchymal stem cells overexpressing HIF-1α 
have been shown to enhance angiogenesis and vascular permeability 
under hypoxic conditions (54). Exosomes derived from umbilical cord 
mesenchymal stem cells have also been shown to enhance angiogenesis 

TABLE 1 Conceptual skeleton structure of the article’s organization approach.

Exosomes in the repair of hypoxic/ischemic injury in CNS

(Li, 2022) (38) Microenvironmental factors of exosomes derived from hypoxic preconditioning human umbilical vein endothelial cells stimulate angiogenesis of 

MSC

(Liang, 2022) (39) Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury

(Zhang, 2022) (40) MiR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury

(Liu, 2020) (41) Human neural stem cell derived extracellular vesicles have therapeutic effect on neuronal hypoxia-reperfusion injured neurons in vitro

(Jiang, 2018) (42) Exosomes protect neurons against hypoxia-reperfusion -induced injuries by suppressing miR-21-3p

(Luo, 2022) (43)
Exosomes isolated from neural stem cells prevent cerebral injury by transferring miR-150-3p which promotes neurons proliferation by inhibiting 

CASP2 signaling pathway

(Huang, 2022) (44) EPC-derived exosomes may alleviate ischemic injury by inhibiting apoptosis and promoting angiogenesis

(Xin, 2021) (45) The miR-17-92 cluster enriched mesenchymal stromal cells exosomes enhanced neuro-functional recovery

(Hou, 2023) (46) NSC-derived exosomal miR-128-3p represents a potential therapeutic target for ischemic stroke

FIGURE 3

MiR-124 in exosomes derived from M2-type microglial cells could be scavenged by neurons and exert a neuroprotective effect by regulating the 
downstream target ubiquitin-specific peptidase 14 (USP14) to inhibit nerve cell apoptosis. 2. MiR-30d-5p in exosomes derived from ADSCs significantly 
reduced the area of brain infarction by inhibiting autophagy and promoting M2 microglia/macrophage polarization. 3. MiR-22-3p within extracellular 
vesicles derived from adipose mesenchymal stem cells could alleviate ischaemic injury by inhibiting the lysine-specific demethylase 6B/bone 
morphogenetic protein 2/Bcl-2 modifying factor (KDM6B/BMP2/BMF) pathway reducing the volume of cerebral infarction and promoting the recovery 
of neural mechanisms.
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(55). The mammalian target of rapamycin (mTOR) signalling pathway 
has been confirmed to be involved in a variety of cellular processes 
(56), including cell growth, differentiation, development, and survival. 
Similarly, mTOR is a pivotal signalling pathway that protects against 
cerebral ischaemia–reperfusion injury (57, 58). However, Zhao et al. 
showed that hypoxia-induced glioma-derived exosomal miRNA-
199a-3p inhibited these pathways, leading to the expansion of 
ischaemic injury in peritumoral neurons (59). The researchers further 
determined that the activation of HIF-1 α plays an important role in 
the mechanisms.

3. Exosomes in the repair of hypoxic/
ischaemic injury in the CNS

Neuronal death is the primary cause of neurological deficits 
following spinal cord injury (SCI). Revascularization therapy is a key 
component of tissue engineering approaches to spinal cord repair. 
Mesenchymal stem cells (MSCs), which are pluripotent stem cells, 
have been shown to regulate diseased microenvironments by 
responding to microenvironmental signals. For example, the use of 
exosomes derived from hypoxic preconditioned human umbilical vein 
endothelial cells to stimulate the angiogenic potential of MSCs has 
been reported to be  effective in promoting nerve tissue repair 
following spinal cord transection in rats through their proangiogenic 
and anti-inflammatory effects (38). These results suggest an effective 
angiogenic strategy for nerve tissue repair following SCI and may 
provide inspiration for stem cell and exosome-based therapies. 
Additionally, it has been found that miR-499a-5p in exosomes secreted 
by adipose tissue-derived stromal cells under hypoxic conditions 
could regulate the c-Jun N-terminal kinase 3 (JNK3)/c-Jun apoptosis 
signalling pathway to induce neuronal apoptosis following SCI by 
targeting JNK3 (39). Studies have shown that miR-101a-3p mimics 
can reduce apoptosis and relieve inflammation induced by spinal cord 
ischaemia/reperfusion injury by inhibiting the MYCN and p53 
signalling pathways (40).

The brain tends to be damaged by ischaemia/hypoxia, which is 
closely related to stroke, hypoxic-ischaemic encephalopathy and other 
brain diseases. Currently, there are few effective treatments for cerebral 
ischaemia and hypoxia, highlighting the urgent need for the 
development of novel therapies. Neural stem cells are progenitor cells 
with the potential for division and self-renewal in the CNS (60). Some 
researchers have shown that extracellular vesicles derived from human 
neural stem cells have therapeutic effects on neuronal hypoxia 
reperfusion (H/R) injury in vitro. The mechanism mainly involves 
enhancing the nuclear transfer of Nrf2 and responding to oxidative 
stress to promote neuronal survival and inhibit neuronal apoptosis 
after H/R injury (41). Studies have shown that miR-21-3p plays an 
essential role in H/R-induced apoptosis in nerve cells, while exosomes 
secreted by HUVECs stimulated with H/R can alleviate H/R damage 
to neurons by inhibiting the expression of miR-21-3p (42). Neurons are 
stimulated to proliferate by miR-150-3p delivered by neural stem cell-
derived exosomes (43). The main mechanism involves the suppression 
of the CASP2 signalling pathway by the transfer of miR-150-3p.

The results from a recent study demonstrated that exosomes 
derived from endothelial progenitor cells (EPCs) could alleviate 
ischaemic injury by promoting angiogenesis and inhibiting apoptosis 

in hypoxic-ischaemic tissues (44). Another study suggested that the 
capacity of neurofunctional recovery after stroke in the brain could 
be enhanced by the enrichment of miR-17-92 clusters in exosomes 
from pluripotent mesenchymal stromal cells. This may be ascribed to 
the enhancement of axonal extension and myelination, which may 
be mediated in part by stimulation of the phosphoinositide 3-kinase 
(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway 
induced by the downregulation of phosphatase and tensin homologue 
(PTEN) (45).

The latest research has shown that fibrinogen deposition inhibiting 
remyelination following hypoxic-ischaemic injury. However, exosomal 
miR-128-3p derived from neural stem cells (NSCs) has been shown 
to facilitate the differentiation of oligodendrocyte progenitor cells into 
oligodendrocytes by suppressing bone morphogenetic protein 
signalling, decreasing infarct volume, ameliorating neurological 
function following middle cerebral artery occlusion, and suggesting 
that miR-128-3p in NSC-derived exosomes is a potential therapeutic 
target for ischaemic stroke (46).

4. Discussion and conclusion

In this review, we have summarized the role and mechanism of 
exosomes in hypoxic brain injury, including fundamental knowledge 
on exosomes as well as relevant information regarding their 
involvement, diagnostic value, and therapeutic potential in cerebral 
hypoxic diseases. Hypoxia can modulate exosome biogenesis, cargo 
composition, trafficking and secretion in a context-dependent manner 
that is influenced by cell lineage, hypoxic severity and duration. 
Exosomes play vital roles in the communication between nerve cells 
through the proteins and miRNAs they carry. Hypoxia, which is a 
prominent feature of nervous system diseases, promotes exosome 
release and affects the composition and content of exosomes through 
a hypoxia-inducible factor (HIF)-dependent regulatory mechanism. 
Exosomes released by cells under hypoxic conditions can target cells 
near their parent cells or distant from their release sites, providing 
hypoxia-specific information and participating in the 
pathophysiological processes of hypoxia-related diseases. Exosomes 
released by neurons, neural stem cells, and astrocytes under hypoxic 
conditions have been shown to have significant protective effects on 
the nervous system, providing a new direction for nonpharmacological 
neuroprotection. Although hypoxia can significantly affect the release, 
composition, and function of exosomes, the changes in the release 
mechanism of exosomes under hypoxic stress and the mechanisms of 
targeted regulation are not yet fully understood. In this paper, we 
primarily explore the interplay between hypoxia and miRNA in 
exosomes, while the proteomics of exosomes remains incompletely 
understood. Furthermore, there is a lack of research on the correlation 
between HIF-1α and exosomes, including the direct or indirect 
mechanisms by which HIF-1α regulates exosome formation, content 
composition, transport, and release. Currently, this paper focuses on 
elucidating the relationship between ischemia/hypoxia and stroke-
induced exosomes. We have limited understanding of the 
pathophysiological mechanisms underlying diseases such as high-
altitude encephalopathy, chronic degenerative disorders, and tumors 
as well as the clinical implementation of exosomes for diagnosing and 
treating these ailments. Therefore, elucidating the signalling pathways 
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related to exosome release under hypoxic conditions may contribute 
to the early detection and treatment of hypoxic diseases in the future 
and provide new insights into the pathophysiology, diagnosis, and 
treatment of brain hypoxic diseases.
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