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In this study, the technique associated with the capturing involuntary changes in

voice elements caused by diseases is applied to diagnose them and a voice index

is proposed to discriminate mild cognitive impairments. The participants in this

study included 399 elderly people aged 65 years or older living in Matsumoto City,

Nagano Prefecture, Japan. The participantswere categorized into healthy andmild

cognitive impairment groups based on clinical evaluation. It was hypothesized

that as dementia progressed, task performance would become more challenging,

and the e�ects on vocal cords and prosody would change significantly. In

the study, voice samples of the participants were recorded while they were

engaged in mental calculational tasks and during the reading of the results of

the calculations written on paper. The change in prosody during the calculation

from that during reading was expressed based on the di�erence in the acoustics.

Principal component analysis was used to aggregate groups of voice features with

similar characteristics of feature di�erences into several principal components.

These principal components were combined with logistic regression analysis to

propose a voice index to discriminate di�erent mild cognitive impairment types.

Discrimination accuracies of 90% and 65% were obtained for discriminations

using the proposed index on the training and verification data (obtained from a

population di�erent from the training data), respectively. Therefore, it is suggested

that the proposed index may be utilized as a means for discriminating mild

cognitive impairments.

KEYWORDS

voice, prosody, calculational task, logistic regression analysis, mild cognitive impairment

discrimination

1. Introduction

The number of people suffering from dementia continues to increase worldwide.

According to the World Alzheimer Report 2015 (1) reported by Alzheimer’s Disease

International (ADI), the number of dementia patients worldwide in 2015 was estimated to

be 46.8 million. In addition, ADI conducted a meta-analysis using dementia epidemiology

surveys in countries around the world from 1980 to 2004 (2). Based on these surveys, the

population of dementia patients is expected to reach 80 million by 2040.

In Japan, the number of dementia patients is rapidly increasing as the country transitions

into a super-aging society. When mild cognitive impairments (MCIs) are also accounted,

which can be considered as a predementia stage, one in five elderly people aged 65 years

and older is expected to develop dementia by 2025 (3). The cost of managing dementia

includes medical expenses and nursing and informal care that will affect the economy (4).

To address this challenge, the early detection and preventive treatment of the disease have
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become increasingly essential. It is difficult to distinguish dementia

from other diseases, such as depression in its early stages, and

a judgment can be made based on multiple tests. Therefore, a

simple initial screening method is required to diagnose dementia.

Common cognitive ability tests in clinical practice include the

mini-mental state examination (MMSE) (5), Montreal cognitive

assessment (MoCA) (6), and Mini-Cog (7). However, these tests

are not easy to perform, and physicians have to be involved.

In addition, diagnostic imaging methods, such as computed

tomography (CT) (8), magnetic resonance imaging (MRI) (9), and

positron emission tomography (PET) (10) can be used, but these

have drawbacks, such as high cost and invasiveness.

We have been studying techniques to diagnose depression from

voice (11–13). Analysis using voice samples offers the advantages

of noninvasiveness and easy and remote performances without the

need for special, dedicated equipment. It has been hypothesized

that dementia patients also have different vocal prosodies when

compared with healthy subjects; based on this hypothesis, we

have attempted to estimate cognitive impairments from voice

samples (14). In this study, the MMSE score was estimated using

multiple regression analysis from the voice features of patients

diagnosed with dementia without considering the type of dementia.

The results indicated that the MMSE score could be estimated

accurately for severely demented patients. However, sufficient

accuracy was not obtained for the MCI patient and healthy

volunteer groups. In addition, the data used for the analysis does

not contain a sufficient number of samples, and the accuracy of the

unknown data was unknown. Therefore, the accuracy of estimation

for theMCI group and the verification of accuracy for the unknown

data are limitations of this method. MCI is an early stage of

dementia, and its detection leads to early detection of dementia and

is of high significance. Therefore, the purpose of this study is to

propose a voice index that can accurately discriminate MCI from

involuntary changes in voice features.

The field of voice analysis has become increasingly popular

during the last decade owing to the rapid increase in research

studies that have used it to detect neurodegenerative diseases.

Martínez-Nicolás et al. conducted a systematic review of the

research studies pursued over the past decade to detect Alzheimer’s

disease (AD) and MCI using voice features (15). They identified

35 studies whose quality could be guaranteed considering their

selection criteria; most of the diagnostic studies had a diagnostic

accuracy of ≥80% for MCI. They excluded studies in languages

other than English and Spanish; however, it can be inferred that the

concept of MCI detection based on involuntary changes in voice

features is still in its infancy.

Toth et al. (16) imposed three types of oral tasks on healthy

and MCI subjects, calculated the features related to the number

of phonemes and voice/silence intervals from the voice samples

recorded in each task, and discriminated between the two groups

of subjects using several classical machine-learning methods. The

accuracy of discrimination for the training data was in the range

of 60%–70%.

König et al. (17) imposed four types of oral tasks on healthy

subjects and MCI and AD patients, calculated task-dependent

voice features from the voice samples recorded in each task, and

used a support vector machine (SVM) to create classifiers from

these voice features to discriminate between the two groups. The

feature data were divided into training and verification data based

on random sampling, and the accuracy of discrimination of the

verification data was evaluated based on the classifier obtained

from the training data. Therefore, MCI was discriminated with a

sensitivity of approximately 80%.

Shimoda et al. (18) calculated voice features related to the

prosody and silence intervals from the voice samples of healthy

subjects and AD patients recorded over the telephone (including

MCI to mild/moderate AD patients), and classical machine

learning and statistical methods were used to discriminate between

the two groups. The performance of the obtained classifier was

evaluated based on the verification data, which were different

from the training data. The training and verification data were

obtained based on random sampling of the original voice dataset.

Multiple telephonic voice samples were recorded per subject, and

an accuracy of approximately 90% was obtained for each method

in voice-based evaluations. In addition, subject-based evaluations

yielded accuracies which were approximately equal to 100% for

each method.

In other studies, multiple types of tasks were imposed on the

subjects, and the burden on the subjects was heavy (16, 17). In

addition, the voice features representing changes in the prosody

were not used in the classifier training (16, 17). The training and

verification data were obtained from the same population, and the

classification performance for data from unknown populations was

undetermined (17, 18). Features related to the voice and silence

lengths were used, and the number of subjects was insufficient (16–

18).

In recent years, an increasing number of studies investigated

the possibility that dual-tasking (that is, doing two things

simultaneously) contributes to MCI. Several studies have

investigated whether cognitive decline influences walking during

the performance of specific tasks. Additionally, Bahureksa

et al. (19) conducted a systematic review of studies that illustrated

an association between cognitive function and walking. This study

suggested that it becomes more difficult to perform certain tasks

as cognitive function declines. We correlated this phenomenon

with voice features and hypothesized that as dementia progresses,

task performance would have a greater impact on vocal cords and

considerably change prosody.

Considering these perspectives, in our study, we recorded

the voice samples of 399 elderly people, including healthy and

MCI subjects, while they performed calculational tasks and read

out the calculated results. We then calculated the voice features

related to changes in prosody from these voice samples and

proposed a discrimination index to discriminate between the

two groups using statistical methods. The evaluation of the

accuracy of the proposed discrimination index was conducted on

a dataset obtained from a population that was different from the

training data.

2. Method

2.1. Ethical considerations

This study was conducted with the approval of the research

ethics committee of theUniversity of Tokyo andMatsumotoHealth

Lab (University of Tokyo No. KE21-20).
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2.2. Subjects

The subjects chosen for the study were elderly people aged

65 years or older recruited as members of the Matsumoto Health

Lab, which is an organization that supports health promotion

and was established with the support of Matsumoto City, Nagano

Prefecture, Japan. The organization invited members to participate

in the study, held an information session for interested members,

and asked for their consent for participation. Members who agreed

to participate in the study underwent clinical evaluations and voice

recordings at a designated venue on a subsequent date.

The research data were collected once each year from 2020

to 2022. Different participants were recruited each year. For the

convenience of the participants, multiple locations were set up each

year for the data collection. Each participant went to a venue that

was easily accessible to them and cooperated in the collection of the

data. In 2020 and 2022, the data were collected at the same three

venues. In 2021, research data were collected at three venues in two

different locations.

2.3. Clinical evaluations

The subjects were clinically evaluated based on the MMSE.

Each subject was classified into one of the three categories: healthy,

MCI, and cognitive disease (CD), based on their MMSE scores.

The cutoffs of the MMSE scores were the values commonly used

in clinical practice. That is, a subject with an MMSE score of ≥28

was judged to be healthy, a subject with scores of≥24 and≤27 was

judged to be an MCI patient, and a subject with a score of ≤23 was

judged to be a CD patient. In this study, subjects classified as CD

patients were also treated as MCI patients.

2.4. Voice recordings

At each venue, the voice samples were recorded in rooms with

relatively good soundproofing. Subjects were assigned a calculation

task in which they continued to subtract 7 from 100 up to 65 in

their heads, and they were asked to vocalize the answer, which was

then recorded. Even if they made a mistake in the calculation, the

subjects were asked to continue the calculation until they uttered

five answers, regardless of whether they were correct or not. Some

subjects gave up on the calculation partway through or had to start

over; therefore, the number of utterances was sometimes less than

or more than five. The reason for choosing this calculation task

was that the MMSE also involves the same task. In addition to the

calculation of voice samples, voice samples during the reading of

the numerical sequence 93, 86, 79, 72, and 65 (the results of the

calculation that subtracts 7 from 100 up to 65) were also recorded;

the subjects were asked to read the sequence aloud from a printed

paper. In each case, the voice recording was preceded by the reading

of the numerical sequence. The numerical sequence was read aloud

twice. The calculation voice and reading voice samples of the

numerical sequence were recorded in separate rooms. A portable

recorder (R-26, Roland, Japan) and pin microphone (ME52W,

Olympus, Japan) were used for the recordings. The recording

environment was 24-bit at 96 kHz.

2.5. Voice analysis

The voice samples were volume-normalized to account for

differences in volume in the recording environment. As the

calculation voice samples often included utterances, such as “uhm,”

during the vocalization of the answer, only the utterance part of the

answer was extracted from the calculation voice samples to exclude

these noise types from the analysis. Therefore, the calculation

voice samples were divided based on the intervals between the

utterances of the responses. The reading voice samples were used in

their entirety without being divided. Thereafter, the voice features

related to the prosody were calculated from each voice sample

recording. We used openSMILE (20) to calculate the voice features.

openSMILE is a platform that comprehensively calculates voice

features. The platform provides a set of scripts that automatically

calculates the set of various features from speech. The following set

of scripts was used in this study:

• Large openSMILE emotion feature set

• INTERSPEECH 2009 Emotion Challenge feature set

• INTERSPEECH 2010 Paralinguistic Challenge feature set

• INTERSPEECH 2011 Speaker State Challenge feature set

• INTERSPEECH 2012 Speaker Trait Challenge feature set

• INTERSPEECH 2013 ComParE Challenge feature set

This set was used to calculate the low-order features (fast Fourier

transform (FFT), Mel-frequency cepstral coefficient (MFCC),

voiced sound probability, zero-crossing rate, energy, fundamental

frequency F0, and others) from a voice recording. The low-

order features were calculated for each frame; thus, a time series

was obtained. Thereafter, the moving average of the time series

of the low-order features was calculated, followed by the first

(difference) and second derivatives. Finally, high-order features

(mean, maximum, minimum, centroid, quartile, variance, kurtosis,

skewness, and others) were calculated as statistical quantities from

each of the three series processed in time.

Each calculation voice sample was divided into several

utterance intervals; therefore, the features were obtained for each

utterance interval and averaged. There were two reading voice

samples for each subject; therefore, the features for each were

obtained and averaged. We then considered the reading of the

numerical sequence as a base. Based on the extent to which the

vocalization changed with respect to the base while performing

the mental arithmetic calculations, we calculated the difference in

value (amount of change from the base; henceforth, referred to

as the “feature difference”) between the numerical sequence and

calculated voice features. Thereafter, we used the data obtained

from the subjects in 2020 as the training data to apply a

learning algorithm based on statistical techniques to the calculated

feature differences.

When the number of explanatory variables is too large,

overlearning is expected to occur. Therefore, we selected the

features that were effective for discrimination in advance. First,

the features in which there were significant differences between

the calculation and reading voice states were selected using a

generalized linear mixed model (21). This model used data that

were repeatedly measured under multiple conditions and analyzed

the differences caused by the conditions considering random effects

between the subjects. To maximize the benefits from the iterative
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data, in this step, the features obtained from the calculation and

reading voice samples were not averaged for each subject; instead,

the features for each utterance interval of calculation voice samples

and for each reading voice sample were used in the analysis.

Next, we selected features whose differences correlated with the

MMSE score.

Finally, the discriminative performance of the feature difference

between the healthy andMCI groups for each feature was calculated

based on the area under the receiver operating characteristic (ROC)

curve (AUC), and the features for the number of subjects from

the training data were selected in the descending AUC order.

Some of the selected features were essentially similar; therefore,

principal component analysis was applied to aggregate features

with similar characteristics of feature differences into several

principal components. The features were selected based on the

number of subjects when features were selected based on AUC

because if the number of features is greater than the number of

subjects, the covariance matrix of the feature difference will drop

in rank, and principal component analysis will not be applied.

Thereafter, regularized logistic regression analysis (22) was applied

using the obtained principal components as explanatory variables.

In this study, regularization was conducted using the L1

norm (lasso estimation). The optimal value of the regularization

parameter was determined through cross-validation of the training

data. During cross-validation, the data were divided randomly;

therefore, the regularization parameter will have a different value

each time the algorithm is executed. Therefore, the learning result

will also be different each time the algorithm is executed. Therefore,

to stabilize the learning result, the learning algorithm was executed

multiple times, and the results obtained in each trial were averaged

to obtain the final learning result. The learning result was the

regression coefficient of the principal component and the logistic

function value with the linear sum of the principal component

and the regression coefficient as the variable was used as the MCI

discrimination index (MCIDI). The discrimination threshold used

to separate the healthy and MCI groups was set to the value that

minimized the balanced error rate (BER), which is the harmonic

mean of the false positive and negative rates (23). The evaluation of

the accuracy of the MCIDI was conducted based on the sensitivity,

specificity, positive predictive value, negative predictive value, F-

measure, and accuracy of the training data, AUC, and cross-

validation. We also evaluated the versatility of the MCIDI using

the data obtained from the subjects in 2021 and 2022 as the

verification data.

Statistical analysis was conducted with the free-source software

R (version 4.1.0, an official part of the Free Software Foundation’s

GNU project) (24).

3. Results

3.1. Subjects

The number of members who were recruited from the

Matsumoto Health Lab and consented to participate in the study

as subjects was 198 (150 healthy, 47 MCI, 1 CD) in 2020, 92 (76

healthy, 15MCI, 1 CD) in 2021, and 109 (90 healthy, 18MCI, 1 CD)

TABLE 1 Details of subjects in from 2020 to 2022.

Variable Venue A
Mean

(Standard
deviation (SD))

Venue B
Mean
(SD)

Venue C
Mean
(SD)

Data in 2020

Subjects, n 75 72 51

Age 74.07 (5.88) 72.92 (5.08) 70.96 (4.12)

Sex (male), n% 24 (32%) 31 (43%) 14 (27%)

Grip (kg) 29.39 (8.47) 32.46 (9.42) 30.76 (8.37)

Healthy group, n 59 55 36

Sex (male), n% 17 (29%) 27 (49%) 9 (25%)

MMSE score 29.69 (0.56) 29.58 (0.66) 29.67 (0.59)

MCI group, n 15 17 15

Sex (male), n% 6 (40%) 4 (24%) 5 (33%)

MMSE score 26.13 (0.83) 25.71 (0.77) 26.20 (0.86)

CD group, n 1 0 0

Sex (male), n% 1 (100%) - -

MMSE score 20 (0) - -

Data in 2021

Subjects, n 55 15 22

Age 74.11 (5.66) 73.80 (5.83) 72.68 (4.24)

Sex (male), n% 25 (45%) 6 (40%) 9 (41%)

Grip (kg) 29.61 (8.83) 28.09 (9.01) 30.93 (7.78)

Height (cm) 159.74 (8.16) 156.65 (9.14) 160.02 (9.40)

Weight (kg) 59.14 (10.96) 57.68 (9.95) 60.32 (9.90)

Systolic blood

pressure (mmHg)

146.65 (18.57) 142.4 (19.09) 143.95 (12.23)

Diastolic blood

pressure (mmHg)

80.45 (9.91) 69.33 (9.61) 80.41 (11.25)

Healthy group, n 43 12 21

Sex (male), n% 18 (42%) 5 (42%) 9 (43%)

MMSE score 28.65 (1.93) 29.83 (0.39) 29.76 (0.44)

MCI group, n 11 3 1

Sex (male), n% 6 (55%) 1 (33%) 0 (0%)

MMSE score 25.64 (1.12) 25.67 (1.53) 26 (0)

CD group, n 1 0 0

Sex (male), n% 1 (100%) - -

MMSE score 23 (0) - -

Data in 2022

Subjects, n 49 41 19

Age 73.31 (5.69) 73.32 (6.07) 69.74 (3.03)

Sex (male), n% 19 (39%) 21 (51%) 9 (47%)

Grip (kg) 28.53 (8.75) 31.85 (10.03) 33.45 (9.90)

Height (cm) 157.37 (9.16) 159.51 (8.43) 159.97 (8.41)

(Continued)
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TABLE 1 (Continued)

Variable Venue A
Mean

(Standard
deviation (SD))

Venue B
Mean
(SD)

Venue C
Mean
(SD)

Weight (kg) 56.09 (10.68) 61.03 (10.38) 59.21 (9.47)

Systolic blood

pressure (mmHg)

141.55 (16.52) 147.71 (17.07) 144.68 (13.27)

Diastolic blood

pressure (mmHg)

84.51 (9.85) 83.73 (7.85) 82.58 (6.89)

Healthy group, n 42 31 17

Sex (male), n% 18 (43%) 14 (45%) 7 (41%)

MMSE score 29.40 (0.73) 29.58 (0.62) 29.88 (0.49)

MCI group, n 6 10 2

Sex (male), n% 1 (17%) 7 (70%) 2 (100%)

MMSE score 25.83 (1.17) 25.90 (0.74) 25.50 (0.71)

CD group, n 1 0 0

Sex (male), n% 0 (0%) - -

MMSE score 23 (0) - -

in 2022 among 399 participants. Table 1 present the subject details.

The mean (standard deviation) of the number of utterances of

the calculation voice samples was 5.39 (1.21) in 2020, 5.09 (0.48)

in 2021, and 5.23 (0.69) in 2022. The number of voice samples

pertaining to the reading of the numerical sequence was 2× 198+

1 = 397 (only one person repeated it three times) in 2020, 2×92 =

184 in 2021, and 2× 109 = 218 in 2022.

In this study, data obtained from participants in 2020 were used

as training data, and data obtained from participants in 2021 and

2022 were used as verification data.

3.2. Feature selection

First, 15440 types of high-order features per voice sample

(excluding duplicates) were obtained using the openSMILE script.

A generalized linear mixed model was applied to the 2020 data.

The following models were set for each feature:

f
p

ik
= (β

p
0 + b

p
i )+ β

p
1 s

p

ik
+ ǫ

p

ik
(1)

where f is the feature, s is the binary value of either the calculation

or the reading state, p = 1, 2, . . . , 15440 denotes the feature

number, i = 1, 2, . . . , 198 is the number of the subject, and k is

the utterance order of subject i. In addition, β0, β1 denote the fixed

effects, bi denotes a random effect, which represents the effect of

the subject, and ǫ denotes the error. In this model, 12432 types of

features were obtained when the significant features were selected

at the β1 level of 1%.

Subsequently, we selected features with an absolute correlation

coefficient value (between the feature difference and the MMSE

score) greater than 0.15 and obtained 1006 types of features.

TABLE 2 Confusion matrix when the 2020 data (training data) were

discriminated based on the mild cognitive impairment discrimination

index (MCIDI) threshold.

2020 data Predicted group

(training data) MCI group Healthy group

Actual group
MCI group 39 9

Healthy group 11 139

Pearson’s product-moment correlation coefficient was used as the

correlation coefficient.

Finally, 198 types of features were selected based on the AUC.

The AUC of the selected features had minimum and maximum

values of 0.63 and 0.70, respectively.

3.3. Regularized logistic regression analysis

Principal component analysis was applied to the 198 selected

features of the 2020 data, and principal components up to a

cumulative contribution rate of 80% and 26 principal components

were finally obtained.

Regularized logistic regression analysis with the L1 norm was

conducted 20 times on the 26 principal components, and the

average value of the regression coefficients was obtained. When its

mean regression coefficient was set as αi, the MCIDI was expressed

in terms of the following equation,

MCIDI =
1

1+ exp (−α0 −
∑26

i=1 αiPCi)
(2)

where α0 is the intercept and PCi is the value of the ith principal

component. The MCIDI threshold for discriminating between the

healthy and MCI groups is a value that minimizes the BER of the

MCIDI values obtained for each subject in 2020 using (2); the

MCIDI threshold value was approximately equal to 0.36. Table 2

lists the confusion matrix when the 2020 data were classified into

the healthy and MCI groups using this threshold. The sensitivity,

specificity, positive predictive value, negative predictive value, F-

measure, and accuracy for the 2020 data were 0.81, 0.93, 0.78, 0.94,

0.80, and 0.90, respectively. Figure 1 depicts the ROC curve of the

discrimination performance of MCIDI for the 2020 data. The AUC

was 0.92.

Figure 2 depicts the distribution of the MCIDI values obtained

for the 2020 data. A significant difference was found between

the mean MCIDI values of the healthy and MCI groups in a

t-test wherein equality of variances was not assumed (Welch’s

t-test) [t(56.61) = 11.03, p < 0.01].

Table 3 presents the k-fold cross-validation results for the 2020

data. The sensitivity value was higher than 0.6 and lower than 0.7.

The specificity was approximately greater than 0.9. The accuracy

was approximately greater than 0.8.
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FIGURE 1

Receiver operating characteristic (ROC) curve for the mild cognitive

impairment discrimination index (MCIDI) values obtained from the

2020 data (training data).

FIGURE 2

Distribution of the MCIDI values obtained from the 2020 data

(training data). **p < 0.01.

3.4. Correlation between MCIDI and MMSE
scores and gender di�erences in MCIDI

Figure 3 presents a scatterplot of the MCIDI values and

MMSE scores obtained from the 2020 data. The red line in the

figure represents the regression line for the MCIDI values. The

TABLE 3 k-fold cross-validation for 2020 data (training data)

(k = 5, 10, 20, 50, 198).

k Sensitivity Specificity Accuracy

5 0.60 0.87 0.81

10 0.63 0.85 0.79

20 0.63 0.85 0.79

50 0.67 0.86 0.81

198 (leave-one-out) 0.67 0.85 0.81

FIGURE 3

Scatterplot of the MCIDI values and mini-mental state examination

(MMSE) scores obtained from the 2020 data (training data).

correlation coefficient between the MCIDI value and MMSE score

was−0.73 (p < 0.01).

Figure 4 depicts the distribution of the MCIDI values by gender

for the healthy and MCI groups in the 2020 data. A t-test that does

not assume equal variances (Welch’s t-test) was used to compare the

mean values of the MCIDI values obtained for males and females

and no significant difference was observed in any group (healthy

group: t(117.48) = −0.94, p = 0.35; MCI group: t(24.85) =

−0.058, p = 0.95).

3.5. Verification

Table 4 presents the confusion matrices when the 2021 and

2022 data were used as the verification data, which were classified

into the healthy and MCI groups using the MCIDI and its

threshold. The sensitivity, specificity, positive predictive value,

negative predictive value, F-measure, and accuracy at this time were

0.63, 0.62, 0.26, 0.89, 0.36, and 0.62 for the 2021 data and 0.53, 0.70,

0.27, 0.88, 0.36, and 0.67 for the 2022 data, respectively.

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2023.1197840
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Higuchi et al. 10.3389/fneur.2023.1197840

FIGURE 4

Gender-specific distribution of the MCIDI values for the healthy and MCI groups obtained from the 2020 data (training data).

TABLE 4 Confusion matrices when the 2021 and 2022 data (verification

data) were discriminated using the MCIDI threshold.

2021 data Predicted group

(verification data) MCI group Healthy group

Actual group
MCI group 10 6

Healthy group 29 47

2022 data Predicted group

(verification data) MCI group Healthy group

Actual group
MCI group 10 9

Healthy group 27 63

The correlation coefficient between the MCIDI value and

MMSE score was −0.16 (p = 0.13) for the 2021 data and

−0.091 (p = 0.35) for the 2022 data.

4. Discussion

Numerous studies in recent years have attempted to

discriminate MCI using voice, as attempted by the present

study. Most of these studies also extracted voice features from

voice samples and proposed discrimination indices using various

learning algorithms; their accuracy is comparable (16) to or better

(17, 18) than that of the index proposed in this study. However,

the accuracy evaluations of the discrimination indices used data

that were obtained from the same population as the training data

for verification (in other words, the training and verification data

were obtained by randomly splitting the original data (17, 18), and

higher accuracy accuracies were a somewhat expected outcome).

It can be inferred that the design of the present study in which

verification was conducted on data that were obtained from a

truly different population than that for the training data, is more

challenging than those of other similar studies. Other similar

studies have used features related to the silence and voice lengths

included in the human voice (16–18) and combined clinical

assessments that were unrelated to voice and sociodemographic

information, health profiles, personal and family medical histories,

and others, in conjunction with voice features, to achieve high

accuracy (25). However, in the present study, we only used features

that were related to changes in vocal prosody. Furthermore,

although other similar studies have used voice features as-is, this

study used the difference from the prosody of the paired no-task

voice as the change in the prosody of voice during task execution,

which can be considered as a new point of focus that has not yet

been explored in other similar studies. In addition, while other

similar studies imposed a large number of speech tasks on subjects,

which can be burdensome for them (16, 17), only two types of

voice samples were recorded in this study, and the entire process

lasted less than ∼1 min; in this way, the burden on the subjects

was small compared with that in other studies. In this study,

logistic regression was used as the learning method. The reason

for this was that the description of the algorithm is clearer than

those of machine-learning methods. Many other similar studies

used machine learning methods, such as SVM (26), random forest

(27), and Light Gradient Boosting Machine (LightGBM) (28)

for learning. Empirically, if the number of datasets is only a few

hundred, there are no clear differences between the methods. In

fact, when the analysis was performed with SVM and LightGBM

instead of logistic regression, as expected, there was no clear

difference in the results and the accuracy was lower than that of

logistic regression.

Although we did not set clear criteria for the recruited subjects,

almost all of the subjects who participated in this study were able

to go to the data collection venue by themselves and were able

to live their daily lives without any problems. When we actually

interacted with them for data acquisition, almost all of them were

able to communicate without any problems; thus, we inferred

that there was almost no suspicion of other neurological diseases
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or Parkinson’s disease. For this reason, it was considered more

appropriate to treat subjects with CD based on the MMSE as MCI

rather than CD.

Research on dementia detection using voice involves features

that are related to voice length and silence intervals included in

the human voice as a mainstream method. However, in this study,

we did not use these features at all. The reason for this was to

eliminate the possibility of erroneously recognizing these features

as contributors toward CD because people who are not good at

mental calculations will naturally have longer vocalization times.

In addition, clinical evaluations based on MMSE were conducted

before the voice recordings, and the numerical sequence was read

out prior to the voice recording. Therefore, we were concerned that

the subjects may have remembered the answers to the previous

calculational task in the MMSE or perceived that the numerical

sequence read earlier was a sequence of the correct results of

the calculation task. However, it seemed that the subjects who

were not good at calculating could not perform the calculations

smoothly even for the calculation tasks conducted during the

voice recordings. In fact, there was a significant weak positive

correlation between the calculation task score in the MMSE and

the accuracy of the calculation task during the voice recording. In

addition, the subjects moved rooms after reading the numerical

sequence; therefore, it was assumed that few subjects were aware

that the numerical sequence contained the correct results of the

calculation task.

In the selection of voice features, which is the prelearning stage

for deriving the discrimination indices, approximately 80% of the

features were selected using generalized linear mixed models, and

it was assumed that the prosody of voice changed significantly

between the calculation and readout states. Among these features,

more than 8% were related to cognitive function. Therefore, the

correlation between task execution and cognitive function may

have been weak. In fact, the discrimination performance of the 198

types of features finally selected was approximately 0.6–0.7 in terms

of the AUC. Therefore, it cannot be said that the discrimination

performance of the features alone was particularly high.

Regularized logistic regression analysis was applied to the

26 principal components that were aggregated through principal

component analysis to obtain an index (MCIDI) that could

discriminate between the healthy and MCI groups in the training

data with an AUC >0.9. In addition, the sensitivity, specificity, and

accuracy were all ≥0.8; that is, the degree of accuracy was the same

as those for the indices proposed in other similar studies. There

was a relatively high correlation between the MCIDI and MMSE

scores of the training data. The target variable used for learning

was binary; therefore, the target variable did not directly include the

MMSE score information. However, the feature difference that was

correlated to the MMSE score was used as an explanatory variable.

Therefore, it is inferred that an index that correlates with theMMSE

score was obtained. In addition, there was no gender difference

in the MCIDI values of both the healthy and MCI groups in the

training data. However, males in the MCI group yielded a wider

distribution of MCIDI values than that yielded by females.

The individual discrimination performances of the 198 types of

feature differences, which are the basis of the principal components,

were not particularly good. However, the accuracy of the learning

result was good. Therefore, it was necessary to consider the

possibility of overlearning. We cross-validated the training data

to investigate this possibility, and the results indicated that the

specificity exceeded 0.8 for any number of divisions, but the

sensitivity was only approximately 0.6, and there was a possibility of

overlearning. However, in the training data of the present study, the

number of subjects in theMCI group was approximately 30% of the

number of subjects in the healthy group, and it was thought that it

was expected that the specificity would be high. In a comparison

with the verification data obtained from a population different

from the training data, consideration of the cross-validation results

indicated that the calculated sensitivity was a reasonable result. The

specificity for the 2021 data was low compared with the cross-

validation results, but relatively high for the 2022 data as well

as the cross-validation results. The accuracy was not good and

was in the range of 0.6–0.7. However, in general, the accuracy of

verification for data that were obtained from a population that

was different from the training data tended to be lower than that

for the training data. We infer that an accuracy rate >0.6 as part

of a challenging research design with few other examples was a

reasonable result. Although the populations used for the training

and verification data were different, they belonged to the same city;

therefore, we expected a certain degree of verification accuracy.

However, the results we obtained were somewhat unexpected. One

possible reason is that due to the coronavirus 2019 pandemic, the

number of subjects was not sufficient for verification and the data

collection period was divided into two; this made it impossible to

align the measurement venues and resulted in differences in the

recording environment.

A limitation of the present study is that subject conditions were

insufficient. Approximately 30% of Alzheimer’s patients are known

to develop MCI between the ages of 40 and 65. Conversely, in

Japan, the prevalence of MCI in the elderly aged 65 years and over

is 13%, but it decreases rapidly at lower ages. Therefore, a large

population is required to collect a sufficient number of prevalent

young people. Hence, we targeted mental disorders in the elderly in

this study. However, it would be interesting to investigate whether

our proposed MCIDI would be effective for subjects younger than

65 years. If the MCIDI is effective in younger age groups, it

may be effective for the early detection of Alzheimer’s disease in

younger people.

Secondly, the MMSE sensitivity was insufficient. Therefore,

potential MCI subjects were classified as healthy subjects, and

it was inferred that the learning did not effectively capture the

changes in the vocal cords that were unique to MCI. In fact, the

output of the logistic function that was obtained through learning

strictly represented the probability that a subject had MCI, and

it is appropriate to set the discrimination threshold to separate

the healthy group from the MCI group at 0.5. However, in the

present study, the discrimination threshold was set to the value that

minimized the BER. That is, most of the MCI group members were

determined to be healthy groupmembers. In this sense, the learning

result of the present study indicated a fit that was biased toward

healthy individuals. To address this problem, the quality of MCI

subjects will have to be improved in combination with the MoCA.

Thirdly, we discussed the relationship between voice features

and MCI. Several voice features that were selected during learning

were associated with the Mel frequency (29) and MFCC (30). The

feature set of openSMILE used in the present study included several
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features calculated on the Mel-frequency axis. Thus, it is inferred

that several features that were related to the Mel frequency were

inevitably selected. The selected features were obtained in a broad

band from low to high on the Mel-frequency axis, and it was

difficult to specify which frequency band particularly responded

to MCI. Therefore, a future task is to identify voice features that

match the physiological changes caused by MCI. Conversely, we

also studied the detection of Alzheimer’s disease and dementia

with Lewy bodies using voice cited in (31, 32). One of our future

studies is to investigate the extent to which the features responding

to Alzheimer’s disease and dementia with Lewy bodies obtained

in these studies differ from the features responding to MCI in

this study.

Fourthly, we discussed the selection of appropriate speech

tasks for assignment to the subjects. This study employed a

computational task, but the pauses in the voice could not be used

to avoid MCI misclassifications for those who were not good at

mental calculations. Ideally, people who are not good at mental

calculations should be excluded, but it is difficult to distinguish

whether they are really good or not at mental calculations or

are unable to perform calculations due to MCI. In this sense, a

word-recall task may have been more appropriate as a task.

Finally, we discussed the system design that anticipates future

developments in this field. In this study, we did not consider

any errors in the results of the mental arithmetic calculations.

Our objective was to understand the differences in voice features

between utterances that used the brain’s functions for calculation

and those that did not; therefore, the content of the utterances

themselves was not an issue. However, if the contents of the

utterances were different from those of the paired utterances, then

the feature differences would increase; thus, there is a possibility

that this may have a large effect. One way to avoid this possibility

is to control the content of the utterances using techniques such as

voice recognition. However, these advanced techniques take time

to process. In the future, a smartphone app can be used to process

the results of this study as a MCI discrimination system. However,

real-time voice recognition with current smartphone specifications

is expensive; it is thus inferred that a system design that includes

voice recognition cannot be easily proposed at present.

5. Conclusion

In this study, we proposed a voice index to facilitate the

discrimination of MCIs based on involuntary changes in voice.

The participants of this research were elderly individuals aged

65 years or older. They were divided into healthy and MCI

groups based on clinical evaluations. For the study, we acquired

the participants’ voice samples during a mental calculation task

and during the reading of the correct answers to the calculation

tasks written on paper, and we expressed the prosody changes

in the calculated voice samples compared with the reading of

voice samples based on acoustic feature differences. We used

principal component analysis to aggregate groups of features with

similar characteristics of feature differences into several principal

components. Thereafter, we combined the principal components

with logistic regression analysis to propose a voice index to

discriminate MCI. The proposed index discriminated the training

data into healthy and MCI groups with an accuracy of 90% and

the verification data that were obtained from a population other

than the training data into healthy and MCI groups with an

accuracy of 65%. In a challenging study design with few other

examples, an accuracy >60% is a reasonable result; however, in

general, this is not a sufficient accuracy outcome. The reason

for this is that the consideration of a variety of factors, such as

subject inclusion criteria, task assignments, features selected (or

not selected), and confounding factors, may not be appropriate,

and there is still room for additional considerations. However, it

is suggested that the proposed index may be utilized as a new index

for discriminating MCI.
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