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Background: Transforming growth factor-β (TGF-β) is a multifunctional cytokine 
with an important role in tissue development and tumorigenesis. TGF-β can inhibit 
the function of many immune cells, prevent T cells from penetrating into the tumor 
center, so that the tumor cells escape from immune surveillance and lead to low 
sensitivity to immunotherapy. However, its potential roles in predicting clinical 
prognosis and tumor microenvironment (TME) immune features need to be deeply 
investigated in glioblastoma (GBM).

Methods: The TCGA-GBM dataset was obtained from the Cancer Genome Atlas, 
and the validation dataset was downloaded from Gene Expression Omnibus. Firstly, 
differentially expressed TGF-β genes (DEGs) were screened between GBM and normal 
samples. Then, univariate and multivariate Cox analyses were used to identify prognostic 
genes and develop the TGF-β risk model. Subsequently, the roles of TGF-β risk score in 
predicting clinical prognosis and immune characteristics were investigated.

Results: The TGF-β risk score signature with an independent prognostic value 
was successfully developed. The TGF-β risk score was positively correlated 
with the infiltration levels of tumor-infiltrating immune cells, and the activities of 
anticancer immunity steps. In addition, the TGF-β risk score was positively related 
to the expression of immune checkpoints. Besides, the high score indicated higher 
sensitivity to immune checkpoint inhibitors.

Conclusions: We first developed and validated a TGF-β risk signature that could 
predict the clinical prognosis and TME immune features for GBM. In addition, the 
TGF-β signature could guide a more personalized therapeutic approach for GBM.
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Introduction

Glioblastoma (GBM) is the most common malignant brain tumor. GBM patients generally have 
a poor prognosis, with a mean survival of approximately one year (1). At present, the main treatment 
used for GBM includes surgery, chemotherapy, radiotherapy, targeted therapy and immunotherapy 
(2, 3). Despite improvements in clinical treatment modalities, the prognosis for GBM remains dismal 
and GBM relapsed in almost all patients (4, 5). Therefore, potential biomarkers that can predict 
treatment response are needed urgently to promote personalized therapies for GBM.

Transforming growth factor-β (TGF-β) is a multifunctional cytokine involved in tissue 
development and tumorigenesis. TGF-β displays dual roles in both tumor suppression and tumor 
promotion during the tumor formation (6–8). TGF-β related genes were highly expressed in GBM 
and associated with poor outcome in this disease (9). TGF-β pathway influences various key 
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processes in GBM progression such as stemness, migration/invasion, 
angiogenesis, immunosuppression, and drug/radio resistance (10). In 
addition, TGF-β pathway promotes immune escape of tumor cells and 
results in resistance to immunotherapy (11, 12). In consideration of the 
critical functions of TGF-β in regulating various tumorigenic processes, 
TGF-β antagonistic strategies are among the most promising of the 
innovative treatment approaches for GBM (13). A number of agents 
targeting TGF-β signaling are currently being investigated in several 
clinical trials of GBM patients (14, 15). At present, there is still no 
systematic research illustrating the TGF-β signature with the tumor 
microenvironment (TME) immune features in GBM.

In present work, we first developed and validated a novel TGF-β 
risk score model with several GBM datasets. The TGF-β risk score was 
strongly associated with clinical outcomes and TME immune features, 
and could evaluate the clinical response to chemotherapy for GBM.

Materials and methods

Datasets retrieval and data preprocessing

Training cohort
We first downloaded TCGA-GBM gene mutation data, RNA 

expression data, and clinical information from the Cancer Genome 
Atlas (TCGA) by using the ‘TCGAbiolinks’ R package (16). For GBM 
samples in the TCGA dataset, samples without survival status or 
survival time were excluded. After data preprocessing, the TCGA-GBM 
cohort included 143 primary GBM samples and five normal samples for 
further analysis. The clinical characteristics of patients were listed in 
Supplementary Table S1. Supplementary Figure S1 showed the workflow 
of this study.

Validation cohort
GSE121720 (58 GBM samples and four normal samples) dataset 

with expression profiles and clinical data, was obtained from the Gene 
Expression Omnibus (GEO) (17). The gene probes in GSE121720 
dataset were transformed to gene symbols. Probes annotated to 
multiple genes were discarded, and the average value of multiple 
probes mapped to one gene was selected.

TGF-β related genes
TGF-β related genes were retrieved from the MSigDB (v7.4) with 

the following search terms: HALLMARK_TGF_BETA_SIGNALING 
and KEGG_TGF_BETA_SIGNALING_PATHWAY (18). In total, 121 
TGF-β related genes were summarized after screening the original 
data (Supplementary Table S2).

Screening of differential TGF-β genes
We screened differentially expressed TGF-β genes (DEGs) 

between GBM and normal samples with the ‘limma’ R package (19). 
|log2 (fold change) | > 0.5 and corrected p-value less than 0.05 were set 
as the significance threshold. Then, the protein–protein interaction 
(PPI) network was constructed with the STRING database (20).

Construction and validation of the TGF-β risk 
model

Through univariate Cox analysis, DEGs that were related to GBM 
survival were screened in the TCGA-GBM dataset. Then, 

we performed multivariable Cox regression on the prognostic TGF-β 
DEGs. Then the TGF-β risk score model was developed based on the 
expression level and corresponding coefficient of each gene. The risk 
score of each sample was calculated according to the formula as 
follow: Risk score = Σ expi*βi, where expi is the expression and βi is the 
regression coefficient.

According to the formula, the risk score for each patient was 
calculated, and the patients were then classified into high-or low-score 
groups using the median risk score. Kaplan–Meier survival curves and 
log-rank test were applied to compare overall survival between the 
high-score and low-score groups by using the ‘survminer’ R package. 
To assess the predictive accuracy of the TGF-β risk model, 
we performed receiver operating characteristic curves (ROC) analysis 
and calculated the area under the curve (AUC) by using the ‘timeROC’ 
R package. Finally, the prediction role of TGF-β risk model was 
further validated in GSE121720 dataset.

Nomogram construction and validation
The Cox regression analyses were performed to determine the 

independent prognostic predictors. Then, we incorporated TGF-β risk 
score and clinical characters to construct a combined prognostic 
nomogram for GBM by using the ‘rms’ R package. The nomogram 
performance was quantified by ROC curves and calibration plots.

Gene mutation pattern analysis
Genomic variants, including single nucleotide variations (SNVs) 

in TCGA-GBM dataset were analyzed by using the ‘maftools’ R 
package. Wilcoxon test was applied for comparing the tumor mutation 
burden (TMB) and number of mutated genes, and Chi-square test was 
performed to demonstrate differences in mutational frequency 
between the two groups. The top ten genes with the highest mutational 
frequency were presented with waterfall plot.

Evaluation of TME immune characteristics
Based on the RNA expression data of TCGA-GBM dataset, single 

sample gene set enrichment analysis (ssGSEA) approach of the ‘GSVA’ 
R package was applied to evaluate the degree of immune cell 
infiltration in the TME, and the ESTIMATE algorithm was introduced 
to calculate the ESTIMATE score, stromal score, immune score, and 
tumor purity (21, 22). Then, we used ssGSEA procedure to quantify 
the enrichment scores of 17 immunotherapy related pathways (23). In 
addition, we also compared the difference in anticancer immune cycle 
in TME between two groups (24).

Prediction of the clinical response to 
immunotherapy/chemotherapy

The ‘pRRophetic’ R package was used to evaluate the clinical 
response to chemotherapeutics or targeted therapies, and the 
difference in the 50% inhibitory concentration (IC50) of the 
chemotherapy or targeted drugs were compared between the two 
groups (25). The patients’ response to immune checkpoint blockade 
(ICB) therapy was evaluated based on immunotherapy associated 
PRJNA482620 cohort (26).

Statistical analysis
All statistical analyses were performed with R software (Version: 

4.1.2). Univariate and multivariate Cox regression analyses were used 
to identify independent risk factors for prognosis. We performed ROC 
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analysis and calculated the AUC to assess the predictive accuracy of 
the TGF-β risk model. Continuous variables were compared between 
groups using the Wilcoxon test. Two-sided P less than 0.05 were 
considered statistically significant.

Results

Screening of TGF-β DEGs

According to the thresholds mentioned above, 52 TGF-β DEGs 
were identified between GBM and normal samples. 39 TGF-β genes 
were overexpressed, and 13 genes were down-regulated in GBM 
samples. As shown in Figure 1A, ID3, ID4, and TGFβ1 genes were 
expressed significantly higher in GBM samples; while MAPK1, 
SMAD7, and APC genes were expressed significantly higher in normal 
samples. Principal component analysis (PCA) based on these 52 
TGF-β DEGs showed excellent separation amongst tumor and normal 

samples (Figure 1B). Then we analyzed the correlation between TGF-β 
DEGs and GBM patients’ clinical features, and the results found that 
ACVR2A, WWTR1, ACVR1C, and TGFβ2 were differentially 
expressed in subgroups according to the age and gender, which 
indicating the sex-dimorphic and age-dependent expression of some 
TGF-β related genes in human GBM (Supplementary Figure S2). 
Based on the expression data, we  also calculated the Pearson 
correlation of the TGF-β DEGs (Figure 1C). The PPI network revealed 
that SMAD4, CTNNB1, and SMAD7 may play critical roles in TGF-β 
signaling pathway in GBM (Figure 1D).

Construction and validation of TGF-β risk 
model for GBM

First, five prognosis-related genes were identified from the 52 
DEGs in TCGA-GBM dataset by univariate Cox regression analysis, 
including BMPR1A, KLF10, RAB31, SMAD4, and ZFYVE9. To assess 

FIGURE 1

The differential expression and functional analysis of TGF-β genes in TCGA-GBM database. (A) Heatmap of the top 40 significantly differential TGF-β 
genes between tumor and normal samples. (B) PCA for tumor and normal samples. (C) Pearson correlation analysis of TGF-β DEGs. (D) PPI network 
analysis of TGF-β DEGs.
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the prognostic function of identified genes in GBM, survival curves 
were plotted based on median expression and compared by log-rank 
analysis (Figures  2A–E). Second, we  performed multivariate Cox 
regression based on the selected five prognostic genes (Figure 2F). 
Finally, TGF-β risk model for GBM was developed according to the 
expression and coefficients of these five TGF-β genes.

We calculated the sample risk score in the TCGA-GBM dataset, 
and the patients were divided into high-score and low-score groups 
(Figures 3A–C). GBM patients with higher score had worse overall 
survival (OS) compared with patients with lower score (Figure 3D). 
Besides, the ROC analysis indicated that the AUC of TGF-β risk 
model in predicting 1-year, 3-year, and 5-year OS was 0.659, 0.733, 
and 0.917, respectively (Figure  3E). Furthermore, the TGF-β risk 
model was also introduced to calculate the risk score of validation 
cohort (Figures 4A–C), and the robustness of the TGF-β risk model 
was supported in GSE121720 cohort (Figure 4D). The ROC curves 
indicated that TGF-β risk score harbored a high level of AUC value 
for predicting 1/3/5-year OS with 0.747, 0.990, and 0.984, respectively 
(Figure 4E).

Correlation between TGF-β risk score and 
clinical characteristics

We subsequently correlated the TGF-β risk model with the clinical 
features, such as age, gender, O-6-methylguanine-DNA 
methyltransferase (MGMT) status, and isocitrate dehydrogenase 
(IDH) status. There was no significant difference in the TGF-β risk 
score among subgroups according to age, gender, and MGMT status 

(Figures 5A,C,D). Patients with wild-type IDH had higher risk score 
than patients with mutant IDH (Figure 5B). In addition, the results 
also showed there was significant differences in the IDH mutation 
status between the two groups (Figure 5E).

Development and validation of the 
nomogram

The Cox regression analyses found that TGF-β risk score was a 
prognostic factor in TCGA-GBM cohort (Figure 6A). The GSE121720 
cohort further confirmed TGF-β risk score as an independent 
prognostic factor for GBM (Figure 6B). Then, we incorporated the 
TGF-β risk score with gender and age to construct a combined 
nomogram (Figure 6C). The ROC analysis indicated that the AUC of 
nomogram in predicting 1-year, 3-year, and 5-year OS was 0.517, 
0.508, and 0.507, separately (Figure 6D). The calibration plot verified 
that the predicted survival using nomogram was strongly consistent 
with actual OS (Figure 6E). The ability of the nomogram in predicting 
prognosis was further assessed in the GSE121720 cohort 
(Figures 6F,G).

TGF-β risk score and genetic variation

In these two risk groups, the top ten genes with the highest 
mutation frequencies were depicted in Supplementary Figure S3. 
Between the two groups, statistical analysis of Chi-square showed that 
mutation frequencies of SNVs in eight genes were significantly 

FIGURE 2

Identification of prognostic TGF-β genes and establishment of risk score model. (A–E) Kaplan–Meier survival curves for five prognostic genes in TCGA-
GBM samples. (F) The multivariate Cox analysis of five prognostic genes.
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different, including PTEN, SPTA1, DNAH5, IDH1, MROH2B, CDH9, 
AHNAK2, and TENM4 (Figures  7A,B). Wilcoxon test was also 
applied for comparing the TMB and number of mutated genes 
between high-score and low-score groups, and no significant 
difference in TMB and the number of mutations were observed 
between the two groups (Figures 7C,D).

TGF-β risk model predicted the TME 
immune features

The TME status could affect the survival and immunotherapy 
sensitivity of cancer patients (27, 28). First, the ssGSEA analysis 
showed that the infiltration levels of several immune cells, including 
central memory CD8 T cell, macrophage, immature dendritic cell, 
mast cell, and natural killer cells, were positively correlated with the 
TGF-β risk score (Figure 8A). Second, the enrichment scores of cancer 
cell antigens release, dendritic cells and monocytes recruiting were 
significantly higher in high-score group (Figure 8B). In addition, the 

TGF-β risk score had a tight association with enrichment score of 
immunotherapy response related pathway, including IFN-γ signature 
(Figure  8C). Furthermore, eight immune checkpoints were 
significantly correlated with the TGF-β risk score, including CD274 
(PD-L1), PDCD1, CTLA4, CD276, PVR, CD80, LAIR1, LGALS3 
(Figure  8D). To better understand the difference of TME status 
between the high-score and low-score groups, ESTIMATE analysis 
was carried out. The ESTIMATE, stromal and immune scores of the 
high-score group were higher than those of the low-score group, while 
tumor purity was significantly lower in the high-score group than 
low-score group (Supplementary Figure S4). Collectively, the TGF-β 
risk score predicted TME immune status for GBM.

Additionally, we  analyzed the tight associations between the 
TGF-β risk score and the expression of TGF-β family members, 
TGF-β family members receptors, and immune checkpoints. The 
results displayed a remarkable difference in the expression of 
GDF15, BMP1, TGFβ1, INHBB, LEFTY1, and BMPR1A between 
the high-and low-score groups (Supplementary Figures S5, S6). 
Besides, the TGF-β risk score positively correlated with several 

FIGURE 3

Development of a TGF-β risk score model in TCGA-GBM dataset. (A) The distribution of scores for each sample. (B) The different survival status of 
samples. (C) The expression of five prognostic genes for each sample. (D) Overall survival analysis between high and low-score groups. (E) ROC and 
AUC analysis of the TGF-β risk score.
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immune checkpoints, such as CD28, CD96, IL2RA, PDCD1, TIGIT, 
PVR (Supplementary Figure S7).

TGF-β risk score predicted the response to 
immunotherapy and chemotherapy

In the PRJNA482620 cohort, we  did not find any significant 
associations between the TGF-β risk score and GBM prognosis 
(Figure 9A). There was no significant difference in the risk scores in 
patients with and without response to immunotherapy (Figure 9B). 
The group of GBM patients with high score showed a higher response 
to ICB treatment, though this difference was not significant 
(Figure  9C). All patients in PRJNA482620 cohort received the 
standard therapy of temozolomide and radiation before 
immunotherapy (26), which may partially diminish the relationship 
between risk score and immunotherapy response.

Based on the RNA sequencing data of TCGA-GBM dataset, the 
IC50 of chemotherapy or targeted drugs was estimated, and 
we observed that high-score GBM samples were more sensitive to 
NU.7441, and low-score samples were more sensitive to tipifarnib, 
vinorelbine, and gemcitabine (Figures 9D–G).

Discussion

The TGF-β signaling pathway exhibits both tumor-suppressing 
and tumor-promoting roles (29, 30). In addition, TGF-β is a immune 
suppressive mediator, inhibiting antigen presentation cells and effector 
T cells (31). In consideration of the critical roles of TGF-β in regulating 
tumor biology, increasing efforts have been made to the therapeutic 
potentials of TGF-β. Previous studies have shown that TGF-β has been 
closely implicated in the GBM progression. For instance, TGF-β1 
promoted enhanced microtubes formation and communication via 

FIGURE 4

Validation of the TGF-β risk model in GSE121720 cohort. (A) The distribution of scores for each sample in GSE121720 cohort. (B) The different survival 
status of samples in GSE121720 cohort. (C) The expression of five prognostic genes for each sample. (D) Overall survival analysis between high and 
low-score groups. (E) ROC and AUC analysis of the TGF-β risk score.
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calcium signaling in GBM cell lines, and targeting TGF-β pathway 
could serve as a new method against microtubes mediated invasion/
resistance (32). TGF-β induced a shift in metabolism from oxidative 
phosphorylation to aerobic glycolysis, suppressing antitumor 

immunity and facilitating GBM progression (33). However, little work 
has explored the function of TGF-β signature in predicting prognosis 
and regulating immune status in GBM. In this study, we  firstly 
screened differential TGF-β genes in the TCGA-GBM cohort. Then, 

FIGURE 5

Correlation between TGF-β risk score and clinical features. (A–D) The difference of risk score between different clinical features including age, IDH 
status, gender, and MGMT status. Wilcoxon test was conducted. (E) The differences of clinical characteristics between two score groups.

FIGURE 6

Development and validation of a comprehensive nomogram. (A) Results of Cox regression analyses in TCGA-GBM cohort. (B) Results of Cox 
regression analyses in GSE121720 cohort. (C) Nomogram construction based on age, gender, and TGF-β risk score. (D,E) The ROC curves and 
calibration plot of the nomogram in TCGA-GBM dataset. (F,G) The ROC curves and calibration plot of the nomogram in GSE121720 dataset.
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FIGURE 7

Gene mutation differences between the two score groups. (A,B) The waterfall plot showing the mutation distribution of the top ten mutated genes in 
high-score and low-score group. (C,D) Comparison of TMB and number of mutated genes between high-score and low-score group.

five optimal genes were selected to develop a TGF-β risk model 
according to the expression and coefficients of these five genes, 
including BMPR1A, KLF10, RAB31, SMAD4, and ZFYVE9.

BMPR1A was progressively expressed in malignant glioma and 
promoted tumorigenesis in a murine model of glioma (34). RAB31 
inhibited apoptosis, and promoted proliferation and migration in 
U87 cells (35). The reduced expression of SMAD4 was associated 
with poor outcome of glioma patients and SMAD4 exerted an 
inhibitory role in glioma development (36). The increased expression 
of Stanniocalcin-1 may promote the progression of glioblastoma via 
the TGF-β/SMAD4 pathway (37). Several studies have defined 
KLF10 as a tumor suppressor, inducing apoptosis and inhibiting 
proliferation in various cancer cells (38). ZFYVE9 has been reported 

to be dispensable for functional TGF-β mediated signaling (39). To 
date, the expression and function of KLF10 and ZFYVE9 in GBM 
have not been studied. Then, a novel TGF-β risk model with 
independent prognostic prediction value was developed based on 
these five genes.

TGF-β is an essential immune-suppressive cytokine in the 
TME, and TGF-β production by tumor cells promotes tumor 
growth and immune escape (11, 12). We verified that the TGF-β 
risk model could predict the TME immune status. First, the 
TGF-β risk score had significant positive correlations with the 
infiltration levels of tumor-infiltrating immune cells, and the 
scores of anticancer immunity steps. As a result, the anticancer 
immune response was more activated in the TME, and the 
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anticancer activity was higher in GBM patients with high-score. 
Second, we found the IFN-γ signature was significantly enriched 
in high-score patients. Besides, the TGF-β risk score positively 
correlated with several immune checkpoints, including PDCD1, 
PD-L1, and CTLA4. The results demonstrated that the TME with 
higher score indicated higher sensitivity to ICB and better effect 
of immunotherapy. However, the results also revealed that the risk 
score correlated with the infiltration levels of myeloid-derived 
suppressor cells and regulatory T cells, which were considered to 
inhibit anticancer immunity (40).

An increasing number of risk models related to pyroptosis, 
autophagy, ferroptosis, and glucose metabolism have been 
constructed with the potential value to predict prognosis and 
guide individualized treatment for GBM (41–43). Several 
studies investigating the prognostic prediction in tumors of 
TGF-β signature have been published, such as hepatocellular 
carcinoma, lung adenocarcinoma, and bladder cancer (44–46). 
In this study, the optimal candidate genes were firstly screened 
from TGF-β related genes with several programs, including 
univariate and multivariate Cox analyses. Second, we developed 
a five-gene signature model and correlated it with clinical 
features, genetic variation, immune phenotypes, and therapeutic 
response. Then, we validated our risk model in external cohort. 
Nevertheless, there were some deficiencies in current study. 
First, our present results were obtained merely based on public 
databases, and therefore in vitro and in vivo experiments are 

needed to verify these results. Second, only one external cohort 
was applied to validate our results, and the results remain to 
be further proven with a large-scale, prospective study. Third, 
the potential application in clinical practice of the TGF-β 
signature requires more effort.

In conclusion, we  successfully constructed a TGF-β risk 
model with an independent prognostic prediction value for 
GBM. Patients with high-score had worse prognosis than patients 
with low-score. The TGF-β signature was closely correlated with 
the clinical features, genetic variation, and TME immune status 
of GBM. It also predicted the sensitivity to therapeutic approach 
for GBM.
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A list of 121 TGF-β related genes.

FIGURE 9

TGF-β risk model predicted the clinical response of immunotherapy and chemotherapy. (A) Survival difference between high-and low-score groups in 
immunotherapy cohort. (B) Comparison of risk scores in patients with and without response to immunotherapy. (C) Proportion of patients with and 
without response to immunotherapy in two score groups. (D–G) The differences in responses to chemotherapy drugs between two score groups.
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