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Background: Brain gray matter alterations in patients with trigeminal neuralgia 
(TN) have been detected in prior neuroimaging studies, but the results are 
heterogeneous. The current study conducted coordinate-based meta-analyses 
across neuroimaging studies, aiming to find the pattern of brain anatomic and 
functional alterations in patients with TN.

Methods: We performed a systematic literature search of PubMed, Embase, and 
Web of Science to identify relevant publications. A multimodal meta-analysis for 
whole-brain voxel-based morphometry (VBM) studies and functional imaging 
studies in TN was performed using anisotropic effect size-based signed differential 
mapping.

Results: The meta-analysis comprised 10 VBM studies with 398 TN patients and 
275 healthy controls, and 13 functional magnetic resonance imaging studies with 
307 TN patients and 264 healthy controls. The multimodal meta-analysis showed 
conjoint structural and functional brain alterations in the right fusiform gyrus 
and inferior temporal gyrus, bilateral thalamus, left superior temporal gyrus, left 
insula, and inferior frontal gyrus. The unimodal meta-analysis showed decreased 
gray matter volume alone in the left putamen, left postcentral gyrus, and right 
amygdala as well as only functional abnormalities in the left cerebellum, bilateral 
precuneus, and left middle temporal gyrus.

Conclusion: This meta-analysis revealed overlapping anatomic and functional 
gray matter abnormalities in patients with TN, which may help provide new 
insights into the neuropathology and potential treatment biomarkers of TN.
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Introduction

Trigeminal neuralgia (TN) is a common cranial neuralgia, which is featured by recurrent 
severe paroxysmal, electric shock-like, lancinating pain limited to one or more of the trigeminal 
nerve branches, lasting from a fraction of a second to 2 min per episode and is triggered by 
innocuous stimuli (1). TN can be classified into secondary TN which is caused by a neurological 
disease other than neurovascular compression, and primary TN which includes classical TN 
(cTN) which develops without apparent cause other than neurovascular compression and 
idiopathic TN (iTN) without significant abnormalities in either electrophysiological tests or 
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conventional magnetic resonance imaging (MRI) (1). The annual 
incidence of TN is estimated to be four to five per 100,000 and affects 
one in 15,000–20,000 people worldwide with a female preponderance 
(2). Increased depression, anxiety, and poor sleep were also reported 
in patients with TN, indicating that TN is a debilitating neuropathic 
pain condition that affects human physiological and psychological 
activities (3). Although the origin of TN is considered to be at the 
trigeminal root (4), the peripheral mechanisms alone could not 
entirely explain the pathophysiology of TN, especially iTN.

By changing the flow and integration of information through many 
brain regions, chronic pain including TN could influence brain function 
and behavior (5). Central facilitation and central allodynic mechanisms 
that engage the nociceptive neurons at the trigeminal nucleus, thalamic, 
and cortical levels were suggested to be related to this persistent pain (6). 
Growing evidence with advanced neuroimaging techniques has 
demonstrated that both the brain’s structural and functional changes 
may also contribute to the development of TN. Voxel-based 
morphometry (VBM) is a hypothesis-free technique that allows voxel-
wise comparisons of the whole brain tissue volume between groups in 
vivo (7). VBM studies have reported decreased or increased gray matter 
volume (GMV) in various brain regions in patients with TN, including 
the secondary somatosensory cortex, insula, thalamus, anterior cingulate 
cortex, cerebellum, caudate nucleus, amygdala, postcentral gyrus, and 
precuneus compared to healthy controls (HCs) (8–15), while functional 
studies using function MRI also detected increased or decreased brain 
activation in the thalamus, postcentral gyrus, cerebellum, anterior 
cingulate cortex, and other cortical and subcortical brain regions (10, 11, 
16, 17). However, these structural and functional studies often reported 
different or even contradictory results. The reason for these 
inconsistencies might be associated with differences in design, imaging 
methodology, and sample sizes, as well as heterogeneities in 
demographic and clinical characteristics across studies.

A better understanding of the brain alterations in subjects with 
TN may provide new insight into the pathophysiology of primary TN, 
which may contribute to facilitating advances in treatment. In this 
study, we  conducted a multimodal meta-analysis to identify the 
conjoint and dissociated brain changes in the structure and function 
of subjects with primary TN. Although there was one meta-analysis 
that included anatomic and functional neuroimaging studies in 
subjects with TN published before August 2018, it did not conduct a 
multimodal meta-analysis to examine the overlapping regions 
between anatomic and functional brain alterations, and many related 
studies have been published since then (18). In this study, 
we integrated the recently published VBM and functional studies on 
primary TN and conducted unimodal and multimodal meta-analyses 
by using anisotropic effect size-based signed differential mapping 
(AES-SDM), which is a powerful coordinate-based meta-analytic tool 
widely applied in neurological diseases (19). In addition, meta-
regression analyses were performed to evaluate potential relationships 
between brain GMV and functional changes and clinical features.

Materials and methods

Search strategy and study selection

The review process was based on the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) statement. A 

systematic search was conducted in the Web of Science, PubMed, and 
Embase up to October 3rd, 2022, using the following keywords 
(“trigeminal neuralgia” OR “trifacial neuralgia”) AND (“magnetic 
resonance imaging” OR “MRI” OR “functional MRI” OR “fMRI”). 
We  also searched the reference lists of included studies to obtain 
potential studies.

Inclusion/exclusion criteria

The inclusion criteria for the candidate studies were: (a) 
published in English with peer review; (b) employed whole-brain 
functional imaging or structural imaging using VBM to explore 
gray matter changes in primary TN compared to HCs; (c) localized 
effects using Montreal Neurological Institute (MNI) or Talairach 
coordinates; (d) used thresholds for significance corrected for 
multiple comparisons or uncorrected with spatial extent 
thresholds. These studies were considered ineligible: (a) review 
articles, case reports, and meta-analyses; (b) studies that exclusively 
used a region of interest approach; (c) studies where the whole-
brain results in three-dimensional coordinates could not 
be  retrieved after contacting corresponding authors by emails. 
Group coordinates were regarded as separate datasets if a study 
contains more than one independent patient sample. Figure  1 
summarizes the study selection procedures.

Data extraction

Study selection and data extraction were conducted in a standard 
form by two investigators separately and any disagreements were 
assessed by the third author. Information, such as peak coordinates (x, 
y, z) and effect sizes (t-, z-, or p-values) of structural or functional 
differences between subjects with primary TN and HCs were extracted 
from each dataset according to the SDM tutorial.

Quality assessment

To better evaluate the quality of included studies, a 10-point 
checklist (Supplementary Table S1) was applied according to prior 
meta-analysis (20). This assessment evaluated both the demographic 
and clinical features of each study’s sample and the imaging 
methodology applied in each study. Each item on the checklist 
received a score of 0, 0.5, or 1 according to the criteria that were not 
met, partially met, or fully met, respectively. The checklist paid 
attention to rating the completeness of the included studies, not to 
criticize the investigators or the work itself.

Meta-analyses of structural and functional 
studies

Voxel-wise meta-analyses of regional brain differences in gray 
matter structure and functional activity were performed 
independently using the AES-SDM software package (version 
5.15, www.sdmproject.com). The procedure has been described in 
detail in a previous study (21) and briefly summarized here. Using 
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an anisotropic non-normalized Gaussian kernel, AES-SDM 
recreates an effect-size map and an effect-size variance map of the 
signed structural or functional activity differences between groups 
from peak coordinates and effect sizes for each study. All maps 
were then combined as a mean map with a standard-effects model 
weighted by the sample size, intra-study variability, and inter-
study heterogeneity. Default SDM kernel size and statistical 
thresholds [full width at half maximum (FWHM) = 20 mm, voxel 
p = 0.005, peak height z = 1, and cluster extent = 10 voxels] were 
used (22).

Multimodal analysis

Both structural and functional findings were summarized in 
a single meta-analytic map as described in a previous study (23, 
24) to detect the brain regions showing functional and structural 
changes. A multimodal meta-analysis in AES-SDM was conducted 
to assess brain regions of overlapping functional and anatomic 
alterations between primary TN subjects and HCs by computing 
the value of p overlap within each voxel from the original 
meta-analytic maps accounting for error (details in 
Supplementary materials). A more stringent probability threshold 

was applied for this multimodal analysis (p < 0.0025) than that 
used in unimodal meta-analyses (23).

Heterogeneity, publication bias, and 
sensitivity analysis

To detect the between-study heterogeneity of individual clusters 
in the meta-analytical results, Q-statistic with a random-effects model 
and tested for significance with a permutation approach (uncorrected 
p < 0.005) was applied; thresholds (voxel threshold p < 0.005, peak 
Z > 1, and cluster extent of 10 voxels) indicated significant 
heterogeneity (22). We also applied the I2 statistic tests to quantify the 
degree of heterogeneity. Funnel plots were created by Egger’s tests for 
visual inspection, in which any result with p < 0.05 indicated obvious 
publication bias. Jackknife sensitivity analyses were performed to 
assess the robustness of the main meta-analytical findings by 
iteratively repeating analyses excluding one dataset each time. 
Additionally, subgroup analyses of those studies applying same-
strength MRI scanners, same smoothing kernel, and statistical 
parametric mapping (SPM) software were performed. These findings 
are considered well replicable if the results are still significant in all or 
majority of the combinations of datasets.

FIGURE 1

Flowchart of the identification of the meta-analysis.
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Meta-regression analyses

To explore the potential effects of clinical variables (e.g., age and 
disease duration) on regional brain anatomic or functional alterations 
in subjects with primary TN, meta-regression analyses were 
conducted using a stringent threshold (p < 0.0005 and extent 
threshold = 10 voxels).

Results

Literature results

Twenty studies (8–14, 16, 17, 25–35) were finally included in the 
current meta-analyses. Among these studies, three studies (11, 13, 33) 
reported both structural and functional results. Three fMRI studies 
(16, 17, 29) shared the same sample but reported results with different 
imaging measures, while another two pairs of fMRI studies (13, 26, 27, 
31) examined another same dataset with different imaging measures. 
One fMRI study and one VBM study divided patients into two 
subgroups and conducted two comparisons respectively, so two sets 
of data were obtained from each of these two studies (11, 12). Another 
VBM study divided patients into three groups according to different 
symptoms and conducted three comparisons (34). In the end, 
we obtained 14 datasets from the 10 VBM studies comprising 398 
subjects with primary TN and 275 HCs and 10 datasets from the 13 
fMRI studies comprising subjects with 307 primary TN and 264 HCs. 
The details of demographic and clinical features and quality 
assessments of the included studies are presented in Table  1. 
Supplementary Table S2 shows the detailed quality assessment scores 
of the included studies, all of which got relatively high scores.

Regional alterations in gray matter volume 
and functional activity

Compared to HCs, subjects with primary TN showed increased 
GMV in the right inferior temporal gyrus and fusiform gyrus, while 
they showed decreased GMV in the left insula, left superior temporal 
gyrus, left putamen, left postcentral gyrus, left inferior frontal gyrus, 
right amygdala, bilateral thalamus, and left striatum (Table  2; 
Figures 2, 3).

Subjects with primary TN showed hyperactivation in the left 
cerebellum, hemispheric lobule VIII, and bilateral thalamus, while 
they showed hypoactivation in the bilateral precuneus, left middle 
temporal gyrus, and superior temporal gyrus (Table 3; Figures 4, 5).

Multimodal analysis of brain gray matter 
volume and functional activity

Compared to HCs, subjects with primary TN showed a conjoint 
increase of GMV and functional activity in the right fusiform gyrus 
and right inferior temporal gyrus and a decrease of GMV and 
functional activity in the left superior temporal gyrus, left insula, and 
left inferior frontal gyrus. The bilateral thalamus showed gray matter 
hypotrophy with hyperactivity in subjects with primary TN compared 
to HCs (Table 4; Figure 6).

Sensitivity analysis, heterogeneity, and 
publication Bias analysis

The results from both VBM and functional meta-analyses were 
highly replicable according to the jackknife sensitivity analyses and 
subgroup analyses limited to methodologically homogenous groups 
of studies (Supplementary Tables S3, S4). Heterogeneity analysis using 
Q statistics indicated that there was no significant variability between 
studies for meta-analysis of VBM studies and meta-analysis of 
functional studies. The I2 statistics indicated substantial heterogeneity 
with an I2 of 37.4 and 26.6% for left thalamus and left middle temporal 
gyrus, respectively, in the functional meta-analysis, and low 
heterogeneity for all the other findings in both structural and 
functional meta-analysis (<10%; Tables 2, 3). No obvious asymmetry 
of all significant brain regions was unveiled from the funnel plots 
(Supplementary Figures S1–S11). Egger’s tests revealed no publication 
bias from the quantitative assessment measured (Tables 2, 3).

Meta-regression results

The meta-regression analysis showed that age at scanning time 
was positively associated with decreased GMV in the left superior 
temporal gyrus and left striatum, while disease duration was positively 
associated with hypoactivation in the left thalamus.

Discussion

To the best of our current knowledge, this is the largest multimodal 
neuroimaging meta-analytic study investigating overlapping and 
dissociated gray matter structural and functional changes in subjects with 
primary TN. We identified conjoint gray matter anatomic and functional 
alterations in the right fusiform gyrus and inferior temporal gyrus, 
bilateral thalamus, left superior temporal gyrus, left insula, and inferior 
frontal gyrus in subjects with primary TN compared to HCs. In addition, 
several brain regions including the left putamen, left postcentral gyrus, 
and right amygdala exhibited only gray matter atrophy, while the left 
cerebellum, bilateral precuneus, and left middle temporal gyrus showed 
only functional alterations. The current meta-analysis emphasized a 
central role in the pathophysiology of primary TN with both consistent 
anatomic and functional alterations mainly in brain regions associated 
with perception and the processing of pain and regulation of emotion.

An increase in GMV with hyperactive function was found in the 
right fusiform gyrus and inferior temporal gyrus in subjects with TN 
relative to HCs. The fusiform gyrus plays a role in sensory integration 
and cognitive processing (36). The right fusiform gyrus is also one of 
the visual processing centers of the mammalian brain, which works in 
integrating visual information and forming conscious perception (29). 
A previous study found that painful electrical shock may activate the 
fusiform cortex, indicating that pain in TN may also activate the 
fusiform gyrus (37). The structural and functional abnormalities in 
the right fusiform gyrus found in the current study emphasized the 
role of the fusiform cortex involved in pain perception and modulation 
in patients with TN. The inferior temporal gyrus has the projection to 
the amygdala and hippocampus, which plays a crucial role in 
emotional processing, regulation, and self-cognition (17, 38). 
Increased functional activity within this region may be relative to the 

https://doi.org/10.3389/fneur.2023.1179896
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2023.1179896

Frontiers in Neurology 05 frontiersin.org

TABLE 1 Characteristics of included structural and functional studies in the meta-analysis.

Study Type No. of 
subjects 

(F)

Age (years) Disease 
duration 
(years)

Software 
Package/

imaging modality

Scanner 
(T)

FWHM 
(mm)

Threshold Quality 
scores

VBM studies

(25) TN 21(17) 55(2.1) 8.5(2.1) SPM5/T1 3.0 6 p < 0.01, corrected 8.5

HC 30(24) 53.6(3.2)

(8)

TN 60(36) 62(13.2) 8.3(6.7) SPM8/T1 1.5 8 p < 0.05, corrected 9

HC 31(11) 61.8(9)

(9) TN 28(13) 45.86(11.17) 8.43(3.65) SPM8/T1 1.5 8 p < 0.05, corrected 9

HC 14(9) 44.89(7.67)

(11) TN(R) 36 (20) 58.0 (7.7) 5.80 (6.28) SPM8/T1 3.0 8 p < 0.05, corrected 10

TN(L) 26 (18) 59.0(6.6) 5.27 (4.92)

HC 19 (15) 55.6 (8.2)

(13) TN 29 (19) 48.14 (11.89) 6.02 (4.35) SPM12/T1 3.0 6 p < 0.05, corrected 10

HC 34 (21) 43.32 (10.07)

(14) TN 40 (23) 55.76 (8.23) 7.08 (5.29) SPM12/T1 3.0 8 p < 0.05, corrected 9

HC 40 (23) 55.80 (8.09)

(12) pTNwNVC 23 (11) 53.30 (8.66) 5.74 (3.35) SPM12/T1 3.0 8 p < 0.05, corrected 9

pTNwoNVC 22 (14) 47.77 (9.24) 4.97 (2.09)

HC 45 (23) 49.36 (11.58)

(32) TN 30 (21) 66.24 (10.57) 6.84 (6.81) FSL/ T1 1.5 NA p < 0.05, corrected 10

HC 15 (10) 62.14 (10.61)

(33) TN 34 (18) 53.06 (10.91) 4.63 (3.53) SPM12/T1 3.0 6 p < 0.05, corrected 10

HC 29 (14) 54.21 (6.33)

(34) TN1 16 (10) 59.1 (5.2) 1.1 (0.7) SPM12/T1 3.0 8

p < 0.005, corrected

9

TN2 17 (11) 60.5 (10.0) 4.8 (1.5)

TN3 16 (9) 63.6 (6.8) 15.1 (5.5)

HC 18 (11) 59.8 (8.0)

Functional studies

(26) TN 17 (10) 63.41 ± 7.25 6.98 ± 5.64 SPM8/fMRI 1.5 6 p < 0.05, corrected 10

HC 19 (10) 62.53 ± 7.41

(10) TN 38 (22) 55.87 (8.38) 7.05 (5.32) REST/fMRI 3.0 8 p < 0.05, corrected 8.5

HC 38 (22) 55.89 (8.06)

(27) TN 17 (10) 62.53 (7.41) 6.98 (5.64) SPM8/fMRI 1.5 6 p < 0.05, corrected 10

HC 19 (11) 61.75 (6.02)

(11) TN(R) 36 (20) 58.0 (7.7) 5.80 (6.28) FSL/fMRI 3.0 6 p < 0.05, corrected 10

TN(L) 26 (18) 59.0 (6.6) 5.27 (4.92)

HC 19 (15) 55.6 (8.2)

(28) TN 23 (9) 59.6 (12.5) 5.69 (3.33) SPM8/fMRI 3.0 4 p < 0.05, corrected 10

HC 23 (11) 63.1 (9.8)

(13) TN 29 (19) 48.14 (11.89) 6.02 (4.35) SPM12/fMRI 3.0 6 p < 0.05, corrected 10

HC 34 (21) 43.32 (10.07)

(17) TN 28 (16) 51.392 (9.372) 3.733 (4.102) SPM8/fMRI 3.0 6 p < 0.05, corrected 9.5

HC 28 (16) 51.357 (9.302)

(29) TN 28 (16) 51.392 (9.372) 3.733 (4.102) SPM8/fMRI 3.0 6 p < 0.01, corrected 9.5

HC 28 (16) 51.357 (9.302)

(Continued)
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TABLE 2 Gray matter volume alterations in patients with primary trigeminal neuralgia compared with healthy controls.

Regions No. of 
voxels

MNI coordinates 
(x, y, z)

SDM-Z 
score

p-value Egger’s 
test(p)

I2 Clusters’ breakdown

TN > HC

Cluster 1 476 52, −34, −28 1.189 <0.001 0.224 <0.001 Right inferior temporal gyrus

Right fusiform gyrus

TN < HC

Cluster 1 5,153 −52, −18, 14 −3.436 <0.001 0.989 <0.001 Left insula

Left superior temporal gyrus

Left putamen

Left postcentral gyrus

Left inferior frontal gyrus, opercular part

Left inferior frontal gyrus, orbital part

Cluster 2 1,257 −6, −20, 2 −3.239 <0.001 0.528 <0.001 Left thalamus

Right thalamus

Cluster 3 92 20, 2, −10 −2.156 0.001 0.448 <0.001 Right amygdala

Cluster 4 47 −8, 8, −6 −2.233 0.001 0.675 1.05% Left striatum

TN, trigeminal neuralgia; MNI, Montreal Neurological Institute; SDM, Seed-based d Mapping; HCs, healthy controls; I2, percentage of variance attributable to study heterogeneity.

FIGURE 2

Regions of gray matter volume increase in patients with primary TN compared with healthy controls. Compared to healthy controls, patients with 
primary TN showed increased gray matter volume in the right inferior temporal gyrus and fusiform gyrus.

TABLE 1 (Continued)

Study Type No. of 
subjects 

(F)

Age (years) Disease 
duration 
(years)

Software 
Package/

imaging modality

Scanner 
(T)

FWHM 
(mm)

Threshold Quality 
scores

(30) TN 28 (14) 37.4 (9.0) 4.5 (13.3) SPM12/fMRI 3.0 8 p < 0.05, corrected 10

HC 28 (14) 40.3 (10.3)

(31) TN 29 (19) 48.14 (11.89) 6.02 (4.35) SPM12/fMRI 3.0 6 p < 0.05, corrected 10

HC 34 (21) 43.32 (10.07)

(16) TN 28 (16) 51.392 (9.372) 3.733 (4.102) SPM8/fMRI 3.0 NA p < 0.05, corrected 10

HC 28 (16) 51.357 (9.302)

(33) TN 34 (18) 53.06 (10.91) 4.63 (3.53) REST/fMRI 3.0 6 p < 0.05, corrected 10

HC 29 (14) 54.21 (6.33)

(35) TN 48 (28) 54.48 (10.35) 7.10 (5.43) FSL/fMRI 3.0 8 p < 0.05, corrected 10

HC 46 (27) 56.50 (8.23)

FWHM, full-width-at-half-maximum; TN, trigeminal neuralgia; HC, healthy control; R, right; L, left; VBM, voxel-based morphometry; SPM, Statistical Parametric Mapping; T1, T1-weighted 
images; FSL, FMRIB’s Software Library; REST, RESTing state fMRI data analysis toolkit; fMRI, functional magnetic resonance imaging; pTNwNVC, primary trigeminal neuralgia with 
neurovascular compression; pTNwoNVC, primary trigeminal neuralgia without neurovascular compression; NA, not available.
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inhibition of pain caused by negative emotions and cognitive 
degradation (17).

Gray matter atrophy with hyperactivation was detected in the 
bilateral thalamus in subjects with TN. The thalamus is a pivotal relay 
station for sensory information. Evidence from neuroimaging studies, 
physiological studies, and lesioning studies indicated that the thalamus 
may hold the key to pain consciousness and understanding of 
spontaneous and evoked pain in chronic pain conditions (39–41). 
Altered GMV and functional activity in the thalamus were also found 
in neuroimaging studies in other chronic pain conditions including 
migraine, chronic back pain, and fibromyalgia (41–43). Using multiple 
brain imaging techniques, significant volume loss in the 
somatosensory thalamus was found to be associated with hypoactivity 

in the thalamic reticular nucleus and primary somatosensory cortex 
in patients with TN. These findings suggested that altered thalamic 
structure and activity in chronic neuropathic pain may result in 
disturbed thalamocortical circuits (44). Neuropathic-specific 
hyperactivity in the thalamic neurons was found several days after 
injuring the trigeminal ganglion neurons in the animal model, 
indicating that these may contribute to neuroplastic changes in the 
thalamocortical circuits and produce long-lasting neuropathic pain in 
the orofacial region (45). The decreased GMV of the thalamus 
identified in the meta-analysis may be related to impaired processing 
and modulation of neuropathic pain signals, and the hyperactivation 
in the thalamus may be secondary to the gray matter atrophy and 
suggest increased sensory load in patients with TN.

FIGURE 3

Regions of gray matter volume decrease in patients with primary TN compared with healthy controls. Compared to healthy controls, patients with 
primary TN showed decreased gray matter volume in the left insula, left superior temporal gyrus, left putamen, left postcentral gyrus, left inferior 
frontal gyrus (Cluster 1), bilateral thalamus (Cluster 2), right amygdala (Cluster 3), and left striatum (Cluster 4).
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TABLE 3 Brain functional alterations in patients with primary trigeminal neuralgia compared with healthy controls.

Regions No. of 
voxels

MNI coordinates 
(x, y, z)

SDM-Z 
score

p-value Egger’s 
test(p)

I2 Clusters’ breakdown

TN > HCs

Cluster1 123 −26, −66, −44 1.527 0.002 0.264 1.06% Left cerebellum, hemispheric lobule VIII

Cluster 2 117 −4, −4, −6 1.637 0.001 0.438 3.63% Right thalamus

Cluster 3 36 −18, −28,10 1.457 0.003 0.283 37.4% Left thalamus

TN < HCs

Cluster 1 293 −50, −60, 10 −1.500 0.002 0.638 26.6% Left middle temporal gyrus

Cluster 2 273 −6, −62, 54 −1.781 <0.001 0.304 9.96% Left precuneus

Right precuneus

Cluster 3 127 0, −38, 42 −1.482 0.001 0.166 <0.001 Left superior temporal gyrus

TN, trigeminal neuralgia; MNI, Montreal Neurological Institute; SDM, Seed-based d Mapping; HCs, healthy controls; I2, percentage of variance attributable to study heterogeneity.

FIGURE 4

Regions of hyperactivity in patients with primary TN compared with healthy controls. Compared to healthy controls, patients with primary TN showed 
hyperactivity in the Left cerebellum, hemispheric lobule VIII (cluster 1), right thalamus (cluster 2), and left thalamus (cluster 3).

A conjoint decrease in GMV and functional activity was found in 
the left inferior frontal gyrus, left insula, and superior temporal gyrus 
in subjects with TN. Anatomic and functional alterations in the left 
inferior frontal gyrus were also reported in other pain-related 
disorders such as myofascial-type temporomandibular disorders (46), 
diabetic neuropathic pain (47), and affective disorders (48). The left 
inferior frontal gyrus is a subregion of the prefrontal cortex, which is 

one of the key regions involved in the affective, cognitive, and 
emotional aspects of pain, and can be activated by pain stimuli and 
has clear implications in pain perception and modulation (49). GM 
atrophy with hypoactivity in the left inferior frontal gyrus may lead to 
the loss of inhibitory control of the nociceptive transmission system 
(50) and may provide the neuroanatomical basis for the increased 
incidence of mood disorders reported in TN (3). The insula is involved 
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not only in sensorimotor and affective processing, autonomic 
information, and high-level cognition but also in pain perception and 
its modulation according to prior neuroimaging studies (51, 52). 

Changes in cortical gyrification and associated altered functional 
connectivity were identified in the left insula and its critical roles in 
the pathophysiology of TN were emphasized (53). The superior 

FIGURE 5

Regions of hypoactivity in patients with primary TN compared with healthy controls. Compared to healthy controls, patients with primary TN showed 
hypoactivity in the left middle temporal gyrus (cluster 1), bilateral precuneus (cluster 2), and left superior temporal gyrus (Cluster 3).

TABLE 4 Multimodal structural and functional abnormalities in patients with primary trigeminal neuralgia compared with healthy controls.

Cluster MNI Voxels Cluster breakdown

Increased GMV + hyperactivity

48, −40, −26 284 Right fusiform gyrus

Right inferior temporal gyrus

Increased GMV + hypoactivity

(None)

Decreased GMV + hyperactivity −4, −4, 6 508 Bilateral thalamus

−16, −28,8 248 Left thalamus

Decreased GMV + hypoactivity −54, 4, 10 2,364 Left superior temporal gyrus

Left insula

Left inferior frontal gyrus, opercular part

Left inferior frontal gyrus, triangular part

MNI, Montreal Neurological Institute; BA, Brodmann Area; GMV, gray matter volume.
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temporal gyrus is critical for extracting meaningful linguistic features 
from speech input and is involved in managing perception in auditory, 
speech, emotions, and comprehension (54). The temporal lobe 
including superior temporal gyrus plays a critical role in the 
perception of chronic pain (9, 10). The decreased GMV and functional 
activity in the left superior temporal gyrus may indicate an adaptative 
mechanism initiated in response to chronic pain and activity-
dependent dendritic changes.

Additionally, we found gray matter atrophy in the right amygdala 
in the unimodal meta-analysis. The amygdala is a pivotal brain center 
for the emotional-affective dimension of pain and pain modulation. 

Other chronic pain conditions in previous studies also detected 
changes in anatomic and functional activities within the amygdala (55, 
56). The amygdala as an essential part of the emotion-related network 
involved in emotional processing, anxiety, stress regulation, reward 
learning, and motivation is associated with affective disorders, 
including anxiety and depression (57). The structural and functional 
alterations within the amygdala may also contribute to a significantly 
increased incidence of anxiety and depression in patients with TN (3). 
Gray matter atrophy and altered connectivity in the amygdala may 
be  exhibited during the transition to chronic pain. Using the 
multimodal neuroimaging approach to assess TN-related structural 

FIGURE 6

Regions showed conjoint gray matter structural and functional alterations in patients with primary TN compared with healthy controls from the 
multimodal meta-analysis. Compared to healthy controls, patients with primary TN showed increased gray matter volume and hyperactivity in the right 
inferior temporal gyrus and fusiform gyrus (Cluster 1), decreased gray matter volume and hyperactivity in the bilateral thalamus (Cluster 2) and left 
thalamus (cluster 3), and decreased gray matter volume and hypoactivity in left superior temporal gyrus and inferior frontal gyrus and left insula (Cluster 4).
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and functional brain alterations in emotion-related and pain-related 
networks (13), reduced GMV in the bilateral amygdala and three 
significantly altered amygdala-related functional circuits were found 
and they supported the pain-related and emotion-related network 
deficits in TN patients. In this study, we found asymmetric changes in 
structural changes within the amygdala, which may be related to the 
hemispheric lateralization of pain processing. The left central nucleus 
of the amygdala showed lower neuronal activity than the right in 
models of inflammatory pain, independent of the side of the 
peripheral injury (58). Meanwhile, asymmetrical time-dependent 
activation of bilateral amygdala neurons was reported in rats with 
peripheral neuropathy, with enhanced evoked activity in the right 
central nucleus of the amygdala persisting compared to short-term 
increases in activity in the left, indicating that the right central nucleus 
of the amygdala was highly involved in the processing of sensitization 
related to neuropathy (59). The asymmetric findings in the amygdala 
may be  the case that the hypotrophy in the right amygdala may 
be resulting from persistent activity.

Several brain regions showed anatomic or functional anomalies 
alone in subjects with TN in the current study. The anatomic 
abnormalities included GMV atrophy in the left putamen and left 
postcentral gyrus, all without functional brain activity changes. The 
putamen is connected with both cortical regions involved in sensory 
processing, attention, and memory. Widespread decreases in pain-
related brain activation were identified in patients with putamen 
lesions, suggesting that the putamen may be pivotally involved in the 
shaping of the pain experience (60). GMV reduction in the putamen 
in the current meta-analysis was consistent with previous studies (11, 
15, 25, 34, 61), supporting the hypothesis that the putamen contributed 
to sensory aspects of pain. The postcentral gyrus is associated with the 
anticipation, intensity, discrimination, spatial, and temporal 
summation aspects of pain processing and self-reported pain 
intensity (15).

The hyperactivity in the left cerebellum and hypoactivity in the 
left middle temporal gyrus and bilateral precuneus were not 
accompanied by GMV alterations. The cerebellum plays a crucial 
role in modulating motor control and is involved in a range of 
movement disorders. Also, a previous study found that the 
cerebellum can receive extensive somatosensory input via 
spinocerebellar pathways, underscoring its additional role as a 
sensory organ (62). Cerebellar functional changes may result from 
increased sensory input derived from long-term and high-
frequency inputs related to patients with TN. The left middle 
temporal gyrus is involved in the perception of pain as previous 
neuroimaging studies reported pain-related activation within this 
brain region (63, 64). Both the precuneus and left middle temporal 
gyrus are crucial brain regions of the default mode network (DMN). 
The DMN is associated with mediating the recognition and 
rumination of pain and internal processing including 
autobiographical memory, self-reference, and stimulus-independent 
thought (65). DMN connectivity was identified to be related to pain 
frequency and intensity in adolescents (66), and alterations in 
connectivity between the DMN and the pain network were reported 
in adults with chronic pain (67). Extending prior works, current 
findings indicated that TN may be related to the desegregation of 
the DMN, and the hypoactivity of critical nodes within this network 
may represent altered maintenance of attention and vigilance of 
pain and reflect TN as a background pain sensation (27).

There were also some limitations in this study. First, the 
heterogeneity among the included studies in demographic data and 
methodologies could not be  entirely ruled out. Second, for 
structural alterations, studies that investigated the cortical 
thickness alterations using surface-based morphometry (SBM) in 
TN were not included because the meta-analysis of these studies 
needed to use a thickness mask (68) that is different from the one 
used for VBM studies, and the limited number of published SBM 
studies in TN prevents the conducting of the vertex-based meta-
analysis (12, 69, 70). Third, various physiological bases and 
underpinning assumptions of the included methods used in the 
fMRI studies may affect the results of the meta-analysis, hindering 
the comprehensive overview of whole-brain functional alterations 
in TN. Lastly, the current multimodal meta-analysis aims to 
identify overlapping brain regions showing both anatomic and 
functional changes; the directionality and causality of the findings 
cannot be directly answered.

Conclusion

Our multimodal meta-analysis demonstrated GM alterations in 
patients with TN, characterized by conjoint structural and functional 
alterations in the bilateral thalamus, left inferior frontal gyrus, insula 
and superior temporal gyrus, and right inferior temporal gyrus, and 
separative GMV reduction in the putamen, postcentral gyrus and 
amygdala, and altered function in cerebellum and nodes of the 
DMN. The pattern of conjoint and disassociated changes in the 
structure and function of GM prompted our understanding of the 
mechanisms underlying TN and may provide potential treatment 
biomarkers for TN in the future.
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