
TYPE Original Research

PUBLISHED 20 July 2023

DOI 10.3389/fneur.2023.1178087

OPEN ACCESS

EDITED BY

Anirban Dutta,

University of Lincoln, United Kingdom

REVIEWED BY

Hui He,

University of Electronic Science and

Technology of China, China

Md. Asadur Rahman,

Military Institute of Science and Technology

(MIST), Bangladesh

*CORRESPONDENCE

Tiejun Liu

liutjdoc@163.com

†These authors have contributed equally to this

work and share first authorship

RECEIVED 02 March 2023

ACCEPTED 29 June 2023

PUBLISHED 20 July 2023

CITATION

Shi S, Qie S, Wang H, Wang J and Liu T (2023)

Recombination of the right cerebral cortex in

patients with left side USN after stroke: fNIRS

evidence from resting state.

Front. Neurol. 14:1178087.

doi: 10.3389/fneur.2023.1178087

COPYRIGHT

© 2023 Shi, Qie, Wang, Wang and Liu. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Recombination of the right
cerebral cortex in patients with
left side USN after stroke: fNIRS
evidence from resting state

Shanshan Shi1†, Shuyan Qie1†, Hujun Wang1, Jie Wang1 and

Tiejun Liu2*

1Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China,
2Department of General Surgery, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China

Objective: Unilateral spatial neglect (USN) is an impaired contralesional stimulus

detection, response, or action, causing functional disability. After a stroke, the

right hemisphere experiences USNmore noticeably, severely, and persistently than

the left. However, few studies using fNIRS have been reported in cases of USN.

This study aimed to confirm weaker RSFC in USN and investigate the potential

inherent features in hemodynamic fluctuations that may be associated with USN.

Furthermore, these features were combined into a mathematical model for more

accurate classification.

Methods: A total of 33 stroke patients with right-sided brain damagewere chosen,

of whom 12 had non-USN after stroke, and 21 had USN after stroke (the USN

group). Graph theory was used to evaluate the hemodynamic signals of the

brain’s right cerebral cortex during rest. Furthermore, a support vector machine

model was built to categorize the subjects into two groups based on the chosen

network properties.

Results: First, mean functional connectivity was lower in the USN group (0.745

± 0.239) than in the non-USN group (0.843 ± 0.254) (t = −4.300, p < 0.001).

Second, compared with the non-USN group, USN patients had a larger clustering

coe�cient (C) (t= 3.145, p < 0.001), local e�ciency (LE) (t= 3.189, p < 0.001), and

smaller global e�ciency (GE) (t= 3.047, p< 0.001). Notably, therewere di�erences

in characteristic path length (L) and small worldness (σ) values between the two

groups at certain thresholds, mainly as higher L (t = 3.074, p < 0.001) and lower

small worldness (σ) values (t = 2.998, p < 0.001) in USN patients compared with

non-USN patients. Finally, the classification accuracy of the SVM model based on

AUC aC (t = −2.259, p = 0.031) and AUC aLE (t = −2.063, p = 0.048) was 85%, the

sensitivity was 75%, and the specificity was 89%.

Conclusion: The functional network architecture of the right cerebral cortex

exhibits significant topological alterations in individuals with USN following stroke,

and the sensitivity index based on the small-world property AUC may be utilized

to identify these patients accurately.

KEYWORDS

functional near-infrared spectroscopy (fNIRS), unilateral spatial neglect (USN), right

cerebral cortex, stroke, small worldness
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1. Introduction

Unilateral spatial neglect (USN) is one of the most prevalent

attention disorders after stroke. It mainly manifests as impairment

in perception and response to contralateral stimuli, which is

observed in 35% to 50% of patients after right hemispheric stroke

(1–4). Notably, USN is a heterogeneous disorder characterized

by different types of ignoring stimuli (1, 5): perception-attentive

neglect vs. movement-intentional neglect, ignoring external

personal space vs. surrounding personal space vs. personal space,

or by distinct reference frames of neglect (4). Regarding frames of

reference, some patients ignore the dual side of space (audience-

centered or egocentric USN). In contrast, others ignore the dual

side of each stimulus without regard to its position concerning the

audience (stimulus-centered or distribution-centered neglect) (6–

8). Persistence of USN is associated with a greater disability after

stroke (1). Additionally, right-sided USN after a left-hemispheric

stroke may be as common as left-sided USN after a right-

hemispheric stroke (9, 10). However, right hemisphere USN was

more pronounced, severe, and lasted longer than left hemisphere

USN after hemilateral stroke (11, 12). According to the findings

of a study involving 359 right-sided stroke patients who were

undergoing rehabilitation, patients with USN (n = 130) had worse

rehabilitation outcomes, a longer hospital stay, and more severe

functional motor and cognitive impairments both at admission

and discharge as determined by functionally independent measures

than patients without USN (4). Thus, a thorough knowledge of

the processes, predictors, and interventions that enhance USN is

essential for increasing the function and quality of life after stroke.

The localization of the brain directly impacts the occurrence

of USN. The severity of USN is also linked to widespread

declines in resting-state functional connectivity between nodes of

the attentional, motor, and auditory networks and contralateral

brain regions, according to a study using resting-state functional

magnetic resonance imaging (fMRI) (13). These neglect-related

functional connectivity changes are mainly seen in stroke patients

with right hemisphere involvement. In other words, a right

hemisphere stroke is more likely to have various neural network

defects on both sides, leading to USN stroke, than a left hemisphere

stroke. Therefore, we focused on USN recovery following a right

hemisphere stroke, congruent with much of the USN recovery and

rehabilitation research.

Memory, attention, and visual processing are all parts of the

frontoparietal network, also called the executive attention network.

Hemineglect has been connected to the frontoparietal network,

which involves both endogenous and intentional attention (14).

According to electroencephalographic (EEG) testing, patients with

right hemispheric damage who experienced left-sided unilateral

neglect symptoms had pathologically enhanced alpha oscillations

in their parietal and occipital regions (15). Furthermore, a

randomized, double-blind, controlled study (16) showed that

neglect brought on by right hemisphere impairment enhanced left

spatial exploration. Additionally, the frequency of USN is also

relatively high in cases of profound brain injury to the thalamus and

basal ganglia. According to an investigation, damage to the basal

ganglia and thalamus impairs the upper longitudinal tract, which

in turn disrupts the connection between the parietal and frontal

lobes, causing unilateral spatial neglect and impairing the function

of the parietal lobe and temporal cortex (17). It should also be noted

that there were few instances of unilateral spatial neglect when the

lesion was limited to the subcortical white matter region (18). There

are additional research findings available. Fink et al. utilizedMRI to

identify USN and found a direct association between subparietal

lobe damage and USN, but no correlation was observed with the

right parietal cortex, cerebellar vermis, or left cerebellar hemisphere

(19). The etiology of unilateral neglect in the literature is unknown

despite many pertinent studies. Furthermore, unilateral neglect is a

heterogeneous disorder whose pathogenesis remains to be explored

for better diagnosis and treatment.

Functional near-infrared spectroscopy (fNIRS) has a variety

of uses in stroke research and is a valuable tool for clinical

research (20, 21). fNIRS is an optical neuroimaging technique

that measures changes in the concentrations of oxygenated

hemoglobin (1[HbO2]) and deoxyhemoglobin (1[Hb]), reflecting

relative regional brain activity (22). Since body motion and closed

environments are not as strictly regulated as in fMRI, fNIRS can

detect brain activity with high ecological validity. The benefits of

fNIRS include being inexpensive, non-invasive, and portable and

having high temporal and moderate spatial resolutions (22). fNIRS

is also useful for resting-state (RS) and resting-state functional

connectivity (RSFC) studies, as well as for detecting changes in

hemodynamic signals brought on by the stimulation of neuronal

activity (23, 24).

This study examined right cerebral cortex network RSFC

recombination in patients with USN following stroke using fNIRS.

The small-world characteristics of the right cerebral cortex brain

networks in patients with USN after stroke were examined from

the complex network graph theory standpoint. We employed

a machine learning technique to categorize patients with and

without USN following stroke based on specific network properties.

Importantly, this allowed us to confirm the existence of certain

right cerebral cortex network patterns in USN patients. A recent

study by fNIRS on USN showed that decreased activity in the right

parietal association cortex, related to spatial perception, during

the prism adaptation task and task-induced reorganization of the

right frontal and parietal areas were involved in the improvement

of USN symptoms (25). However, few studies using fNIRS have

been reported in cases of USN. Thus, the goal of this study has

two aspects: in addition to confirming weaker RSFC in USN.

We investigated the potential inherent features in hemodynamic

fluctuations that may be associated with USN. Furthermore, we

combined these features into a mathematical model to achieve a

more accurate classification with higher sensitivity and specificity.

2. Methods

2.1. Subjects

This study included 33 stroke patients who received

rehabilitation treatment at Beijing Rehabilitation Hospital,

Capital Medical University, between 1 March 2021 and 1 July

2022, including 21 with USN (USN group) and 12 without USN

(non-USN group). The inclusion criteria for subjects with stroke
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TABLE 1 Demographic and clinical data of stroke patients.

USN non-USN t/z P

Age (years) 56.43± 10.86 55.33± 10.99 0.278 0.783

Time post-stroke

(months)

2.10± 0.90 2.00± 0.77 0.307 0.761

MMSE 22.43± 2.80 23.42± 3.12 −0.936 0.357

Sex (male/female) 16/5 9/3 0.006 0.939

USN, unilateral spatial neglect; non-USN, unilateral spatial neglect is not associated with

stroke; MMSE, Mini-Mental State Examination.

were as follows: (1) right unilateral stroke confirmed by MRI or

CT for the first time, with an onset time of more than 14 days; (2)

hemiplegia of the left limb; (3) GCS coma score ≥8; (4) sitting for

2min or more; and (5) age: 30–80 years. The exclusion criteria

were as follows: (1) unstable vital signs; (2) a metal fixator in

the head and a pacemaker in the body; (3) history of seizures;

and (4) visual impairment or visual defect. The inclusion criteria

for the USN group were as follows: (1) USN was detected by

bisection test and cancellation test of the long segment and (2) left

unilateral space is ignored. The inclusion criteria of the non-USN

group were as follows: (1) left hemiplegia and (2) USN is not

associated with stroke. The demographic and clinical data of

stroke patients are presented in Table 1. All included patients

had a high school diploma of secondary education or higher.

There were no significant differences in sex, age, disease course,

diagnosis, or education between the two groups (P > 0.05).

Furthermore, all subjects were informed of the experimental

procedure and basic requirements before the experiment and

signed an informed consent form. This study was approved by

the Ethics Committee of Beijing Rehabilitation Hospital, Capital

Medical University (2020bkky-034).

2.2. fNIRS data collection

This study used Hitachi’s near-infrared functional brain imager

ETG-4000 to collect the right cerebral cortex hemodynamic signals

from subjects in their resting state. According to previous studies,

this source-detector placement covers the right cognitive and

motor-related cortex areas, including the frontal, the premotor

cortex, the supplementary motor cortex, and the primary motor

cortex (26–30). The positioning of the probe array was determined

according to the international 10–20 coordinate system and each

participant’s external auditory canals and vertices were called

landmarks (31). Specifically, 15 probes were attached to a soft cap

designed for the subject and arranged in a 3 × 5 grid covering the

right cerebral region of the subject’s brain. The lower edge of the

near-infrared spectral probe was flush with the subject’s eyebrow

bow, the upper edge was flush with the line between the two ear

tips, and the medial starting point covered the Fpz position. The

fNIRS probe consisted of eight light sources and seven detectors.

In total, 22 detection channels were formed, and the configuration

of fNIRS channels is shown in Figure 1. The distance between

the light source and the detector was 3 cm. A previous study has

demonstrated that near-infrared light can penetrate the cerebral

cortex and can be measured by simulated scattering back to this

distance (32). Furthermore, the experiment was carried out in a

quiet, dark environment. In the experiment, the subjects closed

their eyes, stayed awake, and avoided body movements to reduce

the illusion of movement. fNIRS data were collected at a sampling

rate of 10Hz during a continuous 6-min resting period.

2.3. Data processing

ETG-4000 measured the attenuation changes of dual-

wavelength near-infrared light (695 nm and 830 nm), and two

cerebral hemodynamic parameters were obtained according

to the modified Beer-Lambert law (Equationuation 1): the

concentration changes of oxyhemoglobin (1[HbO2]) and

deoxyhemoglobin (1[Hb]):

ODλ1 =

(

αλ1
HbcHb + αλ1

HbO2
cHbO2

)

× DPFλ1 × d

ODλ2 =

(

αλ2
HbcHb + αλ2

HbO2
cHbO2

)

× DPFλ2 × d (1)

where 1OD is the change in light intensity attenuation, α is the

specific extinction coefficient, 1c is the concentration change, DPF

is the differential path-length factor, and d is the distance between

the light source and the detector.

This study used the Matlab software for the offline processing

of fNIRS data. First, the common average reference (CAR) spatial

filtering method was used to remove the superficial interference in

the hemodynamic signals (33). The CAR spatial filtering method

assumes that global interference signals affect all fNIRS channels.

Therefore, the superficial interference can be reduced by calculating

the average of all channels and subtracting this average from every

single channel and each time point. Subsequently, 0.01–0.1Hz

band-pass filtering was used to remove low-frequency drift and

physiological noise (34). Following visual inspection, data segments

with obvious motion artifacts were discarded. Data from each

patient’s first 3 s and last 3 s were also removed. Finally, for network

analysis, relatively stable 3min of hemodynamic data were selected

for each patient (27, 35). Notably, only HbO2 results were analyzed

in this study due to the higher signal-to-noise ratio for 1[HbO2]

than 1[Hb] (36).

2.4. Small-world properties

The graph theory was used to analyze this study’s small-

world properties of the right cerebral cortex networks. The fNIRS

channel was used as the network node, and Pearson’s correlation

coefficient between channels was used as the connection. By

calculating Pearson’s correlation coefficient between each channel

pair, a 22 × 22 correlation coefficient matrix was obtained. Then,

Fisher’s R to Z transformation was performed on it to improve

the normality. Finally, the corresponding binary network was

obtained through sparseness with different thresholds, and the

topological properties of the corresponding binary network under

each threshold were analyzed. For this investigation, we chose

a threshold range of 0.3–0.8 with a step size of 0.01 (35). All

analyses were carried out over a range of thresholds because there
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FIGURE 1

The schematic diagram of the brain area measured by fNIRS. The green squares represent channels, the red squares represent the light sources, and

the blue squares represent the light detectors. In total, 8 sources and 7 detectors resulted in 22 channels covering the right cerebral region of the

subject’s brain.

is no “correct” threshold (37). A threshold range of 0.3 to 0.8

with a step size of 0.01 was chosen to rarefy the network; 0.3

was chosen to exclude the low-level correlation in topology, and

0.8 was chosen to reduce the data splitting (38). First, take the

absolute value of the Z score matrix and then sort from the

largest to the smallest. Set the connection whose absolute value

is greater than a threshold value to be 1, and set the rest to be

0. For example, when a threshold value was set as 0.6, the Z

score’s first 40% absolute values were defined as 1, and the others

were defined as 0; 1 represented the connectivity between two

channels. That is, there was an edge between the two channels.

This threshold-settingmethod can ensure that the two groups’ right

cerebral cortex area network properties are compared under the

same connection. After constructing the sparse binary network,

FC_NIRS (39) was used to calculate the clustering coefficient

(C), characteristic path length (L), local efficiency (LE), global

efficiency (GE), and small worldness (σ) of the right cerebral

cortex area network. The node clustering coefficient (Equation 2)

represents the ratio of the connection number of the neighboring

node directly connected to the node to the maximum possible

connection number:

Ci =
2ei

ni (ni − 1)
(2)

Among them, ei represents the number of existing connections

between node i and its neighbors, ni represents the degree of node

i, and Ci is the clustering coefficient of node i. The entire network’s

clustering coefficient (Equation 3) is the mean of the clustering

coefficients of all nodes, and the network clustering coefficient

represents the degree of local clustering of the network:

C =
1

N

N
∑

i=1

Ci (3)

The characteristic path length (Equation 4) is the mean value of

the shortest path of all possible pairs of nodes in the network. The
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characteristic path length also reflects the information transmission

efficiency of the network and the degree of network integration:

L =
1

N (N − 1)

∑

i,j∈N,i6=j

di,j (4)

Among them, di,j is the shortest path length between nodes i

and j. The global effect and the local effect are measures of network

efficiency. The global effect (Equation 5) is the mean value of the

reciprocal of the shortest path length (di,j) of all nodes:

Eglob =
1

N (N − 1)

∑

i,j∈N,i6=j

1

di,j
(5)

Local efficiency (Equation 6) is the average of the efficiency of

the subgraph Gi composed of all neighbor nodes of each node in

the network:

Eloca =
1

N (N − 1)

∑

i=1

E (Gi) (6)

In network analysis, we first obtained the small worldness

σ (Equation 9) according to the normalized C (γ, Equation 7)

and the normalized L (λ, Equation 8). We checked whether the

right cerebral cortex area network had small-world characteristics.

Subsequently, we analyzed the differences in five small-world

attributes (C, L, LE, GE, and σ) between the two groups of subjects:

γ = Creal/Crand (7)

λ = Lreal/Lrand (8)

δ = γ/λ (9)

Among them, Creal and Lreal are the C and L of the real network,

respectively, and Crand and Lrand are the average C and the average

L of 100 random networks.

2.5. The right cerebral cortex areas network
pattern classification

To explore whether the patient has a specific right cerebral

cortex area network pattern that is different from normal subjects,

we selected the right cerebral cortex area network features. We

then used the machine learning method to classify the two groups

of subjects. The essence of pattern recognition is to classify the

input pattern into a predefined category or realize the automatic

classification of the pattern according to the similarity between

patterns (40). If a stroke patient has a specific brain network

pattern different from a healthy individual, machine learning can

reasonably distinguish the two. To avoid the influence of the

threshold, we used the area under the curve (AUC) of the five

network parameters under the threshold of 0.3–0.8 as alternative

features. AUC can provide a summarized scalar for the topological

characteristics and is independent of selecting a single threshold

(41, 42). In addition, AUC is sensitive to changes in brain network

topology (43). The AUCs of the five network parameters were

compared between two groups with t-tests, and then AUCs that

were significantly different between the two groups (P < 0.05) were

selected as classification features. Based on the selected features, a

support vector machine (SVM) model was established to classify

the two groups of subjects. SVM is derived based on the principle

of structured risk minimization. The optimal decision plane of

SVM depends on the support vector and does not depend on

the sample size, so it is suitable for small sample classification.

Moreover, grid search was used to optimize the SVM model’s

penalty coefficient and kernel function parameters. The optimal

model parameters in this study were C = 3 and kernel = “linear.”

We used leave-one-out cross-validation to evaluate the model

performance, leaving one subject’s data for model testing and the

other for model training. Furthermore, this step was repeated until

each subject had been tested once. Finally, the performance of the

model was evaluated through the test results for each subject by

sensitivity (Equation 10), specificity (Equation 11), and accuracy

(Equation 12):

Sensitivity = TP/(TP + FN) (10)

Specificity = TN/(FP + TN) (11)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (12)

Among them, false negative (FN) is the number of misclassified

USN patients. False positives (FP) are the number of misclassified

non-USN subjects. True positive (TP) is the number of USN

patients correctly classified, and true negative (TN) is the number

of non-USN subjects correctly classified.

2.6. Statistical analysis

The MATLAB software was used for Pearson’s correlation

analysis and t-tests. Additionally, all t-tests were corrected by FDR.

The comparison of FC between the two groups was conducted,

the correlation matrices of all participants in a family were

averaged, and the average connectivity between the two groups

was compared using the t-test. The comparison of small-world

attributes between the two groups was conducted using the two-

independent sample t-test. Statistical analysis was performed using

SPSS 22.0. The Python software was used for SVM modeling and

classification prediction. The statistical significance level was set

at 0.05.

3. Results

3.1. Functional connectivity

The average group FC of all groups is shown in Figure 2. There

was a statistically significant difference in FC values between the

two groups (t = −4.300, p < 0.001), and the mean functional

connectivity intensity in the USN group (0.745 ± 0.239) was lower

than that in the non-USN group (0.843± 0.254).
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FIGURE 2

Two groups’ resting-state functional connectivity (RSFC) matrix diagram. Axes represent the channels—each channel with its correlation coe�cient

set at zero (the diagonal line).

FIGURE 3

The global network metrics in a range of sparsity thresholds (30–80%). The mean C (A), GE (B), LE (C), L (D), and σ (E) of the two groups of subjects

under each threshold. The shadow on the left of each figure represents the standard error for all participants, and the gray shadow on the right

represents the threshold range with significant di�erences between the two groups.
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3.2. The right cerebral cortex network
features

Figure 3 shows the changing trend of the small-world attribute

of the right cerebral cortex network for the two groups of subjects

under the threshold of 0.3–0.8. With the increase of threshold,

clustering coefficient (C), local efficiency (LE), and global efficiency

(GE) all increased. The characteristic path length (L) and small

worldness (σ) value decreased with the increase in the threshold.

The first objective of this study was to investigate right cerebral

cortex network recombination in patients with USN after stroke.

To this end, we studied the difference between the two groups of

subjects based on the topological properties of the right cerebral

cortex networks. If the network has small-world properties, small

worldness (σ) should be larger than 1 (44). Figure 3 shows that

both groups’ right cerebral cortex networks showed small-world

characteristics. T-test results showed that C (t = 3.145, p < 0.001),

LE (t = 3.189, p < 0.001), and L (t = 3.074, p < 0.001) in

patients with USN after stroke were higher than those with stroke.

Additionally, GE (t = 3.047, p < 0.001) in patients with USN

was lower than in those with stroke. Furthermore, L and small

worldness σ values were different between the two groups under

certain thresholds, mainly showing that L in USN patients was

higher than that in non-USN patients (t = 3.074, p < 0.001), and

small worldness σ value in USN patients was lower than that in

non-USN patients (t = 2.998, p < 0.001) (Figure 3).

3.3. SVM classification results

According to the t-test results of the five small-world attributes

between the two groups, we chose the clustering coefficient AUC

(t = −2.259, p =0.031) and global effect AUC (t = −2.063,

p= 0.048)as the classification features (Figure 4A). The established

SVM model had a classification accuracy rate of 85% for the two

groups of subjects. The sensitivity and specificity were also 75% and

89%, respectively. Furthermore, the SVMmodel’s receiver operator

characteristic (ROC) curve for classifying two groups is shown in

Figure 4B, with the AUC reaching 0.85.

4. Discussion

In the last two decades, the interest in fNIRS has been

gradually evolving for its real-time monitoring, relatively low-cost,

radiation-less environment, portability, patient-friendliness, etc.

Including brain-computer interface and functional neuroimaging

research, this technique has some important applications of clinical

perspectives, such as Alzheimer’s disease, schizophrenia, dyslexia,

Parkinson’s disease, childhood disorders, post-neurosurgery

dysfunction, attention, and functional connectivity can be

diagnosed in some form of assistive modality in clinical approaches

(45). However, studies using near-infrared spectroscopy in USN

cases are rarely reported. At present, the pathogenesis of USN

is unknown, and diagnosis only depends on the scale, while

those with cognitive dysfunction or language impairment of USN

patients are not timely diagnosed. In this study, we employed a

graph theory approach to investigate the reorganization of the

brain network in patients with USN and aimed to establish a

machine learning-based assessment model for predicting USN.

In this study, resting fNIRS was tested in the right cerebral

cortex in patients with and without USN after stroke, and the

key findings include (1) functional network connectivity in the

right cerebral cortex was lower in patients with unilateral neglect

than in the non-USN group; (2) the functional brain networks

of the stroke patients showed uniformly comparable small-world

economic organization; (3) compared with stroke patients without

unilateral neglect, USN patients showed lower global efficiency

and a smaller world; USN patients also showed higher clustering

coefficient, higher local efficiency, and higher feature path length;

and (4) based on the selected network features, the established

SVM model was used to classify the two groups of subjects with

85% accuracy. Overall, we observed significant changes in the

topological organization of the right cerebral cortex network in

patients with unilateral neglect after stroke. Notably, our results

provide insights into the critical topological changes in functional

brain networks in patients with USN. These results are further

discussed in detail below.

RS is an organized baseline state or default mode of brain

function, and resting-state functional connectivity (RSFC) can

provide meaningful information about cortical restructuring after

stroke. RSFC is closely related to poststroke functional status

(46) and has the potential to predict poststroke recovery (47).

Importantly, RSFC is a promising poststroke brain functional status

biomarker and is primarily used in clinical trials (48). Previous

studies have shown a general reorganization of brain function at RS

after stroke (49). In this study, fNIRS tests were performed on the

right cerebral cortex network of patients from the stroke group and

the USN group, suggesting that the right cerebral cortex network

in the USN group not only reorganized but also showed weaker

functional connectivity than in the stroke group. Furthermore, the

right cerebral cortex network pattern was specific in patients with

USN after stroke compared with patients without USN.

Functional recombination of the prefrontal cortex after stroke

is associated with several functions in patients. PFC is associated

with cognitive function (13) and emotional recovery (50) in stroke

patients. PFC is also important for motor control in stroke patients,

allowing them to prioritize walking (51). In some studies, damage

to the basal ganglia and thalamus has been found to affect the upper

longitudinal tract, disrupting the connection between the parietal

and frontal area and resulting in unilateral spatial neglect (24).

This study aimed to investigate the recombination of the right

cerebral cortex network at RS in patients with USN after stroke

and to analyze the topological nature of the right cerebral cortex

network. The results showed that the right cerebral cortex network

has small-world properties in patients with and without USN after

stroke. Furthermore, brain networks with small-world properties

may provide a topological basis for local specialization and globally

distributed processing (52). In this study, the topological properties

of the right cerebral cortex network were significantly different

between USN patients after stroke and those without USN at RS.

The clustering coefficient of the right cerebral cortex network in

USN patients after stroke increased, indicating that the number

of local short connections in the right cerebral cortex network
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FIGURE 4

(A) The AUC indicators for the five small-world attributes of the two groups of subjects, in which AUCs for C, L, δ, LE, and GE are significantly di�erent

between the two groups. (B) The ROC curve of the SVM model for the two groups. *p < 0.05.

increased in USN patients, and strong local clustering occurred.

After a stroke, the whole brain network was reorganized due to

neuronal disruption (53, 54). Although most stroke patients in this

study had brain lesions not located in the right cerebral cortex,

the right cerebral cortex network was reorganized during USN

recovery after stroke, and this recombination pattern was very

specific. In this study, the clustering coefficient, local efficiency,

and characteristic path length of the right cerebral cortex network

were higher in patients with USN after stroke than in patients

without USN. In contrast, the global efficiency and small-world

attribute were lower than in patients without USN. The reduction

of long-term connections in the right cerebral cortex network in

USN patients after stroke (the LE_AUC was higher in USN patients

than in the stroke group) suggests that the isolation between

the local components of the stroke degree is higher in stroke

patients, which reduces the overall efficiency and small world of the

PFC network (55). Local efficiency was higher in stroke patients

than in healthy controls, and global efficiency was lower than

in healthy controls (56). Our findings are in line with Li et al.

study, which demonstrated that the brain networks of acute stroke

patients exhibit reduced cosmopolitan structure and fewer long-

range connections compared to those of healthy individuals (57).

Similar research has discovered a correlation between small-world

characteristics in the inferior cerebral cortex region of RS and

motor function among patients (58). Studies have demonstrated

that there is an inverse relationship betweenmotor function and the

clustering coefficient of the brain network (35). This study revealed

a larger clustering coefficient in the right cerebral cortex network

of USN patients compared to the non-USN group, indicating poor

exercise ability consistent with previous research findings (1, 59–

61).

Machine learning has already been widely applied in the

field of medicine due to its capacity for identifying discriminant

variables that can be utilized for making predictions (62), as

well as its ability to easily integrate new data and enhance

predictive performance (63). In stroke research, machine learning

has improved the assessment and prediction of diagnostic and

therapeutic purposes (64, 65). The objective of this study was

to develop a machine learning-based assessment method that

provides an objective evaluation of brain network reorganization.

Based on the characteristics of the selected brain network, the

SVM model exhibited high sensitivity and specificity for both

subject groups, with a higher sensitivity than specificity. This

may be attributed to the larger sample size of patients in

the USN group compared to that of the non-USN group and

lateralization during classification. Additionally, it is possible

that there exists a similar network pattern within the right

cerebral cortex brains among USN patients after stroke, which

reduces variability.

This study also has noted limitations. First, the number of

subjects in this study was relatively small, with only 12 non-

USN subjects and 21 USN subjects. In the future, we will recruit

more subjects to further investigate the clinical value of right

cerebral cortex network features in patients with USN after stroke.

Additionally, because this was a preliminary study, only the

right side of the patients’ brains was examined, and the test site

was limited. Given that the unilaterally disregarded injury site

is not only confined to the right hemisphere or cerebral cortex

but also encompasses regions such as the parietal lobe, occipital

lobe, and basal ganglia, future investigations should employ

more comprehensive and rigorous testing to further elucidate the

pathogenesis of USN.

5. Conclusion

This study represents the first attempt to investigate

the level of brain function in the right cerebral cortex

region among patients with unilateral spatial neglect using

fNIRS analysis of resting-state brain networks. Our findings

demonstrate significant topological alterations in the functional

network organization of the right cerebral cortex among

stroke patients with unilateral spatial neglect, compared

to those without such neglect. These results offer novel

insights into subtle changes in the pathogenesis of USN brain

functional networks.
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