AUTHOR=Dai Chun-Qiu , Gao Ming , Lin Xiao-Dong , Xue Bai-Jie , Liang Ying , Xu Mu-Lan , Wu Xiang-Bo , Cheng Gui-Qing , Hu Xu , Zhao Chen-Guang , Yuan Hua , Sun Xiao-Long TITLE=Primary motor hand area corticospinal excitability indicates overall functional recovery after spinal cord injury JOURNAL=Frontiers in Neurology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1175078 DOI=10.3389/fneur.2023.1175078 ISSN=1664-2295 ABSTRACT=Background

After spinal cord injury (SCI), the excitability of the primary motor cortex (M1) lower extremity area decreases or disappears. A recent study reported that the M1 hand area of the SCI patient encodes the activity information of both the upper and lower extremities. However, the characteristics of the M1 hand area corticospinal excitability (CSE) changes after SCI and its correlation with extremities motor function are still unknown.

Methods

A retrospective study was conducted on the data of 347 SCI patients and 80 healthy controls on motor evoked potentials (MEP, reflection of CSE), extremity motor function, and activities of daily living (ADL) ability. Correlation analysis and multiple linear regression analysis were conducted to analyze the relationship between the degree of MEP hemispheric conversion and extremity motor function/ADL ability.

Results

The CSE of the dominant hemisphere M1 hand area decreased in SCI patients. In 0–6 m, AIS A grade, or non-cervical injury SCI patients, the degree of M1 hand area MEP hemispheric conversion was positively correlated with total motor score, lower extremity motor score (LEMS), and ADL ability. Multiple linear regression analysis further confirmed the contribution of MEP hemispheric conversion degree in ADL changes as an independent factor.

Conclusion

The closer the degree of M1 hand area MEP hemispheric conversion is to that of healthy controls, the better the extremity motor function/ADL ability patients achieve. Based on the law of this phenomenon, targeted intervention to regulate the excitability of bilateral M1 hand areas might be a novel strategy for SCI overall functional recovery.