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Background and purpose: As one common feature of cerebral small vascular 
disease (cSVD), white matter lesions (WMLs) could lead to reduction in brain 
function. Using a convenient, cheap, and non-intrusive method to detect WMLs 
could substantially benefit to patient management in the community screening, 
especially in the settings of availability or contraindication of magnetic resonance 
imaging (MRI). Therefore, this study aimed to develop a useful model to incorporate 
clinical laboratory data and retinal images using deep learning models to predict 
the severity of WMLs.

Methods: Two hundred fifty-nine patients with any kind of neurological diseases 
were enrolled in our study. Demographic data, retinal images, MRI, and laboratory 
data were collected for the patients. The patients were assigned to the absent/
mild and moderate–severe WMLs groups according to Fazekas scoring system. 
Retinal images were acquired by fundus photography. A ResNet deep learning 
framework was used to analyze the retinal images. A clinical-laboratory signature 
was generated from laboratory data. Two prediction models, a combined model 
including demographic data, the clinical-laboratory signature, and the retinal 
images and a clinical model including only demographic data and the clinical-
laboratory signature, were developed to predict the severity of WMLs.

Results: Approximately one-quarter of the patients (25.6%) had moderate–severe 
WMLs. The left and right retinal images predicted moderate–severe WMLs with 
area under the curves (AUCs) of 0.73 and 0.94. The clinical-laboratory signature 
predicted moderate–severe WMLs with an AUC of 0.73. The combined model 
showed good performance in predicting moderate–severe WMLs with an AUC 
of 0.95, while the clinical model predicted moderate–severe WMLs with an AUC 
of 0.78.

Conclusion: Combined with retinal images from conventional fundus 
photography and clinical laboratory data are reliable and convenient approach to 
predict the severity of WMLs and are helpful for the management and follow-up 
of WMLs patients.
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1. Introduction

Stroke is a leading cause of mortality and long-term disability, 
especially in low- and middle-income countries (1). In China, among 
28.76 million prevalent cases of stroke in 2019, and most of the cases 
were ischemic stroke (2). Cerebral small vascular disease (cSVD), 
including white matter lesions (WMLs), is a major challenge to brain 
health, accounting for approximately 30% of the cause of ischemic 
stroke (3). It was estimated that 36% of cSVD cases were due to 
WMLs (4).

The severity of WMLs is negatively associated with cognitive 
function, especially in the patients of Fazekas 3 and 4 WMLs (5, 6). In 
addition, WMLs was also association with new-onset depression in 
older people in the community and the risk of post-stroke depression 
and dysfunction of bowel and bladder (7). WMLs are associated with 
poorer gait and balance (8). And WMLs are a strong predictor of the 
incident stroke (9). The severity of WMLs progressed over time. The 
Leukoaraiosis and Disability Study showed that about 73.6% of the 
participants had WMLs progression during 3 years follow-up and 
among the patients with severe WMLs, more than 80% of them had 
WMLs progression (10). Thus, regular screening is crucial for the early 
identification of WMLs and the prevention of its progression. 
Magnetic resonance imaging (MRI) has been widely used to detect 
WMLs in vivo (11). However, MRI is not available for all the 
candidates who needed WMLs screening or diagnosis due to 
insufficient economic resource, unavailability of MRI equipment, 
contraindication of MRI and so on. Convenient substitution of MRI 
to assess WMLs is helpful for patient management and 
economic efficiency.

It’s worth noting that the brain and retinal vasculature are 
homology (12). More specifically, the blood–retinal barrier mirrors 
the blood–brain barrier. In addition, the microcirculation of the brain 
and retina share a similar autoregulation function to maintain blood 
flow (13). The retinal microcirculation has a similar embryonic, 
anatomical, and physiological basis to that of small intracranial vessels 
(14, 15). Thus, the retina is a window through which vasculature and 
neural tissues can be  dynamically and non-invasively observed. 
Retinal blood vessel lesions have been found to be  independently 
associated with WMLs (16–18).

Significant progress in deep learning classifiers has been achieved 
in medical imaging fields, such as radiology, dermatology, pathology 
and ophthalmology (19). Among various deep learning techniques, 
convolutional neural networks make automatic, efficient and accurate 
image-based diagnosis possible (20, 21). Specifically, deep learning 
models based on retinal images rival ophthalmologists when screening 
diabetic retinopathy (22). Moreover, there is early evidence that 
identification of central nervous system diseases based on retinal 
images is possible. Recently, texture characteristics of retinal images 
discovered by automated retinal image analysis have been found to 
predict WMLs in community participants (23). A deep learning 
algorithm has been applied to raw retinal images was put forward to 

predict WMLs (24). However, it is worth noticing that the capability 
to predict WMLs of these retinal images-based models needs further 
improvement. Thus, a comprehensive model that not only includes 
retinal images but also these clinical data need to be developed. A 
recent study developed a comprehensive model combined a deep 
learning model based on retinal images and clinical information, 
which accurately predicted chronic kidney disease and type 2 diabetes 
(25). Concerning that hypertension (26), hyperlipidemia (27), 
impaired glucose metabolism (28), kidney failure (29) and systemic 
inflammation (30) are risk factors of WMLs, incorporating the clinical 
information of these risk factors into the retinal images-based 
prediction model may improve the capability of prediction and 
enhance the clinical practicability of the model. To the best of our 
knowledge, no studies have been conducted to develop a deep learning 
model using retinal images combined with the clinical laboratory data 
to predict the severity of WMLs.

Therefore, based on the previous findings that retina and its 
vasculature share similarity with cerebral small vessels, we aimed to 
develop a comprehensive model including retinal images and clinical 
laboratory data to predict WMLs severity, which may facilitate 
screening WMLs patients and follow-up.

We first built up a ResNet deep learning neural network to analyze 
correlation between the retinal images and the severity of WMLs. 
Then, we fused a clinical-laboratory signature based on the clinical 
laboratory data. A model combining demographic-clinical 
characteristics, the clinical-laboratory signature, and the outputs of 
the retina deep learning neural network was further developed to 
predict the severity of WMLs. To test the significance of the retinal 
images on predicting the severity of WMLs, the clinical model only 
included demographic-clinical characteristics and the clinical-
laboratory signature. The performance of predicting WMLs severity 
of the two models was compared.

2. Methods

2.1. Patient selection

The clinical documentations of patients admitted to the 
Department of Neurology, the First Affiliated Hospital of Sun Yat-sen 
University, from January 2018 to January 2020 were retrospectively 
reviewed. The inclusion criteria were as follows: (1) patients who 
underwent nonmydriatic fundus photography; (2) patients who 
underwent brain MRI; and (3) over 18 years old. The exclusion 
criteria were as follows: (1) poor quality nonmydriatic fundus 
photography or MRI images; (2) missing clinical data; (3) WMLs 
caused by hereditary diseases, immune disorder, or infection (e.g., 
Fabry disease, cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy, cerebral autosomal 
recessive arteriopathy with subcortical infarcts and 
leukoencephalopathy, multiple sclerosis, neuromyelitis optica 
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spectrum disorder, encephalitis); (4) intracranial hypertension or 
hydrocephalus; (5) major brain edema or intracerebral hemorrhage; 
(6) primary ophthalmological diseases impairing the retina or 
hindering observation of the retina by fundus photography; (7) 
recent (<6 months) ophthalmological surgery; and (8) concomitant 
significant systemic infection. Demographic-clinical data, including 
age, sex, systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) on admission, were collected. Comorbidities, including 
hypertension, diabetes mellitus, statin usage, atrial fibrillation, 
coronary heart disease, previous stroke or transient ischemic attack 
(TIA), were documented. Hypertension was defined as systolic blood 
pressure of ≥140 mmHg or diastolic blood pressure of ≥90 mmHg or 
current treatment with anti-hypertensive medications. Diabetes 
mellitus was defined as fasting plasma glucose ≥7.0 mmol/L or 
hemoglobin A1c (HbA1c) ≥ 6.5% or current treatment with blood 
glucose lowering medication. This study met the criteria of the 
Declaration of Helsinki, and it was approved by the Ethics Committee 
of the First Affiliated Hospital of Sun Yat-sen University, which 
waived the requirement for written informed consent due to this 
study was retrospectively designed [No. (2022) 202].

2.2. Magnetic resonance imaging 
acquisition and analysis

All patients underwent brain MRI at 3 Tesla scanners (Siemens 
Trio Tim or Siemens Verio). In the present study, T1-weighted 
imaging (T1WI), T2-weighted imaging (T2WI), T2-fluid attenuation 
inversion recovery (T2-FLAIR), and diffusion-weighted imaging 
(DWI) were collected for all patients. The parameters were as follows: 
(1) T1WI, repetition time (TR)/echo time (TE) 500/8.9 ms, and slice 
thickness (SL) 6.0 mm; (2) T2WI, TR/TE = 4000/100 ms, and SL 
6.0 mm; (3) T2-FLAIR, TR/TE = 9000/111 ms, inversion recovery 

2,500 ms, and SL 6.0 mm; and (4) TR/TE = 5800/100 ms, b = 0/1000 s/
mm2, and SL 5.0 mm.

WMLs were analyzed on T2WI and T2-FLAIR images and semi-
quantitatively graded based on the Fazekas grading system. 
Periventricular hyperintensity (PVH) was scored as 0 for the absence 
of any lesions, 1 for cap or pencil-like lesions, 2 for halo-like lesions 
with diameters of 6 mm ~ 10 mm, and 3 for irregular lesions with 
diameters of more than 10 mm. Deep white matter hyperintensity 
(DWMH) was scored as 0 for the absence of any lesion, 1 for punctate-
like lesions, 2 for small confluent lesions, and 3 for large confluent 
lesions (Figure 1). For patients with significant brain edema induced 
by ischemic stroke or intracerebral hemorrhage, the Fazekas score was 
defined by the presence of a WML in the contralateral hemisphere. 
The scores of PVH and DWMH were further combined to represent 
the overall WMLs severity (31). The summation of the PVH score and 
DWMH score is the final Fazekas score that ranged from 0 to 6. The 
final Fazekas score was determined by two vascular neurologists (LS 
and KZ), and any discordant results between the two observers were 
resolved by consensus. Thus, the numbers of the patients of each final 
Fazekas score were as follow: final Fazekas score 0 (n = 81), final 
Fazekas score 1 (n = 62), final Fazekas score 2 (n = 51), final Fazekas 
score 3 (n = 29), final Fazekas score 4 (n = 16), final Fazekas score 5 
(n = 8), and final Fazekas score 6 (n = 12). To minimize the redundancy 
and maximize the clinical practicability of our model, we assigned the 
patients with final Fazekas score 0 to 2  in the absent/mild WMLs 
group and the patients with final Fazekas score 3 to 6 in the moderate–
severe WMLs group.

2.3. Retinal images acquisition

Fundus photography was performed on both eyes for all patients 
without pupil dilatation (at a KOWA nonmyd7, Japan). In brief, 

FIGURE 1

The transverse (A) and coronal (B) sections of MRI of Fazekas scale to semi-quantitatively quantify the WMLs severity. For deep white matter 
hyperintensity (DWMH): punctate foci, score 1; small confluences, score 2; large confluences, score 3. For periventricular hyperintensity (PVH): caps or 
pencil-thin linings, score 1; smooth halos with diameters of 6 mm ~ 10 mm, score 2; irregular lesions with diameters of more than 10 mm, score 3. 
DWMH, deep white matter hyperintensity; PVH, periventricular hyperintensity.
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patients sat in front of the fundus photography system and were 
instructed to focus on the center of the viewing system while the 
fundus was examined. The field of view was set to 45° to enable 
visualization of the posterior portion of the examined eye. The 
position of the camera and focal length were finely adjusted so that the 
optic disk and macula were clearly viewed. The images of both eyes 
were stored in a workstation for further analysis (Figure 2).

2.4. Deep learning neural network for 
retinal images

We used ResNet-18 model as the training model to predict the 
present moderate–severe WMLs in brain MRI scan by using retinal 
images. ResNet-18 is a residual network pretrained using the ImageNet 
dataset, but the associated fully connected softmax layer has been 
replaced by a supervised classifier. The pre-trained model used in our 
study is available on the code repository.1 We further modified this 
pre-trained model for our study. The convolution kernel of the 
convolutional layer is 7 × 7. The max pooling layer was directly 
performed by a convolutional layer with stride 2, followed by batch 
normalization after each convolution operation and before the ReLU 
activation function. The image was resized to 224 × 224 to match the 
input image size required by ResNet-18. Then we used a linear classifier 
to perform feature scaling on the 2048-dimensional output feature 
vector of the last convolutional layer for dimensionality reduction, and 

1 https://download.pytorch.org/models/resnet18-f37072fd.pth

set the final output layer dimension as 2. Each network includes three 
main modules: the input module, the output module, and the 
intermediate convolution module. We  used the cross-entropy loss 
function as objective function. The optimizer was Adam, learning rate 
was 0.001. Finally, the deep-learning model produced a single value 
ranged 0 to 1 for each retinal image. This value indicates the probability 
of moderate/severe WMLs that was predicted by this deep-learning 
model and we took this value for further analysis. The class activation 
maps for each retina were generated to visualize the weight of predicting 
WMLs in the sub-regions of retina. The class activation maps for each 
retinal images were generated by the Grad-CAM algorithm.

2.5. Clinical-laboratory signature

Clinical-laboratory data were examined for all patients. The 
clinical-laboratory data can be concisely divided into four regiments, 
including lipid-glucose metabolism, systemic inflammation, and liver 
and renal function. In detail, the lipid-glucose metabolism regimen 
included total cholesterol (CHOL), total triglyceride (TG), low density 
lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol 
(HDL-c), apolipoprotein-E (Apo-E), apolipoprotein-A1 (Apo-A1), 
apolipoprotein-B (Apo-B), Apo-A1/Apo-B ratio, lipoprotein-α (Lp-α), 
fasting blood glucose (FBG), HbA1c, free fat acid (FFA), fructosamine, 
and homocysteine. The systemic inflammation regimen included 
C-reactive protein (CRP), high-sensitivity C-reactive protein 
(Hs-CRP), and the Hs-CRP/CRP ratio. The liver function regimen 
included aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), total protein (TP), total bilirubin (TBIL), albumin, globulin, 

FIGURE 2

Fundus images of two patients with mild WMLs (A) and severe WMLs (B). The white hollow arrow represents rigid exudation, the black hollow arrow 
represents arteriovenous pressure, the white arrow represents microhemorrhage, and the black arrow represents retinal artery stenosis. WMLs, white 
matter lesions.
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and albumin/globulin ratio (A/G ratio). The renal function regimen, 
including creatine and uric acid (UA).

We developed a clinical-laboratory signature representing the 
metabolism, systemic inflammation, liver and renal function. A least 
absolute shrinkage and selection operator (LASSO) logistic regression 
model was implemented to eliminate collinearity, reduce overfitting, 
filter and select the clinical laboratory data that correlate with 
moderate–severe WMLs by tuning the hyperparameters that 
minimize Akaike information criteria (AIC).

2.6. Development of the WMLs severity 
prediction model

We developed a combined model including demographic-clinical 
characteristics, the clinical-laboratory signature, and the outputs of 
the retina deep learning neural network to predict WMLs severity. The 
demographic-clinical characteristics used in the predictive model 
were age, sex, SBP and DBP on admission. Age was included in the 
model as a continuous variable. Male was coded as 1 and female was 
coded as 0. SBP was further transformed into a hierarchical variable 
by defining values <140 mmHg as 0, values of 140 ~ 159 mmHg as 1, 
values of 160 ~ 179 mmHg as 2, and values of ≥180 mmHg as 3. 
Similarly, DBP was transformed by defining values <90 mmHg as 0, 
values of 90 ~ 99 mmHg as 1, values of 100 ~ 109 mmHg as 2, and 
values ≥110 mmHg as 3. The combined model was formulated based 
on the results of multivariate logistic regression that minimized the 
penalty parameter conducted by 10-fold cross-validation. 
Furthermore, a clinical model including demographic-clinical 
characteristics and clinical-laboratory signatures was generated based 
on the results of multivariate logistic regression that minimized the 
penalty parameter conducted by 10-fold cross-validation without the 
outputs of retina deep learning neural network.

2.7. Statistics

Data for continuous variables are summarized as the mean and 
standard deviation. Categorical variables were summarized by number 
and percentage. Univariate logistic regression was carried out in R 
(v4.0.5) to explore the relationship among demographic-clinical 
characteristics, individual clinical laboratory data and WMLs severity. 
The continuous variables were compared by independent-sample t test 
between patients in the absent/mild WMLs group and patients in the 
moderate–severe WMLs group. The categorical variables were 
compared by the chi-square test or Fisher’s exact test. Univariate 
logistic regression was used to explore the association between clinical-
laboratory indices and dichotomized WMLs severity. Odds ratios 
(ORs) and 95% confident intervals (95% CIs) were used to predict the 
association between clinical-laboratory data and WMLs severity. The 
predictive model development and compilation of the clinical-
laboratory signature were conducted in Python (v 3.7) and the scikit-
learn package.2 The performance of the clinical-laboratory signature, 
the retinal images, the combined model, and the clinical model was 

2 https://scikit-learn.org/

comprehensively predicted by the receiver operating characteristic 
curve. The area under curve (AUC), accuracy, precision, recall, F1 
score, sensitivity, and specificity were calculated. The coefficient of 
determination (R2) and recall rate were further utilized to predict the 
performance of the clinical-laboratory signature, and the clinical mode.

3. Results

3.1. Patient clinical characteristics

Two hundred fifty-nine patients were enrolled in our study. The 
mean age of all patients was 52.3 ± 13.5 years. More than half of the 
included patients were male. The mean SBP of all patients was 
140.4 ± 24.8 mmHg. The mean DBP of all patients was 
87.7 ± 15.4 mmHg. The most common comorbidity was hypertension, 
which was present in 56.8% of all patients. Current smoking (35.1%), 
statin usage (21.6%), diabetes mellitus (17.4%), alcohol abuse (14.7%) 
and previous ischemic stroke/TIA (18.5%) were also common among 
all patients. A small proportion of the patients had atrial fibrillation 
(2.3%) and coronary heart disease (3.5%). Furthermore, the clinical 
characteristics of the patients with absent/mild and moderate–severe 
WMLs were compared. The patients with moderate–severe WMLs 
were significantly older than those with absent/mild WMLs 
(p < 0.001). The SBP and DBP on admission were higher in the patients 
with moderate–severe WMLs than in those with absent/mild WMLs 
(p < 0.001). The proportions of hypertension, previous ischemic 
stroke/TIA, and atrial fibrillation were higher in the patients with 
moderate–severe WMLs than in those with absent/mild WMLs, while 
the frequency of diabetes mellitus was higher in the patients with 
absent/mild WMLs. The clinical characteristics of all patients are 
summarized in Table 1. The diagnoses of our patients of each WMLs 
group were demonstrated in the Supplementary Table S2. The majority 
of our patients were diagnosed with cerebral infarction (65.8% for the 
mild/absent WMLs group, 75.8% for the moderate–severe WMLs 
group). The proportions of cerebral infarction were not significantly 
different between the mild/absent and moderate–severe WMLs 
groups (p = 0.127;  Supplementary Table S2). The number of other 
diagnoses was very small. Hence, the results of the chi-square test for 
these diagnoses were not reliable. To avoid mistranslating the results, 
we did not present the p values of these diagnoses.

3.2. The association between 
clinical-laboratory data and WMLs severity

The association between clinical-laboratory Data and WMLs 
severity was summarized by univariate logistic regression (Table 2). 
Homocysteine (OR: 1.05, 95%CI: 1.01–1.08), globulin (OR: 1.11, 
95%CI: 1.04–1.17), UA (OR: 1.00, 95%CI: 1.00–1.01), and creatine 
(OR: 1.03, 95%CI: 1.02–1.04) were positively associated with 
moderate–severe WMLs. Meanwhile, a decreased A/G ratio was 
associated with moderate–severe WMLs. Furthermore, LASSO 
regression was used to select the clinical-laboratory indices. Globulin 
(β = 0.01157, p < 0.05), creatine (β = 0.00407; p < 0.05), ApoA1 
(β = 0.08155; p < 0.05), and TG (β = −0.00494; p < 0.05) were included 
in the regression model to fuse a clinical-laboratory signature for 
each patient.
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3.3. Prediction of severity of WMLs

3.3.1. Performance of retinal deep learning neural 
network

In this study, 204 images of retinas from the left eyes and 240 
images from right eyes from total 259 participants were supplied to 
two ResNet-18 deep learning neural network frameworks to predict 
the dichotomized WML severity. The class activation maps and 
architecture was presented in the Supplementary Figure S1, S2 . The 
models based on both sides of the retina could predict moderate–
severe WMLs. The AUC, accuracy, precision, recall, F1 score, 
sensitivity, and specificity of left retina model predicting moderate–
severe WMLs on the test set were 0.73, 0.75, 0.38, 0.13, 0.19, 0.13, and 
0.94, respectively (Figure 3;  Supplementary Table S1). The model 
based on the right retina was more powerful to predict WMLs 
severity. The model based on the right retina predicted moderate–
severe WMLs with an AUC of 0.94, accuracy of 0.93, precision of 
0.87, recall rate of 0.83, F1 score of 0.85, sensitivity of 0.83, specificity 
of 0.96 (Figure 3;  Supplementary Table S1). The class activation maps 
indicated high weight of predicting moderate–severe WMLs in the 
regions containing retinal vasculature (Supplementary Figure S1).

3.3.2. The laboratory signature and the clinical 
model

This clinical-laboratory signature included globulin, creatine, 
Apo-A1, and TG to predict moderate–severe WMLs with a 
determination R2 of 0.14. This signature showed an AUC of 0.73, 
accuracy of 0.77, precision of 0.85, recall rate of 0.18, F1 score of 0.29, 
sensitivity of 0.18, specificity of 0.95 (Figure  3;  
Supplementary Table S1).

The clinical model combined with the clinical-laboratory 
signature and the demographic data including age, sex, ranked SBP, 
and ranked DBP. This model predicted moderate–severe WMLs with 
a determination R2 of 0.17, an AUC of 0.78, accuracy of 0.76, precision 
of 0.58, recall rate of 0.30, F1 score of 0.40, sensitivity of 0.30, 
specificity of 0.93 (Figure 3;  Supplementary Table S1).

3.3.3. The combined model for predicting the 
severity of WMLs

The combined model included age, sex, ranked SBP, ranked DBP, 
clinical-laboratory signature, the outputs of retina deep learning 
neural network based on the left and right retinal image (Table 3). The 
combined model could well recognize moderate–severe WMLs with 
an AUC of 0.95, accuracy of 0.90, precision of 0.85, recall rate of 0.79, 
F1 score of 0.82, sensitivity of 0.79, specificity of 0.95 (Figure  3;  
Supplementary Table S1).

4. Discussion

To the best of our knowledge, this is the first study to use the 
combination of retina image, clinical features and laboratory data to 
develop a comprehensive model for predicting the severity of WMLs. 
The WMLs is a major threat to public health and early detection and 
routine follow-up are critical for controlling advance of WMLs and 
preventing deterioration of cognitive function. WMLs can be induced 
by various pathological mechanisms. Among all subtypes of WMLs, 
arteriosclerotic WMLs (namely, age- and vascular risk factor-related 
WMLs) are the most common in clinical practice (32). We excluded 
patients with autoimmune diseases, intoxication, metabolic brain 
disease, and hereditary WMLs. The patients with moderate–severe 
WMLs were significantly older and had higher SBP and DBP on 
admission. Previous studies have shown that advanced age and 
elevated blood pressure are significant causes of arteriosclerosis 
WMLs (11). Furthermore, elevated homocysteine, a well-known risk 
factor for arteriosclerosis (11), was found to be higher in the patients 
with moderate–severe WMLs, which is consistent with previous 
findings that homocysteine levels are positively correlated with the 
volume of arteriosclerotic WMLs (33–35). Hence, the WMLs 
investigated in the current study was further indicated to be of the 
arteriosclerotic subtype.

The WMLs significantly impair cognitive function (36) and 
are risk factors of ischemic stroke (37) and gait dysfunction (38). 

TABLE 1 Clinical characteristics of all patients.

Clinical Characteristics All patients 
(n = 259)

Absent/mild WMLs 
(n = 193)

Moderate–severe WMLs 
(n = 66)

p value

Age (y, M ± SD) 52.3 ± 13.5 49.5 ± 13.2 60.5 ± 10.6 <0.001

Sex, male n (%) 175 (67.6%) 129 (66.8) 46 (69.7) 0.78

Systolic blood pressure (mmHg, M ± SD) 140.4 ± 24.8 135.7 ± 23.6 154.4 ± 23.3 <0.001

Diastolic blood pressure (mmHg, M ± SD) 87.7 ± 15.4 85.2 ± 14.8 95.1 ± 14.4 <0.001

Comorbidities, n (%)

Hypertension 147 (56.8%) 95 (49.2) 52 (78.8) <0.001

Diabetes mellitus 45 (17.4%) 40 (20.7) 5 (7.6) 0.02

Statin usage 56 (21.6%) 37 (19.2) 19 (28.8) 0.14

Previous ischemic stroke/TIA 48 (18.5%) 28 (14.5) 20 (30.3) 0.008

Atrial fibrillation 6 (2.3%) 2 (1.0) 4 (6.1) 0.04

Coronary heart disease 9 (3.5%) 7 (3.6) 2 (3.0) 1.00

Current smoking 91 (35.1%) 66 (34.2) 25 (37.9) 0.70

Alcohol abuse 38 (14.7%) 31 (16.1) 7 (10.6) 0.38

y, year; n, number; WMLs, white matter lesions; TIA, transient ischemic attack; M, mean; SD, standard deviation.
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A convenient approach with high accuracy is helpful for 
screening and follow-up. In this study, we  developed a 
comprehensive model that combined deep learning in retinal 
images and clinical laboratory data that can reliably predict the 
severity of WMLs.

ResNet has been applied to predict Alzheimer’s disease (39), 
diagnose myocardial infarction (40), analyze blood cells (41), 
diagnose COVID-19 (42), and diagnose malignant tumor (43) and 
tumor metastasis (44). In addition to the aforementioned research 
areas, ResNet deep learning models can also be  used to detect 
retinal exudative lesions (45). The ResNet-18 is a robust deep 
learning network, where the convolutional layers are pre-trained 
and can start training the network without a large dataset. Therefore, 
this residual network overcomes the limitation of using deep 
learning for medical image studies with small datasets. Among all 

the models, the right retinal images and the combined model well 
predicted moderate–severe WMLs and outperformed the clinical 
model and clinical-laboratory signature. Furthermore, the deep 
learning network based on the right retinal images alone shared 
similar performance with the combined model in which the retina 
image was combined with clinical information. Our results were in 
line with the previous studies that reflect the pathophysiological 
basis that the retina shares similar vasculature and vascular risk 
factors (46–50). Previous studies have shown that chronic kidney 
disease (51) and dyslipidemia (11) were associated with WMLs. 
Similarly, in our study, the clinical-laboratory signature including 
certain laboratory indices of lipid metabolism (Apo-A1, TG) and 
kidney function (creatine) can predict the severity of WMLs. Thus, 
in our study, the abovementioned pathophysiological basis may 
explain the good performance of the comprehensive model 
combining deep learning neural network in retinal images with 
clinical laboratory data.

Traditionally, the retinal vascular lesion was manually evaluated 
according the presentations of exudates, vessel tortuosity, 
arteriovenous nicking and so on. However, this evaluation method 
was affected by raters’ bias and not quantitative. In our study, 
we  focused on the entire retina image instead of the traditional 
evaluation method. We developed the deep learning model to analyze 
the entire image of the retina and show good AUC to predict WMLs. 
Our result further confirmed the findings of previous studies that the 
retinal lesions were associated with WMLs. In addition, the regression 
coefficient of retina deep learning model was higher than the 
traditional risk factors such as age and blood pressure in the combined 
model. This result indicated that the retinal images can predict the 
severity of WMLs.

Several limitations of this study should be mentioned. First, 
the WMLs severity was dichotomized as absent/mild or 
moderate–severe according to the Fazekas score in our study. 
Consequently, the models developed in our study could not 
quantitatively predict WMLs severity. Recent studies showed that 
severe WMLs were association with multiple neurological 

TABLE 2 Univariate logistics regression of clinical-laboratory indices and 
WMLs severity.

Clinical-laboratory Indices OR (95%CI) p value

Metabolism

Hemoglobin A1c 0.85 (0.65–1.10) 0.22

Fasting blood glucose 1.04 (0.93–1.16) 0.50

Fructosamine 0.61 (0.16–2.42) 0.49

Total cholesterol 1.18 (0.94–1.46) 0.15

Total triglyceride 0.85 (0.64–1.14) 0.28

Low density lipoprotein cholesterol 1.29 (0.94–1.77) 0.12

High density lipoprotein cholesterol 1.58 (0.59–4.25) 0.36

Apolipoprotein-A1 1.76 (0.52–5.90) 0.36

Apolipoprotein-B 2.58 (0.84–7.90) 0.10

Apolipoprotein-A1/Apolipoprotein-B ratio 0.76 (0.42–1.38) 0.37

Apolipoprotein-E 1.00 (0.98–1.02) 0.79

Lipoprotein-α 1.00 (1.00–1.00) 0.98

Free fat acid 1.00 (1.00–1.00) 0.52

Homocysteine 1.05 (1.01–1.08) 0.01

Liver function

Aspartate aminotransferase 1.01 (0.98–1.04) 0.38

Alanine aminotransferase 1.00 (0.98–1.02) 0.98

Total protein 1.00 (1.00–1.00) 0.68

Albumin 0.98 (0.91–1.06) 0.64

Globulin 1.11 (1.04–1.17) <0.001

Albumin/globulin ratio 0.23 (0.09–0.60) <0.001

Total bilirubin 1.03 (0.97–1.08) 0.37

Renal function

Uric acid 1.00 (1.00–1.01) 0.04

Creatine 1.03 (1.02–1.04) <0.001

Systemic inflammatory indices

C-reactive protein 1.00 (0.98–1.02) 0.84

High-sensitivity C-reactive protein 1.00 (0.99–1.02) 0.73

High-sensitivity C-reactive protein / 

C-reactive protein ratio

0.92 (0.79–1.08) 0.29

WMLs, white matter lesions; OR, odds ratio; CI, confidence interval.

FIGURE 3

The ROC curves of the combined model (model 1, AUC = 0.95), the 
clinical model (model 2, AUC = 0.78), left retina model (AUC = 0.73), 
right retina model (AUC = 0.94) and laboratory signature model 
(AUC = 0.73). ROC, receiver operating characteristic; AUC, area under 
the ROC curve.
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diseases such as cognitive deterioration (6, 52, 53) and ischemic 
stroke (37), while few study reported the association of mild 
WMLs and other neurological diseases. Thus, our model showed 
clinical significance in predicting moderate–severe WMLs. 
Second, our study was hospital-based and retrospectively 
designed. Some of retinal images were excluded due to the poor 
quality. The number of the eligible left retinal images included in 
our analysis was less than the right, which may explain that the 
inconformity of the performance of the deep learning neural 
network between left and right retinal images. Further studies 
may be  needed to explore the potential difference of the 
predicting performance between left and right retinal images. On 
the other hand, the AUC of right retina image was high in our 
study, which indicates that the retinal image and deep learning 
network are capable of predicting the severity of WMLs.

5. Conclusion

In conclusion, we integrated demographic-clinical characteristics, 
clinical laboratory data and deep learning on retinal images to develop 
a comprehensive model. This comprehensive model accurately 
predicted the severity of WMLs and offered non-invasive, high-
throughput and low-cost screening tool for early detection of 
moderate–severe WMLs in the population in community, resource-
poor area or with contraindication of MRI.
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