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Artificial intelligence (AI) has made significant advances in the field of di�usion

magnetic resonance imaging (dMRI) and other neuroimaging modalities. These

techniques have been applied to various areas such as image reconstruction,

denoising, detecting and removing artifacts, segmentation, tissue microstructure

modeling, brain connectivity analysis, and diagnosis support. State-of-the-art AI

algorithms have the potential to leverage optimization techniques in dMRI to

advance sensitivity and inference through biophysical models. While the use of

AI in brain microstructures has the potential to revolutionize the way we study

the brain and understand brain disorders, we need to be aware of the pitfalls and

emerging best practices that can further advance this field. Additionally, since dMRI

scans rely on sampling of the q-space geometry, it leaves room for creativity in

data engineering in such a way that it maximizes the prior inference. Utilization of

the inherent geometry has been shown to improve general inference quality and

might be more reliable in identifying pathological di�erences. We acknowledge

and classify AI-based approaches for dMRI using these unifying characteristics.

This article also highlighted and reviewed general practices and pitfalls involving

tissue microstructure estimation through data-driven techniques and provided

directions for building on them.

KEYWORDS

artificial intelligence, machine learning, deep learning, di�usion MRI (dMRI),
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1. Introduction

The microstructural estimation of biological tissue through histological analysis is

reliable. However, it has limitations, including its invasive nature (1). In contrast, diffusion

MRI (dMRI) is a non-invasive technique for encoding information about tissue structure

at the microscopic scale in the human brain (2–4). It is based on the restricted diffusion of

water molecules in the local microstructural environment. Diffusion tensor imaging (DTI),

a widely used dMRI approach, has been shown to be sensitive to pathological changes in

the brain (5). However, water diffusion in DTI has been assumed to be a Gaussian process,

and microscopic inspection of the neuronal environment invalidated this assumption (6, 7).

Thus, DTI is not specific to microstructural properties such as cell size, axon diameter,

orientation dispersion, and neurite density (8).
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Consequently, multi-compartment modeling in dMRI

has emerged as a powerful non-Gaussian tool for studying

neuropathogenesis and holds potential for both research and

clinical applications, including providing insight into the biological

mechanisms of disease and improving diagnosis and treatment

monitoring (9). Models such as free water imaging (FWI) and

Neurite Orientation Dispersion and Density Imaging (NODDI)

helped early multicompartmental modeling become more widely

adopted in the field (10, 11). However, most of the advanced

multi-compartment dMRI models suffer estimation errors due to

highly non-linear signal representations, underlying simplifying

assumptions, and sometimes motion artifacts due to longer

acquisition times for multiple b-values and diffusion gradient

directions (8, 12).

Artificial intelligence (AI) commonly involves creating systems

capable of tasks requiring human senses and intelligence, such

as speech, image, and natural language synthesis. Deep/machine

learning (DL/ML) subsets of AI train deep artificial neural

networks to make predictions or decisions from data in a common

gradient update framework. AI algorithms have evolved with

DL/ML techniques due to skyrocketing computing power and

resources (13, 14). Recently, AI-based approaches have been

proposed to address issues such as denoising and artifact reduction

(15–18), fiber tractography (19–21), resolution enhancement

(22–25), and quantification of microstructural properties (20–

22, 26–31). These techniques have been particularly useful for

working with clinical and challenging datasets and have led

to advances in dMRI parameter mapping and image quality

assessment and improvement. With that said, it is important

to understand that there are potential pitfalls of using such

data-driven techniques, e.g., tomographic hallucination, training

bias, etc. (32–34); thus, the application of such an approach in

clinical dMRI needs to follow the best practices; otherwise, it

can lead to inaccurate or unreliable results, proving itself to be

a double-edged sword. Best practices for AI in clinical dMRI

include proper protocol design and optimization, accurate image

acquisition and noise-redacted reconstruction for standardized

ground truth, and careful interpretation of the data (13).

Further, efforts are currently being made to quantitatively

understand how much clinically relevant information can

be retrieved through DL/ML architectures, which is another

Abbreviations: AI, Artificial Intelligence; CNN, convolutional neural network;

DL, Deep Learning; dMRI, Di�usion Magnetic Resonance Imaging; DW,

Di�usion Weighted; DTI, Di�usion Tensor Imaging; Di�usion Kurtosis

Imaging; DBSI, Di�usion Basis Spectrum Imaging; fODF, fiber orientation

distribution function; FWI, free water imaging; GAN, Generative Adversarial

Networks; GCN, Graph Convolution Network; LSTM, Long Short-Term

Memory; ML, Machine Learning; MLP, Multi-Layer Perceptron; MLE,

Maximum Likelihood Estimation; NODDI, Neurite Orientation Dispersion

and Density Imaging; NLP, Natural Language Processing; NDI, Neurite

Density Index; ODI, Orientation Dispersion Index; PCA, Principal Component

Analysis; RNN, Recurrent Neural Network; SCN, Spherical Convolution

Network; SNR, Signal toNoise Ratio; SMT, SphericalMean Technique; SHORE,

Simple Harmonic Oscillator-Based Reconstruction and Estimation; SANDI,

Soma And Neurite Density Imaging; WMTI, White Matter Tissue Integrity.

important aspect of clinical dMRI besides general image/parameter

reconstruction (35).

This study briefly generalized common features related to some

of the leading biophysical models that have practically established

sensitivity to the designed parameters for the models and mainly

reviewed the concurrent AI alternatives to these models with

their general architecture/results to probe the best practices. This

article also discussed the challenges of existing AI approaches

and future perspectives in tissue microstructure estimation. We

identified the gross development of these algorithms in the

targeted microarchitecture modeling. This includes highlighting

efforts/innovations in data engineering, feature design, common

practices in these techniques, or differences that set the methods

apart for better/worse results.

2. Biophysical models of dMRI

2.1. The domain of dMRI sensitivity in
biophysical models

In dMRI techniques, diffusion-weighted (DW) images

are acquired with multiple b-values at a different number

of gradient directions (2, 36–38). Then, microstructure

information in each voxel of the image can be extracted

via either signal representations (e.g., DTI, diffusion

kurtosis imaging DKI, fiber orientation distribution

function fODF) or biophysical models (e.g., NODDI,

spherical mean technique SMT, white matter tissue integrity

WMTI) (5, 39–41).

Signal representations explain the DW signal behavior and

provide effective summary statistics at a given voxel that do

not rely on assumptions about the underlying tissue properties,

which is clinically demanding but estimated parameters lack

specificity. On the other hand, biophysical models aremathematical

models aiming to explain the physical properties of biological

systems. The parameters of the biophysical models in dMRI

are intentionally designed to be adjustable, mimicking the

biological constructs to fit the measured DW signals. These

constructs may include biophysically meaningful parameters

such as tissue volume fractions and other properties that are

specific to the system being studied (40). For example, white

matter models vastly differ from gray matter models, leading

to differentiated assumptions and geometrical functions (42, 43).

A detailed explanation of the steps involved in constructing

a biophysical model for dMRI can be found in Jelescu

et al. (9).

The advent of computational power, complexmathematics, and

geometrical formulations has led to a good number of biophysical

models of brain tissue to date, including the standard model,

SMT, AxCaliber (44), diffusion basis spectrum imaging (DBSI)

(45), NODDI (11), WMTI (46), simple harmonic oscillator-based

reconstruction and estimation (SHORE) (47) and soma and neurite

density imaging (SANDI) (48). Biophysical models with their

DL/ML alternatives/improvements found in the past decade are

considered within the scope of this study and are displayed in

Table 1 Block-A and Supplementary Table S1.
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2.2. Parametrizations, estimation, and
validation

Overparameterization in biophysical models is necessary but

results in a loss of uniqueness of the DW signals and estimated

tissue microparameters, leading to higher ill-posedness in solving

inverse problems (9, 40, 49, 50). A general schematic framework

is illustrated in Figure 1A for parametrizing and solving inverse

problems devised with a biophysical model. Like most other

problems in practice, figuring out these parameters is often ill-

posed by nature, which means that for a voxel, there can be

multiple sets of plausible parameters that are able to explain the

DWI signals. These ill-posed cases can be addressed with further

contrast or geometrical priors available from the data. The ML/DL

techniques can also be used to generate additional priors to solve

such problems.

Once we have robust priors that distinguish the relevant

features, optimization techniques need to be chosen empirically

based on performance, and this is subject to validation. A fitting

strategy refers to the methods and techniques used to train

a model, such as gradient descent or genetic algorithms. The

choice of optimization and fitting strategies can have a significant

impact on the performance of a model and the ability to find

a globally optimal solution (25). The following approaches—

numerical analysis, Monte Carlo, animal models, phantoms, tissue

fixation experiments, etc.—are commonly used to validate these

models (50). The validation modes can often lead to good training

data sources in DL/ML practice (30, 51).

3. AI in dMRI microstructure
estimation

AI algorithms have been applied widely throughout the

dMRI field, including signal reconstruction, denoising, detection

and removal of artifacts, segmentation, co-registration, spatial

and angular super-resolution of the dMRI signal, and tissue

microstructure modeling (18, 21, 24, 30, 52–54). Table 1 identifies

such approaches (Block B-D) and lists relevant biophysical models

on which DL/ML approaches have been used (Block A). Details are

provided in Supplementary Tables S1–S4.

3.1. Maximum likelihood frameworks for AI

Figure 1A depicts the three basic components of extracting

microstructure from scanner-derived dMRI data. Voxel-wise

processing of DW data requires us to have a mathematical

representation or biophysical model, an optimization algorithm,

and an objective function that fundamentally designs the goal of

the optimizer. Before the advent of DL tools, gradient descent,

Newton’s method, and the Levenberg-Marquardt algorithm were

popular for solving inverse problems (55). These algorithms have

been used with objective functions that closely mimic the noise

distribution of the data. Gaussian or Rician noise is a common find

in MRI, so the optimizers are tasked with generally maximizing

the log-likelihood given measured DW data for such noise

distributions. Also, in some cases, the problems are reformatted

in a sparse dictionary framework (56). Common practice involves

adding regularization terms with objective functions in cases where

problems are heavily ill-posed. To stabilize the ill-posedness of

the problems, Lasso (L1), Ridge (L2), Tikhonov, etc., regularizing

frameworks are used (34, 56, 57). Limitations of the maximum

likelihood estimation (MLE) frameworks often involved the

solution stopping at local minima, which heavily depended on

the set of parameters used for initializing the biophysical model

(11, 58). That’s why grid-searching approaches are common to get

a good starting point for the algorithms. Also, these approaches

are computationally heavy (49, 59). However, a sparse dictionary

representation of such a model is shown to reduce computational

redundancy at the cost of accuracy (56).

Imaging reconstruction practices involving optimizers are now

heavily shifting toward DL/ML. A major advantage of these

approaches is generalization, but this major advantage doesn’t

come bias-free (60), and promising workarounds help to overcome

these limitations. Data engineering is a promising approach that

minimizes training-data bias by increasing data priors either by

leveraging problem geometry or employing different available

modalities that work as a prior. This can be easily termed “prior

regularization” since it pushes the solution out of local minima. The

objective values have been shown to improve and reduce bias when

the starting points of the MLE are determined through an adapted

multiple-layer perceptron (MLP) (30, 58).

The usage of DL/ML architectures is on the rise (Figure 1B).

Different proposed approaches to data-driven strategies lack

standardization in nomenclature and make it hard to track the

underlying generic architecture in use. Figures 1C, D summarizes

the general architectures in practice that are included in this study

in a quantifiable manner. It is crucial to monitor the underlying

architectures, as they come with specific limitations and pose

distinctive biases. For example, it is common for convolutional

neural network (CNN), U-net, and generative adversarial networks

(GAN) architectures to hallucinate complex structures that might

be clinically misleading (13, 33, 34, 61, 62). And for general MLP,

overparameterization with noise generalizes the outcome as the

mean of the training data (60).

We focused on providing the reader with a transparent view

of the generic form of the algorithms in use through Table 1,

with further details available in Supplementary Tables S1–S4,

hoping this would create a meaningful approach to understanding

data-driven AI strategies to solve the problem of microstructure

estimation. The novelty of these approaches is evidently in

data engineering, hyperparameter tuning, and leveraging

synthetic or data-inherent priors that closely relate to the

estimated parameters.

3.2. Unified AI (DL/ML) strategies for
biophysical models: application and
advancements

Based on how the DL/ML algorithms are applied to estimate

tissue microparameters from dMRI data (single- or multishell

DW data), including NODDI parameters such as NDI, ODI,
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TABLE 1 Summary of biophysical models with their key parameters and studies conducted on di�usion MRI using AI in human brain.

Block A: Biophysical models of dMRI Block B: AI agnostic to q-space geometry

Year Biophysical
Models

Protocol
feasibility

Key
parameters/
scalars

Year AI Models General
architecture

Task

2009 FWI (10) Single/Multishell FW, FWE-DT 2022 AEME (75) LSTM NODDI

2012 NODDI (11) Multishell NDI, ODI, fISO (or
FW)

2022 METSC (Adapted from
ViT) (31)

Transformer
(Encoder-
Decoder)

NODDI

2015 SHORE (47) Multishell RTOP, MSD 2022 SDnDTI (17) Modified U-net DTI denoising

2016 SMT (12, 76) Multishell FASMT ,MDSMT , λ⊥ ,
λ‖

2022 Transformer (77) Transformer
(Attention)

DTI

2018 Standard model (78) Multishell fin , Da , D⊥
e , D

‖
e 2022 ADL (Atlas powered DL)

(79)
U-net++ FA, ODI

2020 SANDI (Ball, Stick,
Sphere) (48)

Multishell (b-value >

3,000 s/mm2)
fin , fec , fis , Din , Dec ,
rs

2022 VRfRNet∗ (21) GAN fODF

Block C: AI with active use of q-space geometry 2021 IQT with Auto-Encoder
(80)

Residual
Network

DTI SR

Year Models General
architecture

Task 2021 SRDTI (16) CNN (3D) DTI SR

2023 ED-RNN (67) RNN based encoder-
decoder

WMTI-Watson 2021 Multimodal SRqDL (23) CNN (3D) NODDI, SMT
SR

2022 HGT (based on TAGCN
(81)+ RDT) (24)

Two different stages:
GCN and Transformer
(Attention)

NODDI 2021 Super resolved q-space
DL (SRqDL) (74)

CNN NODDI

2022 HemiHex-MLP (68) Adapted MLP DTI 2021 SuperDTI (82) U-Net DTI

2021 Spherical CNN∗∗ (29) CNN NODDI Super
angular resolution

2021 Fetal MRI (18) CNN+

Residual Block
DTI

2021 Bottleneck DL∗ (28)
Adapted SHResNet and
M-heads (73, 83)

CNN+ Residual Block DTI, Ball and
Stick, IVIM, SMT,
NODDI

2020 DeepDTI (15) CNN DTI

2021 q-space feature-based MLP
(20)

MLP fODF 2019 Bayesian (71) Bayesian ML Any, NODDI

2021 q-space conditioned DWI
Generator (84)

U-Net, GAN NODDI, SHORE,
DKI, fODF

2019 SHResNet (73) CNN+

Residual Block
DWI
harmonization

2020 GCNN (85) GCN NODDI 2019 MESC-Net (27) LSTM SMT, NODDI,
SHORE

2019 CNN∗ (19) CNN (3D) fODF 2019 CNN-NODDI (26) CNN NODDI, GFA

Block D: Models leveraging AI and Maximum Likelihood 2018 Deeper IQT with RevNet
(86)

ML DTI SR

Estimation (MLE) frameworks

Year Recent trends in
AI models

AI-MLE
Integrated
architecture

Task 2017 MEDN/MEDN+ (51) Adapted MLP NODDI

2021/
2022

DL prior NODDI (30, 72) Modified MLP
initializes MLE

Single Shell
NODDI

2017 IQT (52) ML (Regression
Forest)

NODDI, SMT

2022 DL-MLE (58) Modified MLP
initializes MLE

NODDI 2017 Trained Random Forest
(87)

ML (Regression
Forest)

Permeability

2023 dtiRIM (54) Modified RNN
calculating MLE
gradient

DTI 2016 q-DL (22) MLP DKI, NODDI

Tasks indicate the parameters of models on which the learning algorithms have been applied. Parameters refer to micro-parameters of different models of diffusion signal. ∗ indicates spherical

harmonics (SH) coefficients are used as network input, not the DWIs directly. ∗∗ indicates convolutional features are extracted on spherical (S2) domain. FWI, Free Water Imaging; FW,

Free Water; FWE-DT, Free Water Eliminated Diffusion Tensor; NODDI, Neurite Orientation and Dispersion Imaging; NDI, Neurite Density Index; ODI, Orientation Dispersion Index;

fISO , isotropic volume fraction; SHORE, Simple Harmonic Oscillator-based Reconstruction and Estimation; RTOP, Return-To-Origin Probability; MSD, Mean Squared Displacement; SMT,

Spherical Mean Technique; FA, Fractional Anisotropy; GFA, generalized FA; MD, Mean Diffusivity; λ‖ , λ⊥ , Longitudinal and Transverse Diffusivity Constants; D⊥
e , D

‖
e , Extracellular Diffusion

coefficients; Da, Din , Intracellular Diffusion coefficients; fin , fec , fis , intracellular, extracellular and free volume fractions; SANDI, Soma And Neurite Density Imaging; AEME, adaptive network

with extragradient for diffusion MRI-based microstructure estimation; METSC, Microstructure Estimation Transformer with Sparse Coding; SDnDTI, Self-supervised deep learning-based

denoising for DTI; VRfRNet, Volumetric ROI fODF reconstruction network; IQT, image quality transfer; CNN, convolutional neural network; RNN, Recurrent Neural Network; ED-RNN,

Encoder Decoder RNN; HGT, Hybrid Graph Transformer; TAGCN, Topology Adaptive Graph Convolutional Network; RDT, Residual Dense Transformer; MLP, Multi-Layered Perceptron;

GAN, Generative Adversarial Network; LSTM, Long Short-Term Memory; SHResNet, Spherical Harmonics Residual network; WMTI, White Matter Tract Integrity; SR, Super Resolution;

DKI, Diffusion Kurtosis Imaging; GCN, Graph Convolution Network; GCNN, graph convolutional neural network; IVIM, intravoxel incoherent motion; fODF, fiber orientation distribution

function; MEDN, Microstructure Estimation using a Deep Network; q-DL, q-space deep learning; dtiRIM, DTI with recurrent inference machines.
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FIGURE 1

dMRI based microstructural reconstruction in human brain: schematics and progress through AI: (A) general schematics of microstructural

reconstruction using biophysical model; (B) displays the number of AI approaches proposed over the last decade; (C) shows type of architectures

these approaches use; (D) shows the biophysical models these AI approaches are applied to.

and fISO defined in Table 1 Block-A, we have divided them into

three categories found in Table 1 (Blocks B, C, and D) and in

Supplementary Tables S2–S4.

AI agnostic to dMR q-space: The first category of AI

algorithms focuses on direct DWI signal mapping and is generally

agnostic to q-space geometry or how the sampling scheme is

oriented for the signal. Some of these algorithms are analogous

to the Natural Language Processing (NLP) algorithms that are

often used in speech data processing. Examples include recurrent

neural networks (RNN), short-term long memory (LSTM), GAN,

attention mechanisms, etc. (63–66). The memory/forget block in

some of these architectures allows for the development of signal

orientation priors that are not directly sensitive to the geometry of

the sampling scheme (27). These artificially generated priors might

be misleading when substantial noise is present (34), as it has been

noted in the literature that with lower SNR, AI algorithms are more

susceptible to training data bias (60).

AI with active use of q-space: The second category of

algorithms is much more diverse in its use of the geometry of

the q-space. An inherent property of some of the architectures in

this group helps to preserve this preceding geometry information.

For example, graph and spherical convolutional (GCN/SCN)

approaches are used to extract features that are relevant to the

geometry of the acquisition schemes (24, 29). As the geometry of

the q-space is incorporated, the mapping algorithms in the first

category have been shown to be used in parallel to further enhance

their performance (67). Q-space dMRI regression is yet another

unexplored area that has shown promising results when used with

an optimized protocol and a subsampling scheme (35, 68). Further,

embeddings specifically designed over q-space analogous to zonal
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features have been shown to map fODF using adapted MLPs (20).

Thus, we believe q-space is a natural characteristic of the diffusion

protocol with enough potential to exploit.

AI and MLE integrated frameworks: The third category of

algorithms embraces the recent trend of enhancing the Maximum

Likelihood framework’s performances through Deep Learners.

Gradient update computation and initialization are challenging

areas for which MLE algorithms often become stuck in the

local minima (58). The advent of DL/ML has contributed to the

generalization of the gradient update framework for processing

variant forms of data. Previously, signals and systems being

analyzed with a forward model contributed to system-specific

gradient computation either analytically or numerically, which

often posed computational and tedious derivation challenges,

specifically with complex biophysical models such as NODDI

and SMT, and this complexity increased with new parameters

introduced to the system.With that said, system-specific derivatives

with a good choice of optimization framework in MLE can be

more powerful to rid bias and ensure specificity, which is important

clinically. As spatial networks such as CNN, U-net, and GAN-based

models often contribute to hallucination and systemic bias, this is

often a risky bet in clinical implementation, and this recent shift in

DL-based instructions for improving MLE can help overcome such

issues effectively (30, 54, 58).

3.3. Challenges and possible solutions for
implementing AI in dMRI microstructure
estimation

Despite the promising results, reliable applications of AI in

dMRI microstructure estimation are still challenging. Everyday

challenges to data-driven techniques are often related to over-

or underfitting, non-convergence, noise, hyperparameter tuning,

etc. These are frequently encountered in every form of ML/DL

algorithm. Therefore, we focused on challenges that are unique to

clinical dMRI and biophysical models of learning. They are listed

below with possible resolutions:

• Over/underfitting: If validation loss was significantly higher

or lower than training loss, they were an indicator of

over/underfitting; the validation loss trend was expected to be

slightly higher than in training (30).

To resolve the issue, one can check for inconsistencies in

the training and validation data. If the data check out, relevant

hyperparameters of the optimization algorithm (e.g., learning

rate, momentum, etc.) need to be tested.

• DWI noise: With higher b-values, we often have DW images

with lower SNR. And with lower SNR, the DLs are shown to

be training data biased (60).

Possible solutions include principal component analysis

(PCA), DL-based denoising (15, 17, 69, 70), or using high-

resolution priors (30). PCA accounts for noise by projecting

data onto dimensions with the highest variances (60), whereas

DL-based approaches mostly focus on spatial learning to

improve SNR. However, this may not always be suitable in

a clinical context due to the risk of hallucinations. High

SNR priors have been shown to reliably help in DL-based

estimation (30).

• Non-uniqueness: Often, biophysical models have multiple

solutions that are all consistent with the data.

The non-uniqueness problem in AI architectures must be

dealt with by incorporating necessary boundary conditions

and additional priors (71). Regularization also addresses this

issue by removing fitting noise. Neural networks often use

dropout layers or apply L1/L2 regularization in their proposed

objective functions to resolve this problem.

• Clinical training data scarcity: The amount of data

available to fit a model is often limited clinically, which

limits inference confidence.

Possible solutions include in-vivo simulations and data

augmentation (71). In dMRI, the number of clinical subjects

required can be substantially reduced by reducing spatial

priors in the architecture. We recommend incorporating q-

space priors for better clinical relevance over spatial networks

(30). Generalizing the model on q-space for dMRI also

increases the training samples and helps satisfy the learning

goals effectively.

• High dimensionality: When the number of parameters in

a model is high, it can be difficult to determine the correct

solution with too many plausible combinations of parameters.

The Bayesian solution has been shown to address such

problems (71). It’s also possible to find embeddings that are

common to high-dimensional parameters (28). The so-called

“embeddings” are mappings of lower-dimensional data to

higher dimensions through the deep layers. In this context,

AI-MLE architectures are another way to resolve this problem

(54, 72). AI-MLE architectures can leverage Rician noise-based

likelihood functions and optimize quickly and reliably.

• Incorporating model limitations: Some models have

limitations on the range of parameter values that they can

accurately represent, making it difficult to fit them.

Conditions can be imposed on such limitations, followed

by normalization (27, 51).

• Multi-site data: Some data may have non-stationary

properties, meaning that the statistical properties of the data

may change over time. This is commonly found in clinical

dMRI as a multi-scanner harmonization problem.

DL harmonization is seen as a potential solution (73).

Data harmonization is a technique that aims to statistically

standardize data from different sources so that they can be

used together. Moreover, AI-MLE variants such as dtiRIM

(54), which work by estimating learning gradient, have shown

to be generalizable in simulation with different diffusion

protocols in clinical and research settings.

• Uncertainty quantification: DL/ML are advanced statistical

tools that should practice uncertainty quantification, a practice

that is scarcely observed in the field (74). After all, only by

recognizing the extent of one’s ignorance can one truly grasp

the depth of his/her understanding, which is true for both

natural and artificial intelligence.
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4. Future perspectives on AI in dMRI
microstructure estimation

The future role of AI is highly dependent on the clinical

reliability and feasibility of proposed algorithms in practice.

Feasibility challenges include the number of required subjects

needed for training the AI models, incompleteness and ill-

posedness in the training domain, dMRI protocol complexity

and scan time, and multi-scanner dataset handling. Reliability

challenges include a lack of explicit instructions on extrapolation,

uncertainty quantification of the proposed models, biophysical

models, and inverse solvers with higher specificity, which are

ideally desired but often pose limiting assumptions, etc. Since

active use of q-space geometry ensures inherent priors for inference

and MLE warrants likelihood with a known noise distribution

framework, adapting these practices with AI is highly likely

to ensure the feasibility and reliability challenges mentioned

above. On the other hand, the use of spatial networks in dMRI

would be more prone to deviate from clinical relevance, as

it is known to be biased on spatial relevance for inference.

Clinical validation has become necessary to further probe into

these architectures.

5. Conclusion

This article has described an overview of the AI methods

used for microstructure estimation/enhancement through dMRI

data. The growth of AI is a captivating development, beginning

with neural networks and advancing into sophisticated DL

structures, allowing us to investigate brain microstructures in

millimeter-scale clinical-dMRI data. While concerns regarding bias

in training data exist, certain architectures have demonstrated

solutions that align with diffusion biophysical models. Despite

this progress, there are obstacles to overcome, particularly in

clinical validation, liability for widespread adoption, and ethical

and legal concerns.
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