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Imaging diagnosis of intracranial 
atherosclerosis stenosis-related 
large vessel occlusion before and 
during endovascular therapy
Takeshi Yoshimoto *

Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan

It is becoming increasingly important to identify the type of stroke, especially 
the mechanism of occlusion, before and during its treatment. In the case of 
intracranial atherosclerotic stenosis-related large vessel occlusion, it is necessary 
to develop a treatment strategy that includes not only mechanical thrombectomy 
but also adjunctive therapies such as primary or rescue therapy (percutaneous 
angioplasty, intracranial/carotid stenting, local fibrinolysis) and perioperative 
antithrombotic therapy. However, in clinical practice we often encounter cases 
where it is difficult to identify the occlusive mechanism before endovascular 
treatment because of insufficient information in the minimal circumstances of 
the hyperacute phase of stroke. Here we focus on the imaging diagnosis before 
and during treatment of intracranial atherosclerotic stenosis-related large vessel 
occlusion with in situ thrombotic occlusion as the mechanism of thrombotic 
occlusion, based on previous reports. We describe the diagnosis of intracranial 
atherosclerotic stenosis-related large vessel occlusion from the perspectives of 
“thrombus imaging,” “perfusion,” and “occlusion margin.”
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1. Introduction

Considering the extensively documented effectiveness and safety of mechanical 
thrombectomy (MT) in the management of acute ischemic stroke (AIS) due to intracranial large 
vessel occlusion (LVO) (1). It is increasingly crucial to prioritize the first-pass effect (2) and 
achieve successful endovascular treatment (EVT) without exacerbating intracranial hemorrhage, 
thus elevating the standard of care. The classification of stroke, particularly the occlusion 
mechanism, is becoming increasingly significant both preoperatively and during treatment. 
Embolic LVO is often the preferred indication for mechanical thrombectomy (MT) when an 
embolic source is discerned before the procedure. In cases of intracranial atherosclerotic stenosis 
(ICAS)-related LVO, it is imperative to design a treatment regimen that incorporates not only 
MT but also auxiliary therapies such as primary or rescue therapy (percutaneous angioplasty, 
intracranial/carotid stenting, and local fibrinolysis) and perioperative antithrombotic therapy. 
However, accurately determining the occlusion mechanism before EVT can prove challenging 
in clinical practice due to a dearth of information regarding the patient’s medical history, 
pre-existing conditions, and comorbidities in the hyperacute stage of stroke. A full understanding 
of the situation is often not achieved until after EVT. Moreover, intracranial atherosclerotic 
stenosis (ICAS)-related large vessel occlusion (LVO) is more commonly observed in East Asia, 
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with a frequency of 15–25% (3, 4), as compared to Europe and the 
United States. Studies have demonstrated that ICAS-related LVO has 
a lower success rate of recanalization, a longer duration to successful 
recanalization, and worse outcomes as compared to embolic LVO (5, 
6), underscoring the critical need to enhance the accuracy of etiologic 
diagnosis before initiating treatment.

This paper will focus on the imaging diagnosis of intracranial 
atherosclerotic stenosis (ICAS)-related large vessel occlusion (LVO) 
with in situ thrombotic occlusion as the occlusion mechanism, with 
reference to previous research. The diagnosis of ICAS-related LVO will 
be described from the perspectives of “thrombus imaging,” “perfusion 
imaging,” and “occlusion margin imaging.”

2. Thrombus imaging

Recent research has shown that thrombi associated with 
cardioembolism have a greater proportion of fibrin compared to red 
blood cells, whereas those associated with intracranial atherosclerotic 
stenosis (ICAS)-related large vessel occlusion (LVO) have a higher 
concentration of red blood cells. The type of occlusive thrombus is 
closely linked to the mechanism of occlusion (7, 8). Non-contrast 
computed tomography (CT) and magnetic resonance imaging (MRI) 
are imaging modalities capable of visualizing the occlusive thrombi. 
In this context, we will discuss the “hyperdense middle cerebral artery 
(MCA) sign” detected on Non-contrast CT (NCCT) and the 
“susceptibility vessel sign (SVS)” detected on MRI scans.

2.1. Hyperdense MCA sign

The hyperdense middle cerebral artery (MCA) sign, as illustrated 
in Figure 1, has been observed to be associated with embolic large 

vessel occlusion (LVO) (9, 10). The appropriate threshold for detecting 
thrombus has been established as a Hounsfield Unit (HU) value of 51, 
which exceeds the standard value of 45 HU (11). Intracranial arterial 
wall calcification is a hallmark of atherosclerosis and has been 
correlated with lower rates of reperfusion following thrombectomy 
(12). A substudy within the MR CLEAN trial enrolled 344 patients, 
with 156 in the endovascular treatment (EVT) group and 188 in the 
control group, excluding individuals who were difficult to evaluate due 
to 3-mm ultraslice imaging or body motion. The results indicated 
significant differences in reperfusion rates and outcomes based on the 
type of intracranial carotid artery calcification. Patients with medial 
calcification, i.e., calcification within the occluded vessel, had better 
outcomes in the EVT group compared to the control group [adjusted 
common odds ratio (OR), 2.32; 95% confidence interval (CI), 1.23–
4.39], while endovascular therapy did not have a significant impact on 
patients with intimal calcification (adjusted common OR, 0.82; 95% 
CI, 0.40–1.68) (12). In addition, a study on quantitative HU values 
measured the HU of intra-arterial radiation in 102 consecutive 
Chinese stroke patients who underwent multiphase CT angiography 
and EVT within 6 h of onset and examined the HU distal/proximal 
ratio to predict emboli The optimal cutoff was an HU ratio < 0.6 
measured at 2 mm from the embolization site (area under the 
maximum curve = 0.87, sensitivity 96%, specificity 81%) (13).

2.2. Susceptibility vessel sign/2-layered 
susceptibility vessel sign

The concept of SVS has been classically defined as “a manifestation 
of low signal intensity in occluded thrombi on T2*-weighted Gradient 
Echo (GRE) images, caused by the magnetic susceptibility effect of 
deoxyhemoglobin in red blood cells” (14). The diagnostic value of SVS 
in ischemic stroke is widely acknowledged, with a prevalence of 77.5% 
in cases of cardioembolism (15). This is particularly evident in 
thrombi with high concentrations of red blood cells (known as “red 
thrombi”) (16). Moreover, the presence of GRE-SVS has been 
associated with cardioembolism and spontaneous recanalization of 
occluded vessels (17, 18). The diameter of SVS has been independently 
linked to the likelihood of cardioembolism (adjusted odds ratio [OR], 
1.97; 95% confidence interval [CI], 1.34–2.90; p < 0.01). However, it is 
important to note that a diagnosis of SVS does not necessarily indicate 
cardioembolism, as 25.5% of patients without cardioembolism also 
exhibit SVS (14). In cases of the middle cerebral artery (MCA) 
diagnosed via cerebral angiography, the sensitivity of SVS was higher 
than that of the hyperdense MCA sign NCCT (82% vs. 54%) (14). The 
concept of “2-layer SVS” (as shown in Figure  2) on 3-T MR 
T2*-weighted GRE has been reported in Japan, where 47.7% of 132 
patients (72 men, mean age 74.5 years) were diagnosed with 
cardioembolism. The sensitivity of SVS for cardioembolism and large-
artery atherosclerosis was not statistically significant (74.6% vs. 
58.0%), but the sensitivity of 2-layer SVS alone was found to 
be significantly higher for cardioembolism (42.9%) than for large-
artery atherosclerosis (2.9%; p < 0.001) (19). The specificity of 2-layer 
SVS for cardioembolism and the diagnostic ratios were 97.1 and 
25.1%, respectively (42.0 and 2.1% for SVS). These findings may 
be attributed to the magnetic heterogeneity within the thrombus, 
suggesting a significant correlation between 2-layer SVS and higher 
thrombus weight and red blood cell components (19–21).

FIGURE 1

A hyperdense MCA sign (arrowhead) is seen in the left middle 
cerebral artery. MCA, middle cerebral artery.
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3. Perfusion imaging

A substantial distinction exists in the cerebral perfusion status 
preceding the manifestation of LVO AIS between ICAS-LVO and 
embolic LVO. The former is characterized by a chronic reduction in 
cerebral perfusion due to severe ICAS and in situ thrombus occlusion, 
while the latter is distinguished by the absence of abnormal 
intracranial perfusion and the acute reduction in perfusion caused by 
emboli. The diagnostic differentiation between the two forms of LVO 
AIS may be  facilitated by evaluating the cerebral perfusion status 
through MR perfusion or CT perfusion.

3.1. Perfusion profile (Tmax, hypoperfusion 
intensity rate)

The EPITHET-DEFUSE study disclosed a correlation between 
cerebral perfusion imaging attributes and atrial fibrillation. Of the 124 
patients who underwent perfusion imaging and were enrolled in 
DEFUSE (22) or EPITHET (23), 28 patients were designated as the 
“definite AF group,” having been identified as having atrial fibrillation 
(AF) upon admission, while the remaining 96 were classified as the 
“NO AF group.” The comparison of perfusion imaging profiles 
revealed that the definite AF group displayed elevated profiles relative 
to the NO AF group, as indicated by higher time to maximum 
concentration (Tmax) values (Tmax > 4 s: 136 mL vs. 81 mL, p < 0.01; 
Tmax > 6 s: 83 mL vs. 50 mL, p < 0.01; Tmax > 8 s: 48 mL vs. 29 mL, p = 0.02) 
(24). The DEFUSE 2 (25) trial quantified hypoperfusion intensity rate 
(HIR) as Tmax > 10 s divided by Tmax > 6 s, with a median HIR value of 
0.4 being linked to the extent of collateral bleeding (26). In a recent 
single-center observational study, HIR ≤0.22 (OR, 22.5; 95% CI, 
2.9–177.0; p = 0.003) and cerebral blood volume index ≥0.9 (OR, 75.7; 
95% CI, 5.8–994.0; p < 0.001) were found to be associated with ICAS-
related LVO and to potentially predict underlying ICAS prior to EVT 
(27); (Figure 3). Moreover, cortical collateral vessels are also helpful in 

the preoperative differentiation of stroke etiology. Cortical vessels are 
prominent on prominent cortical vessels on susceptibility-weighted 
imaging (PCV-SWI) in 30.3% of ICAS-related LVO patients, whereas 
PCV-SWI is positive in only 13.4% of ICAS-related LVO patients, and 
PCV-SWI helps diagnose stroke etiology (28). Previous studies have 
also reported that prominent cortical and/or medullary veins on SWI 
can indicate to neuro-interventionists that the cause of LVO is more 
likely cardioembolism rather than ICAS-related LVO (29). A summary 
of previous reports of useful PWI diagnostic markers in the diagnosis 
of ICAS is shown in Table 1.

4. Occlusion margin

In recent years various studies have documented the correlation 
between the characteristics of the proximal occluded vessel margin 
and LVO related to intracranial arteriosclerosis by utilizing initial 
cerebral angiography, which may prove valuable in the diagnosis of 
LVO related to intracranial arteriosclerosis prior to therapeutic 
intervention. In this context, here we  focus on the features of the 
occluded vessel margin and recent relevant literature.

4.1. Significant fixed focal stenosis after 
reperfusion

“Fixed focal stenosis of substantial magnitude” has been proffered 
as a diagnostic hallmark of ICAS-related LVO (Figure 4) (34). This 
criterion is articulated as “a concentration of significant stenosis 
circumscribed to the site of occlusion,” as observed on postoperative 
or definitive imaging of the MCA and was initially a term employed 
to characterize ICAS-related LVO. Although few systematic 
investigations have focused on fixed focal stenosis, a Korean registry 
utilizing stent retrievers noted an incidence of approximately 
15–20% (35).

FIGURE 2

Two-layer SVS. (A) SVS (arrowhead) is seen distal to M1 of the right MCA. (B) SVS (arrowhead) is seen in the right internal carotid artery proximal to M1 
segment of MCA. MCA, middle cerebral artery; SVS, susceptibility vessel sign.
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4.2. Branching-site and truncal-type 
occlusion

A multicenter observational study from Korea determined 
that occlusions of a truncal type were correlated with a lack of 

responsiveness to stent retrievers and were the fundamental cause 
of strokes (36). The subjects were patients undergoing MT for 
intracranial occlusions of the internal carotid artery, MCA, 
proximal MCA, intracranial vertebral artery, or basilar cerebral 
artery. The occlusions were classified as either branching-site 

FIGURE 3

Representative case of HIR. (A) Left internal carotid artery occlusion, 2 h after onset, HIR 0.8, rapid progression, cardiogenic cerebral embolism. 
(B) Proximal occlusion of the right MCA M1, 10 h after last healthy control, HIR 0.7, rapid progression, other cerebral infarction (cerebral embolism with 
unknown embolic source). (C) Distal occlusion of right MCA M2, onset 4 h, HIR 0.4, immediate progression, cardioembolism. (D) Proximal occlusion of 
the right MCA M1, HIR 0.2, slow progression, ICAS-related LVO. ICAS-related LVO, intracranial atherosclerotic stenosis-related large vessel occlusion; 
HIR, hypoperfusion intensity ratio; MCA, middle cerebral artery; SVS, susceptibility vessel sign.

TABLE 1 Summary of previous reports of useful perfusion imaging diagnostic markers in the diagnosis of ICAS.

Year Study design Number Patients Diagnostic 
pathophysiology

Diagnostic markers

2015

Meta-analysis 

(EPITHET-DEFUSE) 

(24)

175

AIS, NIHSS >4 in 

EPITHET and > 5 in 

DEFUSE

No AF Tmax profile (>8, >6 s, >4 s) volume

2018 Observational study (30) 250
Anterior Circulation 

LVO AIS
ICAS-LVO Tmax >4 s/Tmax >6 s ratio ≥ 2

2021 Observational study (31) 42 symptomatic ICAS cases Infarct pattern; internal borderzone Δ Tmax >4 s – Tmax >6 s

2022 Observational study (32) 143
Anterior Circulation 

LVO AIS
LAA HIR <0.4

2022 Observational study  (27) 47 LVO AIS LVO underlying ICAS HIR ≤ 0.22 CBV index ≥0.9

AF indicates atrial fibrillation; AIS, acute ischemic stroke; CBV, cerebral blood volume; EVT, endovascular therapy; HIR, hypoperfusion intensity ratio; ICAS, intracranial atherosclerotic 
stenosis; LVO, large vessel occlusion; NIHSS, National Institutes of Health Stroke Scale; Tmax, time to maximum concentration.
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occlusion or truncal-type occlusion. Branching-site occlusion 
was defined as at least one of the following three conditions 
(Figure 5); (1) anterior communicating artery collateral flow that 
could not proceed to the contralateral ICA or MCA because it 
involved the internal cerebral artery bifurcation site (T 
occlusion); (2) direct visualization of a Y-or T-shaped filling 
defect involving a bifurcation site (Y-or T-shaped clot); and (3) 
another branch could not be  visualized or was only partially 
visualized when the retriever was deployed to a branch across the 
occlusion site. Truncal-type occlusion, on the other hand, was 
defined as all branches and bifurcations visible beyond the 
occluded vessel, including those observed at recanalization. After 
a comprehensive evaluation involving chest electrocardiogram, 
echocardiography, cardiac CT, and cervical vascular 
echocardiography, the patients were classified as having embolic 
or non-embolic LVO. Of the 259 patients (mean age 70.3 years; 
male/female ratio 132:127), 83.4% had embolic LVO. Multivariate 
analysis revealed that younger age, prior coronary artery disease, 
and truncal-type occlusion were independently linked to the 
absence of embolic LVO (OR, 9.07; 95% CI, 3.74–22.0). 
Furthermore, truncal-type occlusion was associated with a higher 
frequency of reocclusion and a longer time to recanalization 
during stent retriever treatment. In a subanalysis of this study, 
truncal-type occlusion was associated with 93% of ICAS-related 
LVO and 10% of embolic LVO (p < 0.01) (35), whereas branching-
site occlusion was associated with 7% of ICAS-related LVO and 
90% of embolic LVO. In a separate study among 115 LVO patients 
in China, truncal-type occlusion was present in 93% of ICAS-
related LVO and 10% of embolic LVO, while branching-site 
occlusion was observed in 7% of ICAS-related LVO and 90% of 
embolic LVO, yielding a significant difference between the two 
LVO types (p < 0.01 for each). The area under the curve of 

FIGURE 4

Significant fixed focal stenosis. A 59-year-old man was diagnosed with 
significant fixed focal stenosis. The right MCA M1 occlusion was 
recanalized in a single pass with a stent retriever, but the site of 
occlusion was found to have a fixed focal stenosis. MCA, middle 
cerebral artery.

FIGURE 5

Branching-site occlusion. (A) Intracranial carotid artery occlusion without visualization of the anterior communicating artery (IC-T occlusion). (B) Y- or 
T-shaped visualization defect including vessel branches. (C) Partial or complete lack of visualization of vessel branches on angiography after stent 
retriever deployment.
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ICAS-related LVO in truncal-type occlusion was 0.916, with the 
sensitivity of 92.86% and specificity of 90.41% (36). CT 
angiography can also assess truncal-type occlusion, and although 
it is not a direct predictor of pathogenesis, branching-site 
occlusion as determined by CT angiography has been reported to 
independently predict the success of recanalization with stent 
retrievers (OR, 8.20; 95% CI, 3.45–19.5) (37). Representative 
cases of truncal-type occlusion/branching-site occlusion are 
shown in Figure 6.

4.3. Jet-like appearance

Jet-like appearance on cerebral angiography is characterized 
by a tapered end of the occluded vessel (Figure 7). In a Chinese 
observational study of 164 cases of LVO, 20.7% presented with 
this distinctive trait. Patients with the jet-like appearance were 

determined to be younger (mean age 68 years compared with 
62.7 years) and had fewer severe symptoms (as indicated by a 
lower National Institutes of Health Stroke Scale [NIHSS] score 
of 16.6 compared with 12.4) than those without this feature. 
Multivariate logistic regression analysis revealed that a jet-like 
appearance was independently correlated with ICAS-related 
LVO (OR, 180.813; 95% CI, 17.966–1819.733; p < 0.001). The 
diagnostic performance of the jet-like appearance for 
identifying ICAS-related LVO was determined to have the 
sensitivity of 96%, specificity of 78%, and accuracy of  
83% (38).

4.4. “Tapered” or “non-tapered”

A Canadian study delineated two patient groups based on 
the occlusion location at the initial angiography and compared 

FIGURE 6

Representative cases of truncal-type occlusion/branching-site occlusion. (A–D) Truncal-type occlusion. (E–H) Branching-site occlusion. (A) Schema 
of in situ thrombus of right middle cerebral artery (MCA) M1 truncal type (asterisk). (B) Initial angiography shows occlusion of right MCA M1 (arrow). 
(C) Angioplasty. (D) Identification of residual stenosis in the right MCA M1 (ICAS-related LVO). (E) Embolic schema of the right MCA M1/M2 bifurcation 
(asterisk). (F) Initial angiography showed occlusion of right MCA M1 (arrow). (G) Stent retriever was deployed. (H) After retrieval of red thrombus, the 
bifurcation was found to be occluded. Angioplasty and stent retrieval were then performed.
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their demographic characteristics. Of 131 participants, 31 
(23.6%) were classified as having a tapered presentation, while 
100 (76.3%) were in the non-tapered group (Figure  8). The 
tapered group delivered a lower NIHSS score (10 vs. 16, with a 
significance level of p < 0.001), higher Alberta Stroke Program 
Early CT Score (9 vs. 7, with a significance level of p = 0.003), 

higher immediate reocclusion rate (26.7% vs. 8.2%, with a 
significance level of p = 0.025), and a lower rate of complete 
recanalization (45.2% vs. 71.0%, with a significance level of 
p = 0.028). The tapered group was also more likely to have LVO 
associated with ICAS (54.8% vs. 18.0%, with a significance 
level  of p < 0.001) and to present with truncal-type 
occlusions  (76.9% vs. 31.1%, with a significance level of 
p < 0.001) (39).

The benefits of identifying such occlusion margins through 
digital subtraction angiography are considerable, as they remain 
unaltered by therapeutic intervention and are thus useful in 
determining the causative mechanism of occlusion, even if 
complete recanalization of the affected vessel is not realized. 
Representative cases of “tapered” or “non-tapered” types are 
shown in Figure 8.

5. Conclusion

The diagnosis of ICAS-related LVO is informed by three key 
elements: “thrombus imaging,” “perfusion,” and “occlusion 
margin.” Preoperative assessment of the occlusion mechanism 
considers not only imaging results but also a comprehensive 
examination of these three elements along with factors 
indicative of ICAS-related LVO, such as progressive symptoms, 
low NIHSS scores, male sex, history of hypercholesterolemia 
and smoking, absence of AF, and posterior circulation strokes 
(33, 40, 41). It is imperative that a diagnosis is based on a 
holistic evaluation of these three elements as well as factors 
associated with ICAS-related LVO, including the absence of 
evidence of embolic LVO and posterior circulation stroke. In 

FIGURE 7

Jet-like appearance.

FIGURE 8

“Tapered” or “non-tapered” type. (A,B) Tapered; (C) meniscus; (D) cutoff; (E) tramtrack. Arrows indicate occlusion sites. (A) Right internal carotid 
arteriography showed the right middle cerebral artery (MCA) proximal to M1. The lumen of the occlusion gradually narrowed, and the occlusion site 
was severed at an acute angle at the superior wall of the artery. (B) Left internal carotid arteriography showed an acute occlusion angle in the distal left 
MCA M1, with the same pattern as in (A). (C) Right internal carotid arteriography showed occlusion of the right internal carotid artery, concavity into the 
lumen representing meniscus occlusion. (D) Right internal carotid angiography showed distal M1 cerebral artery and cutoff occlusion. (E) Right internal 
carotid angiography showed partial occlusion of the right MCA from M1 proximal to M2, and multiple thrombus transillumination images indicating 
tramtrack occlusion were observed.
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the case of LVO related to coronary artery disease, a 
non-embolic type of LVO, key patient histories characteristics 
such as young age and headache onset often play a significant 
role in clinical practice. There are limited systematic reports on 
the characteristic imaging findings before therapeutic 
intervention. Furthermore, there exist conditions, beyond 
ICAS-related LVOs, that warrant further investigation, such as 
unmet needs.
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