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Diagnosis of post-neurosurgical
bacterial meningitis in patients
with aneurysmal subarachnoid
hemorrhage based on the
immunity-related proteomics
signature of the cerebrospinal
fluid

Liang Zhao†, Pingping Li†, Ziao Xu, Xuefei Ji, Liao Guan,

Xiaojian Wang, Jin Luo, Hongwei Cheng* and Lei Ye*

Department of Neurosurgery, The First A�liated Hospital of Anhui Medical University, Hefei, China

Introduction: Post-neurosurgical bacterial meningitis (PNBM) is a serious

complication for patients who receive neurosurgical treatment, but the diagnosis

is di�cult given the complicated microenvironment orchestrated by sterile brain

injury and pathogenic infection. In this study, we explored potential diagnostic

biomarkers and immunological features using a proteomics platform.

Methods: A total of 31 patients with aneurysmal subarachnoid hemorrhage (aSAH)

who received neurosurgical treatment were recruited for this study. Among them,

15 were diagnosed with PNBM. The remaining 16 patients were categorized

into the non-PNBM group. Proteomics analysis of the cerebrospinal fluid (CSF)

was conducted on the Olink platform, which contained 92 immunity-related

molecules.

Results: We found that the expressions of 27 CSF proteins were significantly

di�erent between the PNBM and non-PNBM groups. Of those 27 proteins, 15

proteins were upregulated and 12 were downregulated in the CSF of the PNBM

group. The receiver operating characteristic curve analysis indicated that three

proteins (pleiotrophin, CD27, and angiopoietin 1) had high diagnostic accuracy

for PNBM. Furthermore, we also performed bioinformatics analysis to explore

potential pathways and the subcellular localization of the proteins.

Conclusion: In summary, we found a cohort of immunity-related molecules that

can serve as potential diagnostic biomarkers for PNBM in patients with aSAH.

These molecules also provide an immunological profile of PNBM.

KEYWORDS

post-neurosurgical bacterial meningitis, proteomics, aneurysmal subarachnoid

hemorrhage, immunity, neuroinflammation

Introduction

Post-neurosurgical bacterial meningitis (PNBM) is a common complication in patients

undergoing neurosurgical treatments (1). Despite the application of aseptic technology

worldwide, the occurrence of PNBM appears inevitable, with the incidence rate ranging

between 0.3 and 10% in different neurosurgical diseases (2, 3). Aneurysmal subarachnoid

hemorrhage (aSAH), although it only accounts for 10%−20% of all strokes, is a serious
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cerebrovascular disorder that may cause considerable morbidity

and mortality (4). The prognosis of aSAH patients depends on

multiple factors, such as the severity of the acute bleed and

the presence of delayed cerebral ischemia and post-neurosurgical

complications. Among these, PNBM is one of the most common

complications encountered in clinical practice. Despite the lack

of epidemiological information regarding the incidence of PNBM

among aSAH patients, a report indicated that the general PNBM

incidence in cerebrovascular diseases is ∼4.9% (42/852) (3). The

gold standard diagnostic criteria for PNBM depend on Gram’s

staining of the cerebrospinal fluid (CSF) or bacterial culture.

However, low bacterial loads in the CSF and the pre-application

of antibiotics usually lead to negative results in clinical practice.

Previous studies have shown that the positive rates for CSF bacterial

culture are <20% in different laboratory tests (5, 6). In reality,

the biochemical characteristics of CSF predominantly assist in

the clinical diagnosis of bacterial infection of the central nervous

system (CNS). In comparison with community-acquired CNS

infection, the microenvironment of the CSF in PNBM is more

complicated because primary neurological disease, neurosurgical

processes, and pathogenic infection have a significant impact on

numerous aspects of the biological functions of the CSF, such as

immune reaction and inflammation. Investigation of biomolecule-

based diagnostic biomarkers of PNBM has, therefore, always been

a focus in clinical studies and scientific research.

The CNS is considered one of the immune-privileged areas

with respect to the peripheral immunological system because of

multiple barriers, such as the blood–brain barrier (BBB) and

the meninges around the neural parenchyma (7). However, the

involvement of both the innate and adaptive immune systems,

which maintain CNS homeostasis, has been reported in both CNS

infection and sterile brain injury (8). Numerous immunocytes, such

as localized macrophages, peripherally recruited leukocytes, and

CD4+/CD8+ T cells, can participate in the neuroinflammatory

reaction, pathogen cleanup, and damage repair. Cytokines and

chemokines that are released by immunocytes serve as diagnostic

and/or predictive biomarkers for infectious disease and sterile brain

injuries (9).

Neuroinflammation is one of the featured pathogenesis of

secondary brain injury in stroke (10). Molecules that function

as both proinflammatory and anti-inflammatory mediators are

extensively produced and released by CNS-resident cells and

immunocytes that are recruited from the peripheral circulation.

However, some studies have shown that CNS infection can

also induce extensive neuroinflammation (11, 12). However,

the immunological reactions associated with the comorbidity

of CNS infection and hemorrhagic stroke have not been fully

investigated. Therefore, although CNS infections share a similar

pathogenetic process as neuroinflammatory reactions, it is still

largely unknown whether these inflammation-related molecules

can serve as potential diagnostic biomarkers in PNBM among

patients with stroke.

In this study, we used a novel proteomics platform that contains

92 immunity-related biomarkers to detect CNS biomarkers for the

diagnosis of PNBM. We believe that this proteomics analysis can

provide not only a molecule-based diagnosis of PNBM but also an

immunological profile for the comorbidity of PNBM and aSAH.

Methods

Patients and sample collection

A total of 31 patients with aSAH were recruited for this study.

The diagnosis of aSAHwas confirmed by two senior neurosurgeons

with supporting evidence from computed tomography and whole

cerebrovascular digital subtraction angiography. All patients

underwent computed tomography angiography (CTA) after

admission to assess the incidence of intracranial aneurysms (IA).

Cistern drainage operations were performed for all patients to

release the bloody CSF. A total of 10 and 21 patients underwent

clipping and endovascular embolization of IAs, respectively.

When cistern drainage was completed, some patients exhibited

potential infection symptoms. Therefore, 20 patients received

another lumbar puncture for laboratory testing of CSF. PNBM

was subsequently diagnosed in 15 out of 31 patients based

on the diagnostic criteria issued by IDSA’s Clinical Practice

Guidelines for Healthcare-Associated Ventriculitis and Meningitis

2017 (13) and a Chinese Expert Consensus of Diagnostic and

Therapy for the Neurosurgical Central Nervous System Infections

in 2021. According to the guidelines, PNBM diagnosis briefly

relies on either positive results of Gram’s staining/bacterial

culture or the CSF indications (simultaneously satisfying CSF

white blood cells > 100 × 106/L. CSF glucose <2.2 mmol/L,

and CSF-to-blood glucose ratio < 0.4). The inclusion criteria

were as follows: (1) aSAH patients that received neurosurgical

treatments (such as endovascular embolization or clipping of IAs);

(2) patients with complete demographic and clinicopathological

data; and (3) an adequate amount and quality of CSF samples

available for proteomics analysis. The exclusion criteria were

as follows: (1) patients with other types of hemorrhagic

stroke (e.g., spontaneous intracerebral hemorrhage, arteriovenous

malformation, and traumatic-induced intracranial hemorrhage);

(2) inadequate amount or quality of CSF samples available for

the study (e.g., severely hemolyzed or contaminated sample

during transportation or storage; (3) patients who had other

comorbid neurological diseases; and (4) patients who had systemic

inflammatory diseases or malignant tumors. CSF samples were

extracted via cistern drainage or lumbar puncture with an

aseptic technique when the patients were suspected of having

potential CNS infections. All samples were stored at −80◦C. The

demographic data and biochemical characteristics of CSF are

summarized in Table 1.

Proximity extension assay

An immunity-related panel containing 92 molecules was

measured in the CSF of all participants using Proximity Extension

Assay (PEA) technology on the Olink R© Proteomics Multiplex

Assay platform (14). The assays were performed using Sinotech

Genomics Co. Ltd. (Shanghai, China). Briefly, antibodies

that specifically recognized target proteins were designed by

conjugating DNA tags at the end. DNA tags hybridize to form

paired double strands when the antibodies correctly match

the protein. The DNA tag sequences were amplified using
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TABLE 1 Demographic and clinicopathological data of the 31 patients with aneurysmal subarachnoid hemorrhage.

Total (n = 31) Infection (n = 15) Non-infection (n = 16) p-value

Gender (M/F, n) 31 9/6 5/11 0.108

Age 55.74± 15.50 57.47± 14.41 54.13± 16.77 0.558

ICP (mmH2O) 165.16± 50.06 192.00± 50.17 140.00± 35.59 0.002

CSF WBC 322 [105, 901] 572 [322, 1,602] 151 [13, 690] 0.005

CSF total protein 2.11 [1.25, 3.00] 2.86 [2.02, 3.00] 1.48 [0.57, 2.39] 0.002

CSF RBC 28,000 [2,000, 101,000] 24,000 [1,000, 200,000] 40,500 [2,000, 95,500] 0.921

CSF glucose 2.77± 1.53 1.53± 0.40 3.94± 1.24 <0.001

CSF chlorine 121.42± 10.50 120.61± 10.85 122.17± 10.46 0.688

CSF polymorphonuclear cells 52.82± 28.28 66.49± 24.85 40.00± 25.71 0.007

Blood glucose 6.19 [5.51, 7.77] 6.19 [5.57, 7.68] 6.26 [5.17, 7.96] 0.968

CSF-to-blood glucose ratio 0.35 [0.22, 0.57] 0.23 [0.18, 0.33] 0.56 [0.44, 0.64] <0.001

Hunt-Hess Score 2 [1, 4] 2 [1, 3] 3 [2, 4] 0.037

Glasgow Coma Scale 15 [12, 15] 15 [15, 15] 15 [12, 15] 0.086

Location Anterior communicating artery 3 5 0.058

Middle cerebral artery 6 5

Posterior communicating artery 1 6

Internal carotid artery 4 0

Anterior cerebral artery 1 0

qPCR for quantitative detection. The results were expressed as

normalization protein expression (NPX) values on a log2-scale. The

molecules contained in the platform were adenosine deaminase

(ADA), adhesion G protein-coupled receptor G1 (ADGRG1),

angiopoietin 1 (ANGPT1), angiopoietin 2 (ANGPT2), arginase

1 (ARG1), carbonic anhydrase IX (CAIX), caspase 8 (CASP-8),

C-C motif chemokine 3 (CCL3), CCL4, CCL17, CCL19, CCL20,

CCL23, CD4, CD5, CD8A, CD27, CD28, CD40, CD40 ligand

(CD40L), CD70, CD83, CD244, cytotoxic and regulatory T-cell

molecule (CRTAM), macrophage colony-stimulating factor

1 (CSF-1), fractalkine (CX3CL1), C-X-C motif chemokines

(CXCL1), CXCL5, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13,

decorin (DCN), pro-epidermal growth factor (EGF), tumor

necrosis factor ligand superfamily member 6 (FASLG), fibroblast

growth factor 2 (FGF2), galectin-1 (Gal-1). Gal-9, granzyme A

(GZMA), granzyme B (GZMB), granzyme H (GZMH), hepatocyte

growth factor (HGF), heme oxygenase 1 (HO-1), ICOS ligand

(ICOSLG), interferon γ (IFN-γ), interleukin 1α (IL-1α), IL-2,

IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, interleukin-12 receptor

subunit β-1 (IL-12RB1), IL-13, IL-15, IL-18, IL-33, killer cell

immunoglobulin-like receptor 3DL1 (KIR3DL1), natural killer

cells antigen CD94 (KLRD1), Lymphocyte activation gene 3

protein (LAG3), lysosome-associated membrane glycoprotein

3 (LAMP3), transforming growth factor beta-1 proprotein

(LAPTGF-β1), C-C motif chemokine 2 (MCP-1), C-C motif

chemokine 8 (MCP-2), C-C motif chemokine 7 (MCP-3), C-C

motif chemokine 13 (MCP-4), MHC class I polypeptide-related

sequence A/B (MIC-A/B), matrilysin (MMP-7), macrophage

metalloelastase (MMP-12), mucin-16 (MUC-16), natural

cytotoxicity triggering receptor 1 (NCR1), nitric oxide synthase

3 (NOS3), programmed cell death protein 1 (PDCD1), platelet-

derived growth factor subunit B (PDGF subunit B), programmed

cell death 1 ligand 1 (PD-L1), PD-L2, placenta growth factor

(PGF), pleiotrophin (PTN), angiopoietin-1 receptor (TIE2),

tumor necrosis factor (TNF), tumor necrosis factor receptor

superfamily member 4 (TNFRSF 4), TNFRSF 9, TNFRSF12A,

TNFRSF21, TNFSF14, tumor necrosis factor ligand superfamily

member 10 (TRAIL), tumor necrosis factor ligand superfamily

member 12 (TWEAK), vascular endothelial growth factor A

(VEGFA), and vascular endothelial growth factor receptor

2 (VEGFR-2).

Statistical analysis

All statistical analyses were performed in R script (v. 4.0.3),

with the primary analysis focusing on the CSF results. All

continuous data were depicted as the mean±standard deviation

(mean±SD) and then analyzed with the Student’s t-test or as

medians with the interquartile range (IQR) and then analyzed

using the Mann–Whitney U-test. Binary data were analyzed

using the chi-squared test. In the correlation analysis among the

molecules in CSF, Pearson’s correlation coefficients were assessed

for each molecule. A receiver operating characteristic (ROC)

curve analysis was conducted to assess the diagnostic efficacy

of molecules in PNBM via the index of the area under the

curve (AUC). A p-value of <0.05 was considered to indicate

statistical significance.
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FIGURE 1

Quality control for 31 samples in the proteomic analysis. (A) Normalization Protein eXpression (NPX) analysis. (B) Principal component analysis (PCA).

Results

Quality control of samples

We evaluated 92 protein biomarkers using the Olink

Proteomics Multiplex Assay platform. The expression of proteins

was summarized using the NPX index to identify the outlier

sample. The NPX result for each sample is presented in Figure 1A,

which shows that all 31 samples passed quality control. A principle

component analysis (PCA) was conducted to assess the results

of quality control. Generally, no outliers in the samples were

found for all samples in the PCA analysis (Figure 1B). However,

we also found that some samples in the case group fell into the

category of health samples. This phenomenon might be attributed

to individual differences.

Protein expression profiles

All protein expressions in the panel between PNBM patients

and non-PNBM patients are depicted in the heatmap (Figure 2A).

We found that 27 out of 92 (29.35%) proteins had statistically

significant differences between the groups (Figure 2B). Among

all the differentially expressed proteins, 15 proteins (CD4,

CD5, CD27, CD244, IFN-γ, IL-1α, IL-10, CXCL-13, TNFRSF4,

TNFRSF9, TNFSF14, GZMA, GZMB, GZMH, and PDCD1)

were upregulated and 12 (CXCL-10, CXCL-11, MMP-7, MMP-

12, MCP-1, MCP-3, CAIX, ANGPT1, PTN, HO-1, EGF, and

PDGF subunit B) were downregulated in the CSF samples

of PNBM patients (Figure 2C) compared to those of non-

PNBM patients. We analyzed Pearson’s correlation coefficients

for all proteins to evaluate the correlations among proteins

(Supplementary Figure 1). The results indicated that most proteins

were positively correlated with each other.

Diagnostic e�cacy for PNBM biomarkers

We analyzed the diagnostic efficacy of the 27 differentially

expressed proteins between the PNBM and non-PNBM groups

using ROC analysis. The results showed that three proteins reached

high diagnostic efficiencies (AUC > 0.85) in distinguishing PNBM

from non-PNBM in patients with aSAH; these were PTN (p <

0.001, AUC = 0.883, sensitivity = 81.25%, specificity = 93.33%;

Figures 3A, B); CD27 (p < 0.001, AUC = 0.875, sensitivity

= 93.75%, specificity = 80.00%; Figures 3C, D); and ANGPT1

(p = 0.005, AUC = 0.858, sensitivity = 87.50%, specificity =

93.33%; Figures 3E, F). Another three proteins (TNFSF14, EGF,

and CD4) had mild diagnostic efficacy (AUC: 0.60–0.70), and the

other proteins had moderate diagnostic efficacy (AUC: 0.70–0.85)

for PNBM.

Bioinformatic annotations for proteins
involving the pathogenesis of PNBM

We used multiple bioinformatics tools to predict the potential

protein-protein interaction (PPI), functional pathways, and

subcellular locations. First, we established a PPI network to show

the interaction among proteins that were differentially expressed

between the PNBM and non-PNBM groups (Figure 4A). Then,

we analyzed the subcellular locations of these proteins in PNBM

(Figure 4B). The results showed that the subcellular locations of

the proteins were as follows: extracellular (18 proteins), plasma

membrane (five proteins), peroxisome (two proteins), cytosol (one

protein), and nucleus (one protein). Additionally, we performed

Gene Ontology (GO; Figure 4C) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment (Figure 4D) analyses

to show the potential biological functions and pathways involved

in the pathogenesis of PNBM among aSAH patients.
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FIGURE 2

Protein expression profiles between the infection and non-infection groups. (A) A heatmap of 92 proteins. (B) The proportion of di�erentially

expressed proteins. (C) A Volcano plot of the 27 proteins with di�erential expressions.

Discussion

In this study, we investigated the immunity-related proteomics

profile of the CSF in aSAH patients with or without PNBM

using a 92-protein panel. The results showed that 15 upregulated

proteins and 12 downregulated proteins were significantly

associated with PNBM and could serve as potential biomarkers of

the diagnosis.

Owing to the low abundance of microbes in the CSF and the

application of antibiotics to patients with potential symptoms of

CNS infection, negative results for bacterial culture and Gram

staining of the CSF are commonly observed. In our department,

the patients who received a clipping of IAs were usually treated with

antibiotics intraoperatively and 24-h post-operatively, respectively.

This leads to a complicated diagnosis of PNBM among those

receiving neurosurgical treatments (15). Recent studies have

focused on the discovery of biomarkers for the diagnosis of PNBM.

Lactate and procalcitonin (PCT) in the CSF have been found to be

suggestive biomarkers for the diagnosis of CNS bacterial infections

and have already been clinically applied for the auxiliary diagnosis

of meningitis and sepsis (16, 17). Other molecules, such as MMP-9

and a combination of APOE/APOAI/S100A8 proteins, were also

shown to play diagnostic roles in community-acquired bacterial

meningitis (18, 19). We found that some of these biomarkers

were mediators in aSAH or other neurological diseases (20, 21).

However, there is a lack of supporting evidence showing their roles

in PNBM.

Temporary immunodepression is a common phenomenon

among patients with SAH and contributes to the incidence

of post-neurosurgical infection. Sarrafzadeh et al. (22) reported

considerable immunodepression in the early stages of aSAH and

correlated it with a high incidence of pneumonia. Additionally,

Chaudhry et al. (23) reported that SAH-induced systemic

immunodepression was significantly associated with plasma IL-

10, an inflammatory cytokine whose level can be increased after

SAH onset. Therefore, exploring the immunity profiles in CSF

would help understand immunodepression conditions and provide

potential targeted treatment to prevent infectious complications

after aSAH.

In our study, we found that, among the 27 proteins that were

differentially expressed in CSF between aSAH patients with and

without CNS bacterial infections, nine proteins were reported as

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2023.1166598
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhao et al. 10.3389/fneur.2023.1166598

FIGURE 3

Expression di�erences and diagnostic e�cacy of biomarkers between the infection and non-infection groups. (A, B) PTN. (C, D) CD27. (E, F) ANGPT1.

functional in highly cited studies concerning stroke and primary

CNS infection. These proteins included four upregulated molecules

(CD4, IFN-γ, IL-1α, and IL-10) and five downregulated molecules

(MMP-7, MMP-12, MCP-1, HO-1, and PDGF subunit B). Several

previous studies have analyzed CSF proteomics in patients with

SAH using different detection platforms (24–26). This proteomics-

related biomarker detection helped identify the molecular basis

of SAH or its related complications. However, evidence showing

the immunity profile of SAH or PNBM following SAH is still

lacking. Neuroinflammation is the hallmark of secondary injury

after stroke.

Numerous cytokines and chemokines with anti-inflammatory

and proinflammatory properties interact with each other and

participate in neural damage and repair. The subsequent pathogen-

induced neuroinflammatory reaction is also involved in the

immunity needed to execute the cleanup of pathogens. Although

these two challenges share overlapping immunological features,

the inducer differs in origin, leading to different levels of anti-

inflammatory and proinflammatory biomarkers (8). In CNS

infection, both innate (monocytes and neutrophils) and adaptive

immunocytes (CD8+, CD4+, and B cells) are recruited from

peripheral circulation through the damaged BBB. However, innate
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FIGURE 4

Bioinformatic analysis of di�erentially expressed proteins. (A) Protein-protein interactions. (B) Subcellular locations. (C) GO enrichment. (D) KEGG

pathway enrichment.

immunocytes (myelomonocytic cells) are predominantly involved

in the damage cleanup and repair initiation when a sterile brain

injury occurs (9). Interestingly, we found that the molecules that

were reported to be associated with both stroke and CNS bacterial

infection had only a mild-to-moderate diagnostic efficacy (AUC

range: 0.65–0.84). We inferred that these molecules are influenced

by both diseases.

Three molecules, namely PTN (AUC = 0.8833), CD27

(AUC = 0.875), and ANGPT1 (AUC = 0.8583), were found

to potentially serve as biomarkers for PNBM with a high

diagnostic efficacy. ANGPT1 was validated to have a neural

protective character in stroke because of its angiogenic and

antiinflammation properties (27). Another study found that

ANGPT1 could be a diagnostic biomarker for ischemic stroke

(IS) (28). However, except for a transcriptomic study concerning

its diagnostic role in Lyme neuroborreliosis, studies on ANGPT1

with regard to CNS bacterial infection are still lacking. Similarly,

PTN was also only investigated in IS and reperfusion injury

and was upregulated in microglia at disease onset, providing a

neuroprotective factor.

Furthermore, the membrane receptor CD27 involves adaptive

immunity via regulating T and B cells (29, 30). Although CD27+ T

cells have proven to be involved in the pathogenesis of meningitis

(31), there is still a lack of direct evidence that the soluble

CD27 protein is associated with PNBM or stroke. Although

some molecules have been previously reported in stroke or CNS

bacterial infection, others, such as CXCL-13, TNFRSF4, TNFRSF9,

TNFSF14, GZMA, GZMB, GZMH, PDCD1, CXCL-11, CAIX,

PTN, and EGF, have never been shown to be associated with the

pathogenesis of both diseases. These molecules may offer a novel

immunity profile in the pathogenesis of the comorbidity of PNBM

and aSAH. We also used bioinformatics annotation for those

molecules with differential expressions between the two groups.

Because of the immunity-related characteristics of the proteomics

panel, the majority of results of the GO analysis correlated to

adaptive immunity, which was in accord with the pathophysiologic

processes of PNBM.

Additionally, the pathway enrichment analysis indicated

numerous signaling pathways concerning bacterial infection in the

CNS, such as the TCR signaling pathway, JAK-STAT signaling

pathway, IL-17 signaling pathway, and HIF-1 signaling pathway.

This information provided helpful information on potential

therapeutic targets in PNBM. However, the detailed mechanisms of

these molecules in pathogen-induced immunity still need further

investigation. Meanwhile, the diagnostic efficacy should also be

validated in an augmented population.
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This study has some limitations. First, because of the low

positive rate of bacterial culture, the microbial types were indeed

unknown. Therefore, the molecules are associated with general

bacterial infections rather than with a specific type. Furthermore,

because there are potential medical risks associated with CSF

collection from healthy individuals, we did not obtain these

samples from the control group. Therefore, results concerning the

diagnostic biomarkers for PNBM are limited to patients with aSAH.

Whether these molecules can be used as general biomarkers in

patients with other primary neurological diseases remains to be

further studied.

In summary, we identified a cohort of immunity-related

molecules that can serve as potential diagnostic biomarkers

for PNBM in patients with aSAH. These molecules also

provide insights into the immunological profile underlying

the pathogenesis of CNS bacterial infection after neurosurgical

processes, thereby providing potential treatment targets for clinical

practice and fundamental scientific research in this field.
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