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Introduction: Neuromyelitis optica spectrum disorder (NMOSD) is a devastating

inflammatory CNS demyelinating disease. Two groups of monoclonal antibodies

(mAbs) are used to prevent disease relapse, i.e., Food and Drug Administration

(FDA)-approved mAbs (e.g., eculizumab satralizumab, inebilizumab), and o�-

label mAb drugs (e.g., rituximab and tocilizumab). The FDA-approved mAbs have

high e�cacy but more expensive compared to the o�-labels, and thus are

less accessible. This systematic review and network meta-analysis (NMA) was to

assess the e�cacy and safety of both classes of mAbs compared to the current

standard treatments.

Methods: Systematically searcheswere conducted inMEDLINE and SCOPUS from

inception until July 2021. Randomized-controlled trials (RCTs) were eligible if they

compared any pair of treatments (mAbs, immunosuppressive drugs, or placebo)

in adult patients with NMOSD. Studies with AQP4-IgG positive or negative were

used in the analysis. Probability of relapse and time to event were extracted from

the Kaplan-Meier curves using Digitizer. These data were then converted into

individual patient time-to-event data. A one-stage mixed-e�ect survival model

was applied to estimate the median time to relapse and relative treatment e�ects

using hazard ratios (HR). Two-stage NMA was used to determine post-treatment

annualized relapse rate (ARR), expanded disability status score (EDSS) change, and

serious adverse events (SAE). Risk of bias was assessed using the revised cochrane

risk of bias tool.

Results: A total of 7 RCTs with 776 patients were eligible in the NMA. Five of

the seven studies were rated low risk of bias. Both FDA-approved and o�-label

mAbs showed significantly lower risk of relapse than standard treatments, with HR

(95% CI) of 0.13 (0.07, 0.24) and 0.16 (0.07, 0.37) respectively. In addition, the FDA-

approved mAbs had 20% lower risk of relapse than the o�-label mAbs, but this did

not reach statistical significance. The ARRs were also lower in FDA-approved and
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o�-label mAbs than the standard treatments with the mean-di�erence of−0.27

(-0.37,−0.16) and−0.31(-0.46,−0.16), respectively.

Conclusion: The o�-label mAbs may be used as the first-line treatment for

improving clinical outcomes including disease relapse, ARR, and SAEs for NMOSD

in countries where resources and accessibility of the FDA-approved mAbs

are limited.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=283424, identifier: CRD42021283424.

KEYWORDS

neuromyelitis optica spectrum disorder (NMOSD), FDA-approved monoclonal antibodies

(mAbs), o�-label monoclonal antibodies, relapse, network-meta analysis

Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is

a devastating central nervous system (CNS) inflammatory

demyelinating disease that approximately seventy-five percent is

caused by autoantibodies targeting aquaporin-4 immunoglobulin

G (AQP4-IgG) (1). Patients usually present with severe optic

neuritis and myelitis, which can cause blindness and quadriplegia

(2). The extent of the disability depends on the frequency and

severity of disease relapses. Thus, immunosuppressive and

immunomodulatory drugs are essential treatments for relapse

prevention in patients with NMOSD.

Standard immunosuppressive medication considered initial

treatments for relapse prevention especially poor resource

countries include prednisolone, azathioprine, and mycophenolate

mofetil. However, many patients still relapse because of low

efficacy and low adherence related to severe side effects (3).

Monoclonal antibodies [mAbs: i.e., eculizumab, (4) satralizumab

(5, 6), inebilizumab (7)] have more recently been approved by

the Food and Drug Administration (FDA) for NMOSD, and are

claimed to have higher efficacy and lower side effects, but at much

higher cost than the standard immunosuppressive drugs, making

them less accessible. Therefore, other mAbs [i.e., rituximab (8, 9)

and tocilizumab (10)] are used as “off-label” medications because

of their much lower cost than the approved mAbs.

Fifteen systematic reviews (SRs) have evaluated treatment

effects of mAbs on relapse prevention in NMOSD (11–25).

However, most SRs were performed using data from observational

studies; only a single direct meta-analysis (19) included only

randomized control trials (RCTs). Two SRs also applied network

meta-analysis (NMA) (13, 23); one published in 2019 had a mix

of one RCT and five observational studies to compare the efficacy

of four immunosuppressive drugs (i.e., cyclosporine, azathioprine,

mycophenolate mofetil, and cyclophosphamide) with a single

mAb (i.e., rituximab) (13). Another NMA was recently published

considering only four FDA-approved mAbs (23). Several RCTs that

assessed the effects of off-label mAbs were published after this most

recent NMA. To our knowledge, there is no evidence comparing

efficacy and safety of all off-label mAbs with all FDA-approved

drugs and standard immunosuppressive drugs. Therefore, this

SR-NMA was conducted to compare the treatment efficacy (i.e.,

relapse and disability progression) and serious adverse events

(SAE) among FDA-approved and off-label mAbs, and also among

immunosuppressive drugs.

Methods

A review protocol of this SR-NMA was developed and

registered with PROSPERO (CRD42021283424). The study

was conducted following the Preferred Reporting Item for

Systematic reviews and Meta-Analysis (PRISMA) guidelines

(26). Relevant studies were independently identified by two

reviewers (SA and KT) from MEDLINE and SCOPUS databases

from inception to 30th July 2021. The search terms were

constructed based on patients, interventions, outcomes, see

Supplementary Tables 1.1, 1.2.

RCTs were selected if they met all of the following

inclusion criteria: (i) RCTs included adults with NMOSD;

(ii) compared any pair of mAbs (rituximab, inebilizumab,

tocilizumab, satralizumab, or eculizumab), immunosuppressive

drugs (azathioprine, mycophenolate mofetil, cyclophosphamide,

cyclosporine, etc.), or placebo; (iii) had at least one of the following

outcomes: time to relapse, annualized relapse rate (ARR), expanded

status disability scale (EDSS) change after treatment, and SAE.

Studies were excluded if published in a foreign language that

could not be translated, compared dosages of the same drug,

or had insufficient data for pooling after three contact attempts

with authors.

Interventions

Interventions of interest were any off-label mAbs (rituximab,

tocilizumab) and approved mAbs (inebilizumab, satralizumab, or

eculizumab), whereas the control treatments could be any of the

recognized standard treatments (i.e., cyclosporine, azathioprine,

mycophenolate mofetil, and cyclophosphamide), placebo, or

no treatment. For those RCTs with a placebo arm plus

standard treatments, their comparator was categorized as the

standard treatment.
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FIGURE 1

PRISMA flow diagram.

Outcomes

The primary outcome of interest was time to relapse, defined

as the time since randomization to disease relapse. Relapse was

defined according to the individual studies, such as worsening

or appearance of new neurological symptoms 24 h or more post

intervention, without evidence of fever or infection (27). The

adjudicated relapse was consider as primary analysis instead of

clinician reported relapse. The secondary outcomes were post-

treatment ARR, EDSS changed from baseline, and SAEs. ARR

was defined as the number of relapses within 1 year. The EDSS,

a neurological disability scale, measured by clinicians to assess

NMOSD progression (28), ranges from 0.0 (normal neurological

status) to 10.0 (death). SAEs were defined as death or any

life-threatening condition, required or prolonged hospitalization,

persistence or significant disability, or congenital anomaly.

Data extraction and quality assessment

Two independent reviewers performed the data extraction and

quality assessment (SA and JK). The following data were extracted:

general characteristics (i.e., number of patients, type of study,

RCT phase, country), patient characteristics (i.e., age, age at onset,

gender, disease duration, the previous annualized relapse rate,

baseline EDSS score, and AQP4 positive), treatment regimens, and
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outcomes (i.e., time to first relapse, post-treatment ARR, EDSS

change, and SAE).

Data for time to relapse were extracted from the Kaplan-

Meier (KM) curve using the Digitizer program (29) including

probabilities, times to first relapse, number of events, and person-

time at risk at each distinct time. These data were then used to

generate an individual’s time to event data point (30). Quality

control was applied to check if the generated raw data were valid

including: number of converted events (i.e., relapse) should not

exceed the original number reported in the article, and summary

statistics (e.g., relapse rate, hazard ratio [HR]) estimated from the

generated data should be close to those reported in the original

article. The risk of bias was assessed using the Revised Cochrane

Risk of Bias tool (RoB2) to assess the quality of RCTs. Any

disagreement in data extractions or RoB was resolved by consensus

with a third reviewer (ATh).

Statistical analysis

A one-stage mixed-effect parametric survival model (31) was

applied to pool relative treatment effects across studies. Various

distributions of relapse timewere applied to estimate time to relapse

including Weibull, exponential, log-normal, gamma, and log-logit

distributions. Akaike’s Information Criteria (AIC) were applied

to select the best performing distribution. The relative treatment

effects (i.e., HR and median relapse time) were estimated using

Weibull survival regression.

For secondary outcomes (i.e., ARR, change of EDSS, and

SAE), the relative treatment effects were estimated for continuous

and dichotomous outcomes by unstandardized mean difference

(USMD) and risk ratio (RR), respectively. A two-stage NMA with

a consistency model was applied to pool these relative treatment

effects across treatment regimens and studies. The probability

of being the best treatment was assessed using the rankogram

and the Surface Under the Cumulative Ranking curve (SUCRA).

Transitivity was explored by comparing the distribution of co-

variables (e.g., gender, age, duration, AQP-4 status, previous

ARR, and diagnosis with neuromyelitis optica) among treatment

arms and studies. The inconsistency was checked by the design-

by-treatment interaction model. A comparison-adjusted funnel

plot was used to assess publication bias. All analyses were

performed using STATA version 17.0. A two-sided p-value <0.05

was considered statistically significant for all tests, except for

heterogeneity where 0.10 was used.

Result

Studies characteristics

A total of 2,937 studies were identified but only 7 RCTs

(4–10) with 776 patients were eligible for inclusion; reasons for

exclusion are reported in the PRISMA flow diagram (Figure 1).

The characteristics of the RCTs included are presented in Table 1.

Mean age ranged from 32 to 45 years, and most participants were

female (73 to 100%). Mean previous ARR ranged from 1.0 to 2.1,

and percentage AQP4-IgG positive varied from 39 to 100%. Only

3 RCTs reported phenotype of patients whether NMO or NMOSD,

which ranged from 72% to 91%.

The risk of bias for each study is shown in the

Supplementary Figure S1 (32). Most studies (5/7) had low

risk of bias. All studies had low risk from the randomization

process, while two (8, 10) and one (8) were high risk due to

deviation from intended interventions, missing outcome data, or

some concern with outcome measurement.

Time to first relapse

Six (4–7, 9, 10) of the seven RCTs reported KM curves of

time to relapse by treatment group. Individual patient time to

relapse data for 707 patients were generated, which consisted

of 4 treatment arms including no treatment, standard treatment

(prednisolone or any immunosuppressive drugs), off-label mAbs,

and approved mAbs, see Figure 2A. The one-stage NMA with

a mixed-effect accelerated failure time model was applied with

various distributions; a log-normal distribution was the best

(i.e., lowest AIC), see Supplementary Table S3. A relapse-free

survival probability curve was constructed by treatment group;

this indicated highest relapse-free survival with approved mAbs,

followed closely by off-label mAbs, with no-treatment being the

worst (Figure 3). Predicted median times to relapse were 25.8

(11.6,40.1) and 54.4 (15.4, 93.4) months for the standard treatment

and no-treatment group, compared to longer than 55 months in

both approved and off-label mAbs. Relative treatment effects for

regimens were estimated (Table 2) indicating patients receiving

approved and off-label mAbs had 0.27 (0.15, 0.48) and 0.34 (0.11,

0.99)-fold significantly lower relapse than the no-treatment group.

Conversely, patients who received the standard treatment were at

2.11 (0.96, 4.63) fold higher risk of relapse than no-treatment but

this was not significant. In addition, the approved and off-label

mAbs also had lower risk of relapse, i.e., 0.13 (0.07, 0.24) and

0.16 (0.07, 0.37)-fold than the standard treatments. The approved

mAbs had slightly lower risk of relapse relative to off-label mAbs

(0.80 [0.31, 2.07]), but this did not reach statistical significance.

The SUCRA indicated the best treatment in lowering relapse was

approved-mAbs, followed by off-label mAbs, with SUCRA of 85.6

and 68.2, respectively.

The comparison-adjusted funnel plot for time to relapse is

shown in the Supplementary Figure S2A. The study of Tahara (9)

was excluded from this plot because it was not possible to plot the

very small standard error in the graph. The result suggested no

small-study effect.

Post-treatment ARR

Post-treatment ARR assessment was based on five studies (4–6,

8, 9) (n= 427) (Figure 2B). The USMD of post-treatment ARR was

estimated with approved-mAbs representing a post-treatment ARR

of −0.24 (−0.42, −0.06) and −0.27 (−0.37, −0.16), significantly

lower than no-treatment and standard treatments, respectively

(see Table 2). Likewise, the off-label mAb ARR was −0.28 (−0.54,

−0.03) and −0.31(−0.46, −0.16) vs. the same comparators.
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TABLE 1 Study characteristics.

Authors Interventions RCT
phase

Follow-
up
time
(weeks)

n Country/
region

% female Mean age Previous
ARR

%
AQP4-IgG
positive

% NMO Outcomes

mAb
(dose)

Standard
immuno-
suppressant

mAb Control mAb Control mAb Control mAb Control mAb Control

Nikoo et al.

(8)

Rituximab

(1,000mg

IV every 2

weeks, then

every 6

months)

AZA 2 52 68 Iran 87.9 80 35.3 32.4 1.3 1.0 39 57 - - pARR, cEDDS,

SAE

Pittock

et al. (4)

Eculizumab

(900mg IV

weekly,

then

1,200mg

every 2

weeks)

Any standard

immune-

suppressants

3 90.9 143 18

countries

US, Eur,

AP

92 89 43.9 45.0 1.9 2.1 100 100 72 91 Relapse,

pARR, cEDDS,

SAE

Cree et al.

(7)

Inebilizumab

(300mg IV

at day 1 and

day 14)

None 2/3 28.1 230 25

countries

US, Eur,

AP,

Aus/NZ

91 89 43.0 42.6 1.7 1.6 92 93 80 67 Relapse, SAE

Yamamura

et al. (5)

Satralizumab

(120mg SC

at week 0, 2,

4, and every

4 weeks)

Any standard

immune-

suppressants

3 107.4 83 11

countries

US, Eur,

AP

90 95 40.8 43.4 1.5 1.4 66 67 - - Relapse,

pARR, cEDDS,

SAE

Tahara et al.

(9)

Rituximab

(375 mg/m2

IV weekly

for 4 weeks,

then

1,000mg

every 6

months)

None 2 72 38 Japan 90 100 51.5 49 1.7 1.1 100 100 - - Relapse,

pARR, cEDDS,

SAE

Traboulsee

et al. (6)

Satralizumab

(120mg SC

at week 0, 2,

4, and every

4 weeks)

None 3 92.3 168 13

countries

US, UK,

AP

73 97 45.3 40.5 1.4 1.5 65 72 75 75 Relapse,

pARR, cEDDS,

SAE

Zhang et al.

(10)

Tocilizumab

(8 mg/kg

IV every 4

weeks)

AZA 2 60 118 China 93 90 48.1 45.3 1.7 1.7 85 90 - - Relapse, SAE

AP, Asia-Pacific; AQP4-IgG, Aquaporin4-IgG; ARR, Annualized relapse rate; Aus/NZ, Australia and New Zealand; AZA, Azathioprine; cEDSS, expanded disability status score change; Eur, Europe; IV, intravenous; mAb, monoclonal antibody; NMO, neuromyelitis

optica; pARR, post-treatment Annualized relapse rate; SC, subcutaneous; RCT, Randomized-controlled trial; US, United States.
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FIGURE 2

Network map for each outcome. (A) Time to disease relapse, (B) ARR post-treatment, (C) EDSS changes, and (D) SAEs. ARR, annualized relapse rate;

EDSS, expanded disability status score; SAEs, serious adverse events.

FIGURE 3

Estimated median time to first release for each treatment arm.

However, mean post-treatment ARRs between approved-mAbs and

off-label mAbs were not significantly different with USMD of 0.04

(−0.14, 0.23). In addition, the comparison-adjusted funnel plot

provided no evidence of asymmetry and evidence of publication

bias (Supplementary Figure S2B).

EDSS change

EDSS change assessment was based on five studies (4–6,

8, 9) (n = 427) (Figure 2C). The USMD of EDSS change was

estimated, indicating approved-mAbs had EDSS change of −0.17

(−0.62, 0.28) and−0.27 (−0.62, 0.28) lower than no-treatment and

standard treatments, respectively (Table 2). In contrast, off-label

mAb had a 0.14 (-0.46, 0.73) and 0.03 (-0.21, 0.28) higher EDSS

change than these corresponding comparators. However, none of

these comparisons reached statistical significance. A comparison-

adjusted funnel plot suggested no evidence of publication bias

(Supplementary Figure S2C).

SAEs

Seven RCTs (4–10) were included in the SAEs analysis

(Figure 2D). Most SAEs were required hospitalizations due to

severe infections such as pneumonia or sepsis. The SAEs were

0.83 (0.41, 1.70) and 0.90 (0.55, 1.45)-fold lower in approved

mAbs than in no-treatment and standard treatment; likewise,

off-label mAb were 0.59 (0.19, 1.79) and 0.64 (0.332, 1.28)-fold

lower than these corresponding comparators; none of these were

statistically significant. The comparison-adjusted funnel plot for

SAEs (Supplementary Figure S2D) indicated no asymmetry or risk

of publication bias.

Discussion

We conducted the first NMA of efficacy and safety of current

treatments in NMOSD using evidence based solely from RCTs.

Our findings suggested that the FDA-approved and off-label

mAbs represent an 87% and 84% significantly lower risk of

relapse than standard treatments. In addition, both corresponding

mAbs had between 0.27 and 0.31 significantly lower ARRs than

standard treatments, while outcomes for EDSS and SAEs did not

significantly differ.
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TABLE 2 Hazard ratio and 95% confidence interval of network meta-analysis of time to clinical outcomes (above gray diagonal line)a.

Time to relapse

No-treatment 37.8 (3%) 2.11 (0.96, 4.63) 0.34 (0.11, 0.99)b 0.27 (0.15, 0.48)b

Standard-treatment 8.5 (0%) 0.16 (0.07, 0.37)b 0.13 (0.07, 0.24)b

Off-label mAbs 68.2 (38%) 0.80 (0.31, 2.07)

Approved mAbs 85.4 (59%)

Post treatment ARR

No-treatment 0.03 (−0.18, 0.24) −0.28 (−0.54,−0.03)b −0.24 (−0.42,−0.06)b

Standard-treatment −0.31 (−0.46,−0.16)b −0.27 (−0.37,−0.16)b

Off-label mAbs 0.04 (−0.14, 0.23)

Approved mAbs

EDSS change

No-treatment 0.10 (−0.44, 0.65) 0.14 (−0.46, 0.73) −0.17 (−0.62, 0.28)

Standard-treatment 0.03 (−0.21, 0.28) −0.27 (−0.58, 0.03)

Off-label mAb −0.31 (−0.70, 0.09)

Approved mAb

SAEs

No-treatment 0.93 (0.39, 2.20) 0.59 (0.19, 1.79) 0.83 (0.41, 1.70)

Standard-treatment 0.64 (0.32, 1.28) 0.90 (0.55, 1.45)

Off-label mAb 1.41 (0.60, 3.30)

Approved mAb

ARR, annualized relapse rate; EDSS, expanded disability status score; mAbs, monoclonal antibodies; SAEs, serious adverse events.
aResults of treatment comparisons are read from right to left. Value in the gray diagonal line are SUCRAs, whereas the probability of being the best treatment in lowering relapse is shown

in parenthesis.
bStatistical significance, p= 0.05.

mAbs are classified into two categories in accordance with FDA

approved data: off-label and FDA-approved mAbs. The former

group previously demonstrated higher efficacy compared to classic

immunosuppression and were considered more accessible than

the FDA-approved mAb (8–10). However, previous studies have

shown that FDA-approved mAbs were very effective in controlling

NMOSD disease activity compared to placebo (4–7, 23). A non-

statistically significant difference in disease activity was seen in

FDA-approved mAbS compare to the off-label mAbs. Furthermore,

a non-statistically significant difference was also observed in

reduction of SAE’s when FDA-approved and off-label mAbs were

compared to standard immunosuppressive drugs.

Surprisingly, a non-statistically significant difference was

observed in increasing the risk of relapse when standard

immunosuppressive drugs was compared to the placebo (HR

2.11; 95CI 0.96, 4.96). The explanation might possibly cause by

heterogeneity of each study design. Some of the study include

placebo as immunosuppressive resistance patients, which allow

patients to continue use previous immunosuppressive drug (4,

5). These patients group was considered as aggressive NMOSD

compare with the naïve NMOSD patients, who include as true

placebo in other studies (6, 7).

mAbs can also be classified according to their mechanism

of action such as C5 complement inhibitor (e.g., eculizumab),

anti-B cell or anti-CD19 (e.g., inebilizumab), and anti-IL-6 (e.g.,

Satralizumab). For off-label mAbs, rituximab is classified as anti-

B cell or anti- CD20, while tocilizumab is anti-IL-6. Most FDA

approved and off-label mAbs have similar mechanisms (except for

eculizumab) and it was therefore unsurprising that their outcomes

did not significantly differ.

Our findings were similar to those from a previous NMA

(13), which combined data from both RCTs and observational

studies but the later data were mainly included (5/6 studies) in

pooling treatment effects demonstrating a significant reduction

in ARR and EDSS for rituximab (an off-label mAb) compared

to azathioprine. Nevertheless, our study, which included only

RCTs, provides more robust and better-quality evidence. In

addition, we provided additional evidence of time to relapse and

risk of relapse based on individual patient data generated from

KM curves.

Our findings will inform neurologists and opthalmologists in

treatment decision making, perhaps highlighting the possibility

for off-label mAb use in preference to FDA-approved mAbs,

especially in resource limited settings such as low and low-

middle-income countries where accessibility may be limited. FDA-

approved mAbs may represent a suitable alternative for patients

that suffer from disease relapse following treatment with off-

label mAbs.
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Our study had several strengths. First, we applied both one-

and two-stage NMA approaches to compare FDA-approved mAbs

and off-label mAbs indirectly. A total of seven RCTs were included

considering all relevant clinical outcomes, including relapse time,

ARRs, EDSS, and severe SAEs. New agents (i.e., eculizumab,

inebilizumab, satralizumab, and tocilizumab) were also included in

the analysis of both FDA-approved and off-label mAbs. Individual

patient (time to event) data were generated from the KM curves

(30), leading to relative treatment effects as time to relapse and

also HR effect estimates. Nevertheless, our study also had several

limitations. First, treatments were collapsed under four drug groups

rather than individual drugs because of the limited number of RCTs

available for inclusion. In particular, comparisons of treatment

effects between standard treatments and no-treatment, use of

standard immunosuppressive therapies appeared worse than no

treatment which may be due to the different effects of individual

immunosuppressants, although this was not significant. Second, we

could neither assess the optimal dose and nor period of treatment

particular in maintenance therapy of off-label mAbs due to limited

number of included studies. Finally, our evidence was based on

short-term follow-up (ranged from 28.1 to 107.4 weeks), longer

follow-up studies are further required to assess long-term effects

of off-label mAbs including optimal dose for maintenance, relapse

rate, and adverse events such as sino-pulmonary and urinary

tract infection.

In conclusion, off-label of the mAbs rituximab and tocilizumab

may be used as the first-line treatments for improving clinical

outcomes, such as disease relapse, ARR, and SAEs in countries

where resources and accessibility to the FDA-approved mAb are

limited. The FDA-approved mAbs may be considered as the

next line treatments in patients who are failed from off-label

mAbs or uncontrolled disease activity. A large-scale RCT of

individual mAbs should be further conducted to evaluate optimal-

dose, long-term treatment efficacy, and safety with immune

suppressants. Furthermore, an economic evaluation should also be

conducted to evaluate their clinical and cost-utility for informing

treatment decision-making.
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