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Introduction: Machine learning (ML) has great potential for using health data 
to predict clinical outcomes in individual patients. Missing data are a common 
challenge in training ML algorithms, such as when subjects withdraw from a 
clinical study, leaving some samples with missing outcome labels. In this study, 
we have compared three ML models to determine whether accounting for label 
uncertainty can improve a model’s predictions.

Methods: We used a dataset from a completed phase-III clinical trial that 
evaluated the efficacy of minocycline for delaying the conversion from clinically 
isolated syndrome to multiple sclerosis (MS), using the McDonald 2005 diagnostic 
criteria. There were a total of 142 participants, and at the 2-year follow-up 81 
had converted to MS, 29 remained stable, and 32 had uncertain outcomes. In a 
stratified 7-fold cross-validation, we trained three random forest (RF) ML models 
using MRI volumetric features and clinical variables to predict the conversion 
outcome, which represented new disease activity within 2 years of a first clinical 
demyelinating event. One RF was trained using subjects with the uncertain labels 
excluded (RFexclude), another RF was trained using the entire dataset but with 
assumed labels for the uncertain group (RFnaive), and a third, a probabilistic RF (PRF, 
a type of RF that can model label uncertainty) was trained on the entire dataset, 
with probabilistic labels assigned to the uncertain group.

Results: Probabilistic random forest outperformed both the RF models with the 
highest AUC (0.76, compared to 0.69 for RFexclude and 0.71 for RFnaive) and F1-score 
(86.6% compared to 82.6% for RFexclude and 76.8% for RFnaive).

Conclusion: Machine learning algorithms capable of modeling label uncertainty 
can improve predictive performance in datasets in which a substantial number of 
subjects have unknown outcomes.
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1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease of the 
central nervous system (CNS) characterized by neuroinflammation, 
demyelination, and neurodegeneration. While there is no cure for MS, 
evidence has shown that early diagnosis and early treatment can 
improve long-term prognosis in people that are at high risk of 
progressing in their disease (1). MS disease course is highly 
heterogeneous, especially in the early stages, and it is difficult to 
identify individuals who stand to benefit from more early 
management. In individuals presenting with the early signs and 
symptoms suggestive of MS, a combination of clinical signs and 
symptoms and imaging-based indicators, formalized in the form of 
the McDonald criteria (2, 3), are used to establish a diagnosis. 
Predicting whether an individual in the early phase of MS will meet 
certain progression and conversion criteria within a given time 
remains challenging.

Damage to the myelin sheath is the most obvious manifestation 
of MS, particularly in the form of white matter lesions as seen on 
magnetic resonance images (MRIs). While WM lesion volume, also 
known as the burden of disease (BOD), is a commonly used imaging 
biomarker to evaluate disease progression and treatment response 
in clinical studies, it does not capture MS pathology comprehensively 
and on its own is a limited predictor of future disease activity. 
Demyelination and morphological changes in deep gray matter 
(DGM) are recognized as consistent and clinically relevant features 
in all MS phenotypes (4–6) and several studies have found 
associations between DGM volume loss and the severity of physical 
and cognitive impairment (4–8). Volume loss in the thalamus has 
been linked with clinical worsening in individuals with early 
symptoms of MS (9) and has been observed in both clinically 
isolated syndrome (CIS) (10) and radiologically isolated syndrome 
(RIS) (11) populations compared to healthy controls. However, 
further investigations are needed to determine the value of DGM 
atrophy as a predictor of future disease development and to optimize 
the analysis of DGM volume changes to inform clinical decision-
making (6).

Within the scope of MS, machine learning (ML) methods have 
been proposed mainly for early detection, differentiation of MS 
phenotypes from each other and healthy controls (12, 13), and 
prediction of disease and disability progression (14–16). Several 
studies have used ML models to predict the conversion of CIS to 
confirmed MS, based on clinical, demographic, and radiologic features 
with varying degrees of success (17–20). However, no prior study has 
focused specifically on the value of DGM volumes in the prediction 
of new disease activity in the very early stages of MS. In this study, 
we  apply ML to DGM volumes for clinical prediction while also 
including BOD as a variable.

The lack of sufficiently large labeled clinical datasets has been a 
major limiting factor in training machine learning models for clinical 
prediction (21). Due to the considerable costs associated with curating 
and labeling imaging datasets, there is a paucity of publicly available 
data, and even most proprietary datasets are small in the context of 
ML applications. For most clinical datasets, missing or uncertain 
labels are a common occurrence (21). Literature on ML training has 
shown that noisy labels can adversely affect the model performance 
especially if the sample size and/or the number of variables is small 
(22–26).

Several ML approaches have been proposed to represent and 
integrate the degree of uncertainty in the class labels into model 
training. For example, support vector machines (SVMs) have been 
formulated with uncertainty-weighted training schemes (27–29). 
Others have proposed methods based on the random forest (RF), such 
as noise-tolerant random forest (RF) (30), noise-tolerant loss functions 
(31), and probabilistic random forest (PRF) (32). PRF handles noisy, 
uncertain, and missing labels and input features by modeling them as 
distribution functions instead of deterministic values (32). The 
algorithm was originally developed for dealing with missing and noisy 
data in astronomical datasets and has since been verified on bioactivity 
data with promising results (33), but has not been tested for predicting 
clinical outcomes.

In this paper, we  compared three approaches for handling 
uncertain or missing class labels. Using a dataset with 142 patients, 
with 32 having uncertain labels, we compared an RF model trained 
only on the subset of confirmed class labels and excluding the 
uncertain samples (RFexclude), an RF model trained on the entire dataset 
treating the uncertain class labels as confirmed labels (RFnaive), and a 
PRF model trained using the entire dataset but with uncertainty 
estimates incorporated in the model training. PRF was chosen based 
on the status of the RF as a leading ML method for tabular data (34), 
the relative simplicity of training, and promising performance in other 
data domains.

The models were trained to predict the development of new 
disease activity in MS within 2 years of the first clinical demyelinating 
event using clinical, demographic, and imaging-based variables. The 
goal was to determine whether excluding, ignoring, or modeling the 
uncertainty would result in the highest-performing model.

2. Methods

2.1. Dataset and study participants

The dataset for our experiment consisted of MRIs and clinical and 
demographic data from a completed multi-center, phase-III clinical 
trial conducted to determine the efficacy of minocycline for delaying 
conversion from CIS to clinically definitive MS diagnosed, using the 
McDonald 2005 criteria (2) within 6 months (primary trial endpoint) 
and 2 years (secondary trial endpoint) after randomization. The study 
population consisted of 142 participants between the ages of 18 and 
60 years who had been diagnosed with CIS after experiencing a first 
demyelinating event and were recruited from 12 MS clinics across 
Canada between 2009 and 2013. The detailed study design and 
participant inclusion and exclusion criteria can be found in (35). The 
baseline characteristics of the participants are summarized in Table 1. 
By the end of 24 months, 81 (57.04%) participants had converted to 
MS as per the McDonald 2005 criteria, 26 (18.57%) participants 
dropped out of the trial due to various reasons (35) before meeting the 
secondary trial endpoint, and 35 (24.3%) remained stable. Of these 35 
non-converters, six were recruited toward the end of the trial and were 
followed only for a year, thus their status at 2-year post-enrollment in 
the trial was unknown. Thus, in our dataset of 142 subjects, we had 32 
subjects that had an unknown status at 24 months.

For our experiment, an individual was considered to have 
developed new disease activity if they met the clinical trial’s primary 
or secondary endpoints. The primary endpoint of the study was the 
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conversion to MS based on the McDonald 2005 criteria, 6 months 
after randomization. Secondary endpoints included conversion to MS 
within 24 months and several MRI outcomes, including changes in 
lesion volume on T2w MRI, the total number of enhancing lesions on 
T1w MRI, and the total number of unique new or newly enlarging 
lesions on both T1w and T2w MRIs at both 6 and 24 months. Even 
though the McDonald criteria used in the original trial (35) has since 
been revised several times to enable earlier diagnosis, most recently in 
2017 (36), the 2005 version is still a valid indicator of new disease 
activity. These criteria define clinical, imaging, and biological markers 
of MS pathology, so a person newly meeting these criteria in a given 
timeframe can be considered as having had new disease activity, even 
if they had already been previously diagnosed with MS.

2.2. MRI acquisition and preprocessing

We utilized three MRI sequences, including proton density-
weighted (PDw), T2-weighted (T2w), and T1-weighted (T1w) scans 
that were acquired through a standardized protocol followed across 
all 12 sites. The studies were performed on scanners from GE, 
Siemens, and Philips operating at field strengths ranging from 1.5 to 
3.0 T. The PDw scans had a TE range of 8–20 ms and TR range of 
2,000–3,400 ms, T2w scans had a TE range of 78–116 ms and TR range 
of 2,800–8,000 ms, and T1w images were obtained using an 
IR-prepped gradient echo sequence with a TR range of 5–13 ms, TE 
range of 2–4 ms, and TI range of 450–800 ms. The T1-weighted scans 
had an image size of 256 × 256 × 160 and an isotropic voxel size of 
1.00 mm × 1.00 mm × 1.00 mm, while the PDw and T2w scans had an 
image size of 256 × 256 × 60 and a voxel size of 
0.937 mm × 0.937 mm × 3.000 mm.

The T1w MRIs were processed to minimize the effect of field 
inhomogeneity and skull-stripped using advanced normalization tools 
(ANTs) (37). Lesion filling was performed on the skull-stripped brains 
before spatial normalization to a standard template from the OASIS 
dataset (38). The spatial normalization was performed using ANTs 
and consisted of rigid, affine, and deformable registration. The WM 
lesion masks used for lesion filling were generated with the PDw/T2w 
scans using a semi-automated lesion segmentation method (39) where 
seed placement was done by an expert rater. The spatially normalized 
T1w images were intensity normalized using the FMRIB software 
library (FSL) (40). ANTs multi-atlas segmentation with label fusion 
pipeline was used for performing segmentation of the DGM nuclei 
resulting in individual 3D segmentations of the left and right thalami, 
putamina, caudate nuclei, and globus pallidi. The volume for each 
DGM nucleus was calculated (in mm3) using ANTs.

2.3. Input variables and prediction 
outcome

We started with 19 baseline variables collected from the trial 
participants, including 10 MRI volumetric measurements, six 
variables related to the type and anatomical location (s) of CIS onset, 
and three other variables (biological sex, EDSS, and treatment arm). 
A summary of these variables is presented in Table 2. The treatment 
group (i.e., minocycline or placebo) was included as an input variable 
because the original study showed that minocycline delayed the risk 
of conversion to MS by 18% within 6 months, although these results 
were not observed at 24 months. As described earlier, 26 participants 
had dropped out before meeting an endpoint, which may have affected 
the ability to detect a treatment effect at 24 months. The volumetric 
MRI measures included the volumes of individual DGM nuclei (eight 
in total), whole brain volume measured as brain parenchymal fraction 
(BPF), and WM lesion volume. Previous studies have shown that 
feature selection by excluding redundant or collinear features helps 
prevent the model from learning spurious correlations and hence 
results in better generalizability (20, 41, 42). In our previous work with 
the current data (43), we compared several automatic and manual 
methods for selecting input features and found that most methods 
ranked lesion volume, treatment arm, and subsets of the DGM 
volumes as the most important features. In the end, we found that 
including all eight DGM volumes, lesion volume, and treatment group 

TABLE 1 Dataset characteristics.

Characteristics Values

Total number of participants 142

Participants assigned to minocycline 72 (51.42%)

Participants assigned to placebo 70 (48.57%)

Mean age at CISa onset [years (SD)] 35.9 (9.2)

Number of females [n (%)] 97 (69%)

Number of participants from white race [n (%)] 120 (86%)

Median EDSSb (range) 1.5 (0–4.5)

Median T2w lesion volume [mm3  

(1st and 3rd Quartile)]
1675.15 (550.475, 3796.8)

Median CISa duration [days (range)] 83.5 (21–190)

aClinically isolated syndrome. 
bExpanded disability status scale.

TABLE 2 User-defined MRI and clinical measurements at baseline.

Parameter name Measures

BOD Burden of disease [T2w lesion volume (mm3)]

BPF
BPF (ratio of brain parenchymal volume to total 

intracranial volume)

Sex Sex (Female = 1, Male = 0)

CIS type
CIS is monofocal at onset (=0) CIS is multifocal at 

onset (=1)

Cerebrum Initial CIS event at cerebrum* (Yes = 1, No = 0)

Optic nerve Initial CIS event at optic nerve* (Yes = 1, No = 0)

Cerebellum Initial CIS event at cerebellum* (Yes = 1, No = 0)

Brainstem Initial CIS event at brain stem* (Yes = 1, No = 0)

Spinal cord Initial CIS event at spinal cord* (Yes = 1, No = 0)

EDSS Extended disability status scale

Mino
Indicates whether a participant was assigned to the 

treatment group (=1) or placebo group (=0)

R_caudate, L_caudate Volumes of the right and left caudate nuclei (mm3)

R_thalamus, L_thalamus Volumes of the right and left thalami (mm3)

R_putamen, L_putamen Volumes of the right and left putamina (mm3)

R_palllidum, L_pallidum Volumes of the right and left globus palidi (mm3)

*Anatomic location deemed to be the site of the first CIS attack, as determined by the 
physician.
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resulted in the best model performance using an RF. Therefore, 
we used the same 10 features in this work.

The outcome of interest was whether new disease activity was 
observed within 24 months of enrollment in the study. Class labels for 
binary classification were assigned based on a participant’s clinical 
status at the end of 24 months in the trial (i.e., stable vs. developed new 
disease activity). This led to 81 subjects being labeled as having new 
disease activity while 29 were labeled as stable. Subjects who dropped 
out early or were only followed up for a year while still stable were 
assigned the post hoc label of stable as in previous ML studies (44), 
which applied to a total of 32 subjects. Although post hoc labels were 
assigned after deliberation among the researchers and clinicians 
involved in the studies, they were not confirmed and therefore had a 
level of uncertainty.

2.4. Machine learning models and training

We compared three approaches for dealing with the uncertain post 
hoc assigned labels in our dataset. The first approach excluded the 
uncertain data points, and a classic RF was trained on the remaining 
subset. The second approach trained a classic RF on the entire dataset 
and assumed the post hoc labels were correct. The third approach 
trained a PRF on the entire dataset, assigning 100% probability to the 
confirmed labels and 50% to the uncertain labels.

Random forest is a widely popular machine learning algorithm 
and a classic example of an ensemble classifier that is built from 
multiple unique decision trees (DTs) (45) that are individually 
constructed and trained using randomly selected subsets of input 
features and bootstrapped samples from the training dataset. During 
training, the algorithm learns to split the data into subsequent nodes 
in a way that reduces the class heterogeneity in the resulting child 
nodes. The trees are grown until a prespecified depth is reached or if 
the class heterogeneity can no longer be reduced. The node-splitting 
criterion, based on feature thresholds, forms the basis of the decision 
rules learned by a DT. The final prediction is provided by aggregating 
class predictions from the individual DTs through either a majority or 
average voting scheme.

2.5. Probabilistic random forest

The PRF is a modification of the RF built specifically to account 
for uncertainties in the input features and class labels in a dataset. 
While the input to an RF is of the form xi ,yi( ), where xi  is a feature 
vector and yi is its associated label, a PRF takes data points of a form 
( ), , ,i iy y∆ ∆i ix x  where ∆ ix  is the uncertainty associated with xi  
and iy∆  is the uncertainty associated with yi. In the absence of ∆ ix  
and iy∆ , the PRF converges to an RF.

A PRF accounts for the uncertainties in the input features and 
class labels by modeling them as probability functions instead of 
deterministic values. The input features become probability 
distribution functions where the expected value of the distribution is 
the value provided for the feature and the variance of the distribution 
is the square of the uncertainty associated with that feature. The class 
labels on the other hand become probability mass functions and each 
class instance is treated as a class label with a probability 
determined by iy∆ .

The details of the PRF algorithm are given in (32), but briefly, a 
PRF bags features by sampling them from the given distributions, 
propagates the features at each node to both child nodes with the 
associated class probabilities and performs splitting using modified 
Gini impurity function that incorporates the uncertainty values of the 
input features and class labels to reduce the cumulative class 
heterogeneity in the resulting child nodes.

For making predictions on new data, the data points are 
propagated through the trees and reach all the terminal nodes with 
some probability. The final class prediction is calculated as the average 
of the class probabilities generated by all the terminal nodes.

2.6. Model training and hyperparameter 
selection

We used a nested and stratified 7-fold cross-validation (CV) 
scheme for hyperparameter selection, model training, and evaluation 
of the trained model for generalizability. In nested CV, the outer loop 
divides the data into training and testing splits for model evaluation 
while the inner loop further divides the training split into training and 
validation splits for hyperparameter selection. Stratification maintains 
roughly the same class frequencies across all folds. In each outer loop, 
data from 6-fold (n = 122) was used to train the classifier while the 
remaining data from the 7-fold (n = 20) was used to evaluate the 
model using performance metrics described in the following section. 
In each inner loop, we used a 7-fold CV with stratification again to 
select the hyperparameters for optimizing the model’s performance, 
using 6-fold (n = 104) for training and one validation fold (n = 18) to 
evaluate the model’s performance. The hyperparameters selected using 
CV included the number of trees, the number of features for node 
splitting, the minimum sample size for node splitting, and the 
minimum sample size to be maintained in leaf nodes. The last two 
hyperparameters do not apply to the PRF as the uncertainty 
distribution and another hyperparameter keep_probability dictate 
whether a data point is propagated to either both child nodes or a 
single node. We used the default value for keep_probability (0.05).

The combination of hyperparameters that produced the best 
average performance over the seven validation folds was then selected 
as the final model for the given outer fold and was tested for 
generalizability using the held-out test fold. The reported performance 
metrics were calculated by averaging the model’s performance over 
the seven test folds.

It should be  noted that the prevalence of individuals who 
developed new disease activity within 24 months in the confirmed 
label subgroup was 74.07%. To address class imbalance during model 
training, we used class weights, informed by class frequencies in the 
training sample, for calculating the loss function. This allowed the 
model to learn from both the majority and minority classes in the 
training sample in a balanced way.

2.7. Implementation details

The experiments and data analyses were performed using Python 
3.7.5. Data processing was performed using Pandas 0.25.3 and NumPy 
1.14.5. The RF classifier was built and trained using Scikit-learn 0.23.1. 
The PRF classifier was built and trained using the PRF library (44).
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2.8. Class probabilities for PRF

As previously discussed, a PRF takes as input the probability of 
a sample belonging to the given class. For example, in our dataset, a 
target probability 0.3iy∆ =  for a data sample that had a post hoc 
class label would indicate that the subject had a 30% probability of 
belonging to the stable class and a 70% probability of belonging to 
the new-disease-activity class. Ideally, every data sample with an 
uncertain label would have a probability estimated from prior 
knowledge (e.g., population studies); however, in this case, we did 
not have sufficient background information to calculate the 
probabilities, so we assigned a 50% probability to all of the post hoc 
labels. For the samples with confirmed labels, we assigned a 100% 
class probability.

2.9. Evaluation of model performance and 
statistical analysis

To provide a reliable estimate of model performance, we have 
reported the evaluation metrics on test data with confirmed labels 
only. The overall performance of a classifier on any metric was 
calculated by averaging its performance over the seven test folds. Since 
our dataset was unbalanced, the primary measures of model 
performance were the F1-score and the area under the receiver 
operating curve (ROC). The F1-score is a harmonic mean of precision 
and recall (sensitivity) and gives a more holistic estimate of a model’s 
performance on prediction over both classes and is therefore a more 
robust indicator of performance compared to accuracy. F1-score was 
calculated by the following formula:

 
F score1

2
− =

∗ ∗( )
+( )

Precision Recall

Precision Recall

where

 
Precision TP

=
+( )TP FP

 
Sensitivity TP

=
+( )TP FN

TP, FP, and FN denote True Positive, False Positive, and False 
Negative, respectively.

A ROC is a plot between a classifier’s true positive rate (TPR) and 
False Positive Rate (FPR) and gives a visual depiction of the trade-off 
between a model’s ability to correctly identify both classes. The area 
under the ROC (AUC) summarizes the classifier’s overall ability to 
separate the negative and positive classes correctly. The TPR and FPR 
are calculated using the following formulae.

 
TPR TP

=
+( )TP FN

 FNR TPR= −1

3. Results

The performance metrics for the three classifiers (RF with 
confirmed labels only, RF with all samples and assuming post hoc 
labels were correct, and PRF with all samples) are summarized in 
Table 3.

As shown in Table 3, the PRF trained using the entire dataset 
outperformed both of the other RF classifiers across all evaluated 
metrics except precision. It yielded an AUC score of 0.76 (SD = 0.14) 
which was an improvement of 0.07 compared to 0.69 (SD = 0.09) 
achieved by RFexclude and 0.05 compared to 0.71 (SD = 0.16) by RFnaive. 
Figure 1 shows the ROC curves for all three classifiers, with a clear 
advantage shown by PRF. PRF also achieved the highest F-1 score of 
86.57% (SD = 6.71%), which was an improvement of 3.99% compared 
to 82.58% (SD = 5.94%) by RFexclude and 9.75% compared to 76.82% 
(SD = 6.57) by RFnaive. Overall, RFnaive performed worst compared to the 
other two classifiers, except for precision where it achieved the highest 
score of 86.42% (SD = 5.17) vs. 82.31% (SD = 7.78) by PRF and 77.02% 
(SD = 4.95) by RFexclude. RFexclude and RFnaive did not differ in AUC, but 
all differed across all other measures.

Accounting for label uncertainty by either excluding the uncertain 
samples or modeling the uncertainty resulted in a marked 
improvement in the classifier’s sensitivity. PRF achieved a recall score 
of 92.32% (SD = 4.22%) and RFexclude achieved 90.15% (SD = 5.26%), 
resulting in improvements of 20.35 and 18.18% respectively, over the 
71.97% (SD = 8.98) produced by RFnaive. The observation that RFnaive 
had the highest precision but lowest recall demonstrates a classic 
trade-off between precision and recall, but accounting for label 
uncertainty increased recall dramatically for PRF and RFexclude, while 
decreasing precision to a lesser degree, especially in the case of PRF.

In terms of feature importance, the burden of disease and the 
volume of thalamic nuclei were consistently ranked as two of the most 

TABLE 3 Comparison of mean (SD) performance metrics averaged over stratified 7-fold cross-validation.

Approach AUC Recall Precision F1-Score

RFexclude (trained with only the 110 confirmed labels) 0.69 (0.09) 90.15 (5.26) 77.02 (4.95) 82.58 (5.94)

RFnaive (trained with all 142 samples, with 32 

uncertain labels assigned as stable)

0.71 (0.16) 71.97 (8.98) 86.42 (5.17) 76.82 (6.57)

PRF (trained with all 142 samples, with 32 uncertain 

labels assigned a 50% probability)

0.76 (0.14) 92.32 (4.22) 82.31 (7.78) 86.57 (6.71)

In each fold, the model performance was measured on a test set with only confirmed labels.  Bold indicates the highest values.
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informative input features by all the models used in the study. This 
finding is in line with existing literature that has identified thalamic 
nuclei and white matter lesion load as important predictors of disease 
progression in early MS. (9, 10, 42)

4. Discussion

We have evaluated and compared three approaches to account for 
uncertainty in missing class labels when using ML to predict MS 
disease activity: (i) exclusion of data samples with uncertain labels; 
(ii) replacing uncertain labels with assumed labels; and (iii) using a 
classifier with an inherent capability to model label uncertainty 
(PRF). Exclusion is the most common approach for dealing with 
uncertain data points, but this may not be an optimal approach for 
medical imaging datasets, which tend to be small for ML purposes. 
Eliminating data points from an already small dataset increases the 
risk that the ML algorithm cannot learn the distribution of the 
samples. Therefore, there is practical value in investigating methods 
that make use of all available data points while modeling any 
uncertainty in the class labels.

Our experiments have shown that the RF classifier naively trained 
on a dataset comprising of both confirmed and uncertain class labels 
(RFnaive) performed the worst overall. It achieved the lowest F1-score 
indicating that it was not able to learn an effective decision boundary 
between true and false positives, in this case, favoring precision while 
greatly sacrificing sensitivity, which is detrimental to early disease 
detection. The results demonstrate that the input features of data 
points with uncertain labels can be informative and help the model 
learn distinctive patterns that produce better decision boundaries.

Probabilistic random forest has various advantages over RF. PRF 
can intrinsically handle missing values, both for input features as well 
as for class labels. Data points with missing input features are 
propagated to both the child nodes after a node split. In the case of 
missing class labels, the class probabilities, along with the 

hyperparameter keep_probability, dictate whether a data point is 
propagated to both child nodes and a single node. Clinical datasets are 
generally small for machine learning applications and therefore a 
machine-learning model that can handle missing values without 
reducing the size of the dataset is potentially highly beneficial since 
missing variables are common in data from electronic health records 
(EHRs) and clinical studies.

To our knowledge, only two other studies have compared the 
performance of PRF with other classifiers in a practical application. 
One study by Mervin et al. (33) trained an RF and PRF to predict 
protein-ligand interaction using bioactivity data. For training the PRF, 
they incorporated the uncertainty associated with the class labels by 
using the standard deviations in the experimental measures used to 
assign the labels to calculate the class probability values. They showed 
that the PRF outperformed the traditional RF and was more tolerant 
of the levels of uncertainty in the class labels. Another study using 
photometric astronomy data (45) showed that in the presence of 
missing input features, PRF outperformed canonical correlation 
analysis for classification.

One key challenge with training a PRF on a dataset with missing 
labels is that one needs to specify the class probabilities. For medical 
data, where the outcome of interest is a diagnosis, phenotype, or other 
clinical outcomes, the class probabilities could potentially be informed 
by the statistical prevalence of the outcomes reported in the literature, 
if the dataset could be  assumed to be  representative of the study 
population at large. In the absence of such information, assigning a 
50–50 class probability may be a reasonable choice, as we have done 
in our study.

The focus of our study was on CIS and early MS, but the methods 
employed are potentially applicable to RIS. Individuals with RIS have 
MRI findings (white matter lesions demonstrating dissemination in 
space) that are consistent with MS disease in the absence of clinical 
symptoms of MS. (46) Despite some recent large studies that have 
shed light on several key risk factors for conversion to MS (47, 48), 
prediction on an individual level remains difficult. Previous studies 
(11, 49) investigating DGM volumetric changes in RIS have shown 
that thalamic volumes were significantly lower in individuals with RIS 
than in normal controls. Applying ML to DGM changes can 
potentially discover patterns with other DGM structures, possibly in 
combination, that can help with the prediction of conversion of RIS 
to MS or for risk stratification for early management. Accounting for 
uncertainty in RIS would be important because sample sizes of RIS 
studies tend to be small for ML purposes.

5. Limitations to the study

Our study has several limitations. Even though we maximized the 
use of our data by employing stratified CV, the sample size of our 
dataset is such that the results only serve as a proof of concept for our 
hypotheses and further investigations with larger datasets are needed 
to further validate the generalizability of the findings. Another 
limitation is that we did not explore the ability of PRF to model noise 
in the input features. Experiments by (32, 33) have shown that PRF is 
more robust to noise than RF across various degrees of noise. While 
we  have focused only on uncertain outcome labels in this study, 
we  intend to explore the potential benefit of PRF for noisy input 
features in the future.

FIGURE 1

The ROC curves for all three classifiers. PRF clearly outperformed 
RFexclude and RFnaive.
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6. Conclusion

In the context of predicting disease activity in CIS/early MS using 
machine learning, we  have demonstrated that in a dataset with 
uncertain outcomes labels, using a method designed to model the 
uncertainties can produce substantially improved performance over 
the common approach of excluding the uncertain samples.
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