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Background: Gait variability in people with multiple sclerosis (PwMS) reflects

disease progression or may be used to evaluate treatment response. To date,

marker-based camera systems are considered as gold standard to analyze gait

impairment in PwMS. These systems might provide reliable data but are limited to

a restricted laboratory setting and require knowledge, time, and cost to correctly

interpret gait parameters. Inertial mobile sensors might be a user-friendly,

environment- and examiner-independent alternative. The purpose of this study

was to evaluate the validity of an inertial sensor-based gait analysis system in PwMS

compared to a marker-based camera system.

Methods: A sampleN= 39 PwMS andN= 19 healthy participants were requested

to repeatedly walk a defined distance at three di�erent self-selected walking

speeds (normal, fast, slow). To measure spatio-temporal gait parameters (i.e.,

walking speed, stride time, stride length, the duration of the stance and swing

phase as well as max toe clearance), an inertial sensor system as well as a

marker-based camera system were used simultaneously.

Results: All gait parameters highly correlated between both systems (r >

0.84) with low errors. No bias was detected for stride time. Stance time was

marginally overestimated (bias = −0.02 ± 0.03 s) and gait speed (bias = 0.03 ±

0.05 m/s), swing time (bias = 0.02 ± 0.02 s), stride length (0.04 ± 0.06m), and

max toe clearance (bias = 1.88 ± 2.35 cm) were slightly underestimated by the

inertial sensors.

Discussion: The inertial sensor-based system captured appropriately all examined

gait parameters in comparison to a gold standard marker-based camera system.

Stride time presented an excellent agreement. Furthermore, stride length and

velocity presented also low errors. Whereas for stance and swing time, marginally

worse results were observed.
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1. Introduction

Multiple sclerosis (MS) is the most frequent progressive

neurological disease of the central nervous system affecting young

adults (1). It is caused by an inflammatory process in the myelin

sheaths of the brain and spinal cord, which leads to demyelinating

of the nerval axons and impairment of the nerve cell function

(2). This results in various symptoms including impaired walking

leading to a negative impact on the patient’s quality of life (3).

Even in early stages without clinical signs of walking disability,

gait and balance impairments were observed (4–9). Previous

findings in motor impaired people with MS (PwMS) were reduced

stride length and gait speed as well as an elevated stride time and

stance time (4–7, 9, 10). Those gait parameters correlated with the

disease-associated fatigue andmay be used to define the outcome of

pharmaceutical trials (6, 7, 9, 11). Furthermore, gait parameters can

be associated with a patients’ fall risk. Scholz et al. summarized that

PwMS who fell more frequently had lower walking speed, shorter

stride length and worse balance (12).

At present, the gold standard to capture gait parameters

of patients with neurological disorders are optical marker-based

camera systems (4, 13). They are known to mirror the human

gait very precisely, but require a lot of time, cost, and knowledge

for performing and interpreting a study. Furthermore, the gait

analysis is limited to specialized centers, fixed appointments and

could not be performed in the patients’ domestic environment and

at flexible times. Inertial mobile sensors have been proven to be

a valid alternative and could even replace laboratory gait analysis

systems in terms of portability and offering continuous records

without constraining topical and temporal limitations (14, 15).

Among others, Moufawad el Achkar et al. (16) presented that foot-

worn inertial sensors are valid to monitor the activity and gait of

older people for an extended time span and in non-clinical settings.

Mobile inertial sensors have already been used to examine gait

in different neurological diseases. A systematic review has proven

the clinical validity of inertial sensor systems for neurological

disorders (17). Sensor-based gait analysis was for example used

to objectively measure gait disturbances in Parkinson’s disease

and atypical parkinsonian disorders (18, 19) and to quantify

disease severity and impairment in Huntingtons’s disease (20, 21).

Furthermore, the findings of gait variability in PwMS, which were

at first reported in laboratory-based gait analysis (4, 13), were

also replicated in more recent studies with mobile inertial sensors.

They were reported to be valid and reliable sources to assess

gait abnormalities even in milder stages of MS (5, 6). Moreover,

Angelini et al. (22) confirmed the reliability of inertial sensors in

gait analysis by recording gait in PwMS in two different hospitals

and under different gait testing conditions. Additionally, Vivienne-

Jumeau et al. (23) showed in a systematic review, that inertial

sensors provide reliable data for estimation of disease severity in

PwMS by comparing inertial sensors to disease severity scales. In

our study, we aim to complement those findings by contributing to

the hypothesis, that those inertial sensors are technically robust and

precise in PwMS by comparing sensor-derived outcomes to those of

a camera-based system. Kluge et al. already compared those inertial

foot-worn sensors to a reference camera-based motion capture

system for healthy participants and patients with Parkinson’s

TABLE 1 Demographical and clinical characteristics of the study

participants.

Healthy
participants

PwMS p-value

Participants number 19 39

Female sex 12 29 0.666

Age (years) 43.4± 14.9 43.7± 11.5 0.916

Height (cm) 171.8± 8.3 170.5± 7.2 0.549

Weight (kg) 72.1± 16.4 77.5± 20.6 0.313

EDSS NA 2.8± 1.3

Type of MS

Relapsing-remitting NA 29

Secondary progressive NA 10

Values of age, height, weight and EDSS are expressed as mean± SD.

MS, multiple sclerosis; EDSS, expanded disability status scale.

disease and showed a valid agreement between both systems for

all gait parameters (24, 25). Other researchers likewise investigated

the accuracy of inertial sensors by comparing them to a camera-

based system. They were proven to be a valid tool to detect walking

cadence and postural responses in PwMS (26, 27). Nonetheless,

current study situations miss this comparison of spatio-temporal

gait parameters derived from foot-worn inertial sensor systems and

camera-based systems in PwMS.

In this study, we further elaborate the validity of inertial

sensors in PwMS and healthy participants. To this end, clinically

interpretable spatio-temporal gait parameters were collected using

inertial mobile sensors and a state-of-the-art marker-based camera

system. We hypothesized that the gathered data between both

systems have no significant difference hence showing that mobile

sensor systems precisely analyze gait parameters of PwMS.

2. Materials and methods

2.1. Participants

Thirty-nine PwMS and 19 healthy age- and gender-matched

participants were recruited in the Department of Neurology of

the Klinikum Bayreuth GmbH, Germany. Table 1 presents the

demographic and clinical characteristics of the study participants.

PwMS implemented the gait analysis in connection to their

routine care or during their inpatient stay. Inclusion criteria

consisted of a verified MS diagnosis (28), an age between 18

and 65 years and the ability to walk without a walking aid

for at least 10m. Healthy participants declared to have no

conditions that might influence gait such as neurological or

orthopedic disorders. All participants provided written informed

consent prior to the first study visit. The study was approved

by the ethical committee of the University Hospital Erlangen

(166_18 B) and was in accordance with the Declaration

of Helsinki.
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FIGURE 1

The inertial sensors were attached to the instep and the reflective markers were placed on the head of the second metatarsal bone on both right and

left shoe.

2.2. Measurements

Assessments were conducted in a laboratory setting in the

Klinikum Bayreuth GmbH, Department of Neurology Bayreuth,

Germany. The participants were required to walk a straight

and even-floored distance of 10m six times at three different

self-selected walking speeds (fixed order: normal, fast, slow)

to cover a wide range of various walking speeds. In our

experimental design we adjusted the methods of Kluge et al.

(24), who validated a similar sensor-based system in patients with

Parkinson’s disease.

To measure spatio-temporal gait parameters (i.e., stride time,

stride length, walking speed the duration of the stance and

swing phase as well as max toe clearance), an inertial sensor

system (Mobile GaitLab, PHCT GmbH, Erlangen, Germany) as

well as a marker-based camera system (VICON, Oxford, UK)

were used simultaneously. The inertial sensor system consists

of two inertial sensors, secured to the instep of each shoe of

both participants’ feet (Figure 1). Each inertial measurement unit

consists of a 3D-accelerometer (range ±16 g) measuring linear

acceleration as well as a 3D-gyroscope (range ± 2,000 deg/s)

measuring angular velocity (rate of change of angle). The sampling

rate was set to 102.4Hz and the raw data was streamed wirelessly

via Bluetooth
R©

to an android tablet, transferred and stored on

a computer for further analysis. Additionally, reflective markers

(16mm) were placed on the head of the second metatarsal

bone on both right and left foot (Figure 1). Both, the camera

system, and the inertial mobile sensor system were synchronized

manually by a quick stamp on the ground similar to Uno et al.

(29) who used a vertical jump at the beginning of each trial.

The measurements, including the placement of the markers and

inertial sensors, have been performed by the same researchers,

ensuring conformity.

2.3. Data processing

To assure that the subjects walked at a steady speed and to

exclude turning, initiation or stopping strides, solely one left and

one right stride in the middle of the walkway over the force plates

were used. All spatio-temporal gait parameters were calculated

twice, once via the Software of the 3D camera system (Vicon Nexus,

Vicon ProCalc) and once via validated algorithms for the mobile

sensor system (30, 31).

2.4. Statistical analysis

Statistical analyses were performed using SPSS 20 (Chicago, IL,

USA). Participant characteristics were compared using Pearson’s

Chi-square for gender and independent t-Tests for age, height,

and weight. Of the healthy participants, 688 strides were used for

the analysis, while the remaining 1,324 strides originated from

PwMS. We assessed concurrent validity of all spatio-temporal

gait parameters by calculating Pearson’s correlation, bias (mean

difference), absolute error and the relative absolute error as

agreement measures between both the camera and the sensor

system. We used all single strides (n = 2,012) from all speeds

(normal, fast, slow) in the validity analysis to cover a large range

of gait parameters. Furthermore, Bland-Altman plots visualize the

mean of the difference (bias) as well as the 95% confidence interval

of the bias between the two systems (32). Validity between both

systems was also assessed for healthy participants and PwMS to

evaluate whether mildly affected gait would affect the system’s

accuracy. Differences were assessed by a one-way ANCOVA with

group (healthy participants, PwMS) as factor and speed (normal,

slow, fast) as covariate. An alpha level of 0.05 was used for all

statistical tests.
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TABLE 2 Overview of spatio-temporal gait parameters for 38 PwMS and 19 healthy participants (n = 2012 strides).

Camera Sensor r Bias Abs. error Error (%)

Gait speed (m/s) 1.33± 0.37 1.30± 0.36 0.99 0.03± 0.05 0.05± 0.04 3.8

Stride length (m) 1.41± 0.26 1.38± 0.25 0.98 0.04± 0.06 0.05± 0.05 3.5

Stride time (s) 1.10± 0.18 1.10± 0.18 1.00 0.00± 0.02 0.01± 0.01 0.9

Stance time (s) 0.69± 0.13 0.70± 0.14 0.97 −0.02± 0.03 0.02± 0.03 2.9

Swing time (s) 0.41± 0.06 0.39± 0.05 0.94 0.02± 0.02 0.02± 0.02 4.9

Toe clearance (cm) 17.0± 2.3 15.1± 4.1 0.84 1.88± 2.35 2.39± 1.82 14.1

Shown are the mean parameters± SD, Pearson correlation coefficient r, bias± SD, absolute error± SD and the relative absolute error.

FIGURE 2

Bland-Altman diagrams of gait parameters [(A) gait speed, (B) stride time, (C) stride length, (D) stance time, (E) toe clearance, (F) swing time] show the

di�erence vs. the mean of both systems for all single strides. The solid line indicates the bias and the dashed lines the limits of agreement (95%

confidence interval of the bias). Highlighted by colors are the three di�erent test speeds (normal, slow, fast).
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TABLE 3 Overview of spatio-temporal gait parameters for 38 PwMS and 19 healthy participants (n = 2012 strides).

Camera Sensor r Bias Abs. error Rel. error

Gait speed (m/s]

PwMS 1.26± 0.34 1.23± 0.33 0.99 0.03± 0.05 0.05± 0.04 4.0

Healthy 1.45± 0.38 1.42± 0.36 0.99 0.04± 0.06 0.05± 0.05 3.4

Stride length (m]

PwMS 1.35± 0.25 1.32± 0.24 0.97 0.03± 0.06 0.05± 0.05 3.7

Healthy 1.53± 0.24 1.49± 0.22 0.98 0.04± 0.05 0.05± 0.04 3.3

Stride time (s]

PwMS 1.10± 0.18 1.10± 0.18 1 0.00± 0.02 0.01± 0.01 0.9

Healthy 1.09± 0.17 1.09± 0.17 1 0.00± 0.01 0.01± 0.01 0.9

Stance time (s]

PwMS 0.69± 0.14 0.71± 0.14 0.96 −0.02± 0.04 0.03± 0.03 4.3

Healthy 0.67± 0.13 0.69± 0.13 0.99 −0.02± 0.02 0.02± 0.01 3.0

Swing time (s]

PwMS 0.41± 0.06 0.39± 0.04 0.96 0.02± 0.02 0.02± 0.02 4.9

Healthy 0.42± 0.05 0.40± 0.05 0.95 0.02± 0.02 0.03± 0.02 7.1

Toe clearance (cm]

PwMS 16.6± 2.6 14.4± 4.0 0.81 2.21± 2.44 2.62± 2.00 15.8

Healthy 17.7± 2.8 16.5± 3.9 0.88 1.23± 2.02 1.96± 1.33 11.1

Presented are the mean parameters± SD, Pearson correlation coefficient r, bias± SD, absolute error± SD and the relative absolute error.

3. Results

Mean ± SD values of all measured spatio-temporal gait

parameters together with agreement measures are given

in Table 2. High correlations (r > 0.84) with low errors

were observed for all gait parameters (Table 2). While no

bias was observed for stride time, stance time was slightly

overestimated and swing time underestimated, respectively, by

about 0.02 s (Figure 2). The stride length was underestimated

by 0.04m, the gait speed was underestimated by 0.03 m/s

and max toe clearance was underestimated by 1.88 cm. The

absolute relative error of the sensor-based gait parameters

was below 14.1% for all gait parameters. The results of

the parameters involving temporal information showed an

error between 0.9% (stride time) and 4.9% (swing time).

The results of the parameters involving spatial information

showed an error between 3.5% (stride length) and 14.1%

(max toe clearance). Table 3 differentiates the results of the

spatio-temporal gait parameters between healthy participants

and PwMS.

Figure 2 visualizes the agreement between both systems

regarding different walking speed conditions and Figure 3

visualizes the agreement between both systems regarding both

healthy participants and PwMS. The bias of gait speed [F(1,1981) =

12.58, p = 0.000], stance time [F(1,1997) = 17.91, p = 0.000), swing

time [F(1,1998) = 31.38, p = 0.000] and max toe clearance [F(1,1999)
= 89.14, p= 0.000] differ between healthy participants and PwMS.

However, these differences were also significantly affected by the

covariate speed. The bias of stride time [F(1,1982) = 2.35, p= 0.126]

and stride length [F(1,1998) = 2.87, p= 0.091] did not differ between

healthy participants and PwMS.

4. Discussion

According to this study, a mobile sensor system provides

valid information about spatio-temporal gait parameters of healthy

participants and PwMS. The gait parameters of the sensor system

have good conformity with the gait parameters of the camera

system. The collected spatio-temporal gait parameters were also

comparable to the established results in former studies concerning

healthy adults and PwMS (5–7, 9, 13), indicating that their gait

pattern was measured correctly.

Stride time presented an excellent agreement. Furthermore,

stride length and velocity presented also low errors. Whereas for

stance time and swing timemarginally worse results were observed.

On average, the swing time was underestimated, and the stance

time was overestimated by the inertial sensor systems resulting in

a percentage longer stance phase measured in the gait cycle. This

might be caused by the different measurements of the heel strike

and toe-off events, which separate the stance phase from the swing

phase. The camera system used to define the participants’ heel

strike by the pressure the touchdown put on a sensitive force plate,

which detected the heel strike already at a force threshold of 10N.

Whereas the inertial mobile sensors detect the end of the swing

phase through the change from dorsal extension to plantar flexion

of the foot resulting in a longer duration of the swing time and

consecutive in a shorter stance time. These findings correspond also
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FIGURE 3

Bland-Altman diagrams of gait parameters [(A) gait speed, (B) stride time, (C) stride length, (D) stance time, (E) toe clearance, (F) swing time] show the

di�erence vs. the mean of both systems for all single strides. The solid line indicates the bias and the dashed lines the limits of agreement (95%

confidence interval of the bias). Highlighted by colors are the healthy participants and patient group (PwMS).

approximately with the comparison of a camera system and those

inertial sensors measuring patients with Parkinson’s disease (24).

The worst but nevertheless good agreement between both

systems showed the max toe clearance with a Pearson correlation

of 0.81 in PwMS and 0.88 in healthy participants. This might be

based on the fact, that themax toe clearance was defined differently.

While the camera system calculated the distance between the

maximal and minimal height of the toe marker position, the mobile

sensor system measured the height above the ground and used the

shoe size (defined shoe length for each size) to calculate the max

toe clearance. Furthermore, the inertial sensor was placed distal

(depending on the type of the individual shoe) of the reflective

marker (Figure 1); hence there might be a difference in the absolute

distance because of the range of the extension and flexion in the

ankle joint.

The bias of the gait speed and stride time deviated between the

healthy participants and the PwMS by having slightly lower bias

for the participants affected by MS. This could be an effect of the

result that gait speed and stride time were significantly affected by

the covariate speed, which is also shown in the Bland-Altman plots.

Consequently, bias measured in a fast walk was higher than the bias

detected in a slow walk. On average, PwMS walk slower than the

healthy participants, which is also shown in various former studies.

This leads to the suggestion that the inertial sensors detect the gait
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speed and stride length more exact in slow walkers and therefore in

PwMS (4–7, 9, 13).

4.1 Limitations of the study

Some limitations of the present study require consideration.

First, in our experimental design, we synchronized both the

sensor and the camera system manually through a quick stamp

at the beginning of every walking course. This can be depicted

with the analyzing software of the camera system as well as in

the visualized gait waveforms recorded by the inertial sensors.

We needed to find the concerned steps manually. An automatic

synchronization for better comparison of the steps might be

beneficial. Second, we compared selective spatio-temporal gait

parameters and did not include gait kinetics and kinematics in

this study. Third, our participants were not equally distributed

in both genders, but were acquired approximately comparable

to the distribution of PwMS in the population with 74% female

participants with MS (33). Furthermore, gait was acquired in

laboratory setting allowing the acquisition of comparable, reliable,

and supervised gait parameters. But the gait shown in a laboratory

setting might differ from gait in daily life, especially because

of the limited evaluated distances and the visually targeted

force plates. Moreover, only straight walking was measured

and no turnings acceleration and deceleration or walking on

uneven ground were detected. In future studies it should be

considered to test the validity of inertial mobile sensors in real-

world environments.

5. Conclusion

In summary, this study showed that inertial sensor-based

systems are a insightful option to analyze spatio-temporal

gait-parameters of PwMS and healthy participants. This

study contributes to the qualification of inertial sensors to

be used in clinical studies e.g., pharmaceutical trials and

to define disease severity in MS in medical practice since

they represent an user-friendly alternative to quickly collect

a large number of data concerning a patient’s gait. Given

validation in different environmental settings and longer

observation periods, this inertial sensor system might be a

valid tool to analyze gait parameters of PwMS in real-life

settings to monitor therapy effectiveness or evaluate their risk

of falling.
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