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Long-term drug treatment for Restless Legs Syndrome (RLS) patients can frequently 
result in augmentation, which is the deterioration of symptoms with an increased 
drug dose. The cause of augmentation, especially derived from dopamine therapy, 
remains elusive. Here, we  review recent research and clinical progress on the 
possible mechanism underlying RLS augmentation. Dysfunction of the dopamine 
system highly possibly plays a role in the development of RLS augmentation, 
as dopamine agonists improve desensitization of dopamine receptors, disturb 
receptor interactions within or outside the dopamine receptor family, and interfere 
with the natural regulation of dopamine synthesis and release in the neural system. 
Iron deficiency is also indicated to contribute to RLS augmentation, as low iron 
levels can affect the function of the dopamine system. Furthermore, genetic risk 
factors, such as variations in the BTBD9 and MEIS1 genes, have been linked to an 
increased risk of RLS initiation and augmentation. Additionally, circadian rhythm, 
which controls the sleep–wake cycle, may also contribute to the worsening 
of RLS symptoms and the development of augmentation. Recently, Vitamin D 
deficiency has been suggested to be  involved in RLS augmentation. Based on 
these findings, we propose that the progressive reduction of selective receptors, 
influenced by various pathological factors, reverses the overcompensation of the 
dopamine intensity promoted by short-term, low-dose dopaminergic therapy in 
the development of augmentation. More research is needed to uncover a deeper 
understanding of the mechanisms underlying the RLS symptom and to develop 
effective RLS augmentation treatments.
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1. Introduction

Restless legs syndrome, also known as Willis-Ekbom disease (WED), is a sensorimotor 
disorder characterized by an irresistible urge to move the legs, worsening symptoms at night, 
and for some patients, unpleasant sensations in the legs. The disorder affects an estimated 
1–15.3% of the population, with about 1–3% of people overall experiencing severe and frequent 
symptoms (1–7). Despite the prevalence of the syndrome, the cause of RLS syndrome remains 
ambiguous from both clinical and pathophysiological perspectives. Multiple pathological 
mechanisms, including dysfunction in dopamine-related systems, alterations in adenosine and 
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glutamatergic pathways, brain iron deficiency, and genetic mutations, 
likely contribute to the etiopathogenesis of RLS (7). The effectiveness 
of drugs and therapies targeting these mechanisms supports their 
significant roles in RLS.

Despite the advancements in the development of drug targeting 
various transmitter pathways, dopaminergic agents(levodopa and 
dopamine agonists) have remained the mainstay of treatment for 
restless legs syndrome for the past four decades (7–10). The use of 
these agents in RLS therapy was initially reported in the 1980s, when 
Akpinar published a case study documenting the efficacy of levodopa. 
The long-term efficacy of levodopa and dopaminergic agonists, 
including pramipexole, ropinirole, and rotigotine, has been well 
established. Until recent years, they are widely considered the first-line 
pharmacological treatment for RLS (11–15). However, even with 
minimal doses of levodopa and dopamine agents, long-term treatment 
with these drugs leads to a progressive worsening of RLS symptoms 
(16, 17). This worsening can be differentiated from tolerance, early 
morning rebound, and the natural progression of RLS or fluctuations 
in disease severity (18). This deterioration in dopamine therapy, 
known as augmentation, is the leading cause of treatment 
discontinuation and failure in RLS (11, 19, 20).

“Augmentation” refers to an iatrogenic exacerbation of RLS 
symptoms, as characterized by earlier occurrence of symptoms in the 
afternoon than before treatment initiation, the spread of symptoms to 
the upper limbs, and a reduced latency until symptoms manifest during 
periods of rest. Another recognizable characteristic of augmentation is 
the paradoxical worsening of symptoms upon increasing the dose of 
dopamine agonists. The clinical phenomenon of augmentation was 
first observed during long-term levodopa treatment and was suggested 
to be a result of the treatment itself (21). Augmentation is especially 
common in patients undergoing levodopa treatment and was initially 
found in 73% of patient (16). The phenomenon of augmentation is not 
typically observed in long-term treatment with non-dopamine 
therapies. If such observations do exist, they are more likely considered 
a natural progression of RLS rather than an iatrogenic effect (22). 
However, evaluating the prevalence of augmentation poses challenges 
due to various influencing factors, including medication type and 
dosage, study duration and design, assessment criteria, and sample size 
(11). Specifically, augmentation rates have been found to rise with 
study duration: short-term studies report rates of 10% (22–26), studies 
lasting 2–3 years report rates of 15–30%, and studies lasting around 
10 years report rates of 42–68% (6, 27, 28). Here, we provide a summary 
of mechanisms, including dopamine release efficiency, dopamine 
receptor sensitivity and interaction, genetic risk factors for RLS, iron 
deficiency, vitamin D deficiency and circadian rhythms. These factors 
are thought to play a role in the development of augmentation 
following dopamine agent administration. It can be speculated that the 
multi-dimensional integration of these pathological elements reverses 
the relief function of dopamine agents over time.

2. Dysfunction of dopamine system in 
RLS augmentation

2.1. The contribution of dopamine 
inefficiency in RLS augmentation

Several studies have supported the increased dopamine 
synthesis and secretion on the presynaptic surface in RLS patients 

(29–32). However, the synaptic concentration of endogenous 
dopamine and the complex postsynaptic signaling system in 
augmented RLS patients remains unclear. According to the 
physiological findings, synaptic dopamine concentrations are 
primarily influenced by presynaptic D2 and D3 autoreceptors and 
the dopamine transporter (DAT) (33). D2/D3 agonists lead to 
increased dopamine and serotonin levels in the prefrontal cortex of 
rats (34). Chronic administration of pramipexole can lead to 
desensitization of D3 autoreceptors and reduced dopamine uptake 
in the mouse striatum, which is apparently comparable to RLS 
patients (35, 36). Hypotheses suggest that augmentation is also 
linked to impaired dopamine function in the central nervous 
system. The therapeutic benefits of dopamine agonists on both 
sensory and motor symptoms, including periodic limb movement 
in sleep (PLMS), indicate the role of the dopaminergic system in the 
pathophysiology of RLS, consistent with a presynaptic 
hyperdopaminergic state. However, the paradoxical changes of 
receptor function in mild RLS patients, and potentially in augmented 
RLS patients, need further investigation.

2.2. The contribution of dopamine receptor 
interactions in RLS augmentation

The interaction between dopamine receptors within the dopamine 
receptor family and other neurotransmitter systems is implicated in 
the development of RLS augmentation. Specifically, high dopamine 
concentrations, possibly resembling the hyperdopaminergic state 
observed in patients with augmentation, target excitatory dopamine 
1 receptors (D1Rs), which sustaining locomotor-like activity in the 
isolated spinal cord, potentially contributing to augmentation (37). 
Activation of dopamine 3 receptors (D3Rs) induce both overall 
sensory and motor excitability in the isolated spinal cord (38, 39), 
similar to the effect of dopamine agents. Actually, D3Rs and D1Rs 
form functional heterodimers and heterotetramers (40, 41). Long-
term treatment with D3R agonists has also been shown to upregulate 
excitatory D1Rs in the spinal cord (42). Overall, the downregulation 
of inhibitory D3Rs and upregulation of excitatory D1Rs seem to 
contribute to the augmentation of RLS. This propose was partially 
supported by experiment that long-term treatment with D3R agonists 
in a rodent model could be reversed or rescued by adjuvant block of 
D1Rs in animals that no longer responded to the D3R agonist alone 
(42). The intricate balance of adenosine, dopamine, and glutamate in 
the striatum may be  influenced by the heteromer formed by the 
combination of D1Rs and dopamine 2 receptors (D2Rs), which 
interact with adenosine A1 receptors (A1Rs) and A2 receptors 
(A2ARs), respectively (7). These findings suggest that the dynamic of 
the pathological network involved in dopamine system in augmented 
patients may be influenced by internal imbalances of dopamine and 
extensive neurotransmitter receptors.

2.3. Desensitization of dopamine receptors 
participate in RLS augmentation

Desensitization of dopamine receptors may also contribute to the 
development of augmentation. Like other G protein-coupled receptors 
(GPCRs), dopamine receptors regulate signal transduction by receptor 
desensitization (43). Recent studies revealed that D1 and D2R 
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homo-oligomers undergo desensitization in response to selective 
agonists (44, 45). In addition, D3Rs are internalized through a 
mechanism of pharmacological sequestration after agonist-induced 
activation (46). It is ponderable that desensitization of dopamine 
receptors may progressively diminish the efficacy of dopamine 
agonists in augmented RLS patients, despite low-dose administration 
temporarily enhancing dopamine receptor signaling. This is especially 
relevant for RLS patients who receive nighttime treatment with 
dopamine agonists, as dopamine receptor sensitivity is highest during 
this time (47). It is considered that the treatment of RLS patients with 
dopamine agonists may induce pathological desensitization of 
dopamine receptors, resulting in a gradual reduction in the efficacy of 
these agents. This vulnerability can be confirmed in self-controlled 
patients undergoing long-term dopamine therapy.

3. Iron deficiency may contribute to 
augmentation

The role of iron in RLS pathogenesis has been established 
through numerous studies, as well as the positive effect of iron 
supplementation on RLS symptoms. However, the relationship 
between iron metabolism and RLS augmentation is still unclear. The 
severity of RLS symptoms at baseline and with augmentation has 
been associated with low ferritin levels, which suggests a deficiency 
in mobilizable iron stores (48, 49). Besides, iron supplementation 
can provide alleviate and remission of RLS symptoms in some 
patients (50–52) and prevents or reduces of augmentation during 
dopaminergic therapy (11). Mechanically, iron deficiency may 
exacerbate RLS severity through dysregulation of dopamine system. 
Iron serves as a cofactor for tyrosine hydroxylase, which converts 
tyrosine to dopamine, and oral iron supplement has been found to 
reduce dopamine transporter numbers in rat models (53). Iron 
deficiency is also associated with reduced levels of extracellular 
dopamine, dopamine transporters, D1Rs, and D2Rs (54). 
Nonetheless, additional research is required to elucidate the 
pathological mechanism linking iron deficiency, dopamine 
dysregulation, and RLS augmentation.

4. Genetic risk factors involved in 
augmentation

The contribution of genetic background to RLS augmentation is 
poorly understood. The significant physiological and pathological 
association between genetic risk factors, dopamine dysfunction, and 
iron metabolism suggests that RLS risk factors contribute to the 
development of augmentation. The MEIS1 and BTBD9 loci have a 
significant genetic association with RLS (55) and are involved in brain 
iron metabolism (56). Overexpression of BTBD9  in HEK cells 
increased ferritin expression in embryonic kidney cells (57). A 
previous study conducted in Denmark found that the rs9296249 
variant in the BTBD9 gene was significantly associated with serum 
ferritin levels in female blood donors (58). On the other hand, an 
association between the MEIS1 gene and an increase in the expression 
of H-ferritin, L-ferritin, and divalent metal transporter-1 RNA has 
been uncovered in the thalamus (59).

BTBD9 and its homolog are involved in the transcriptional and 
cellular regulation of dopamine D2Rs and D3Rs, which are the 
main targets of dopamine agonists. The internalization of D2R is 
modulated by DNM-1 (60), which showed a significant increase in 
BTBD9 systematic knockout mice. The expression of DNM-1 was 
found to be  enhanced in the BTBD9 complete knockout mice 
compared to wild-type mice that were euthanized at midnight (61). 
The symptoms of RLS patients and the thermal sensory deficit of 
BTBD9 complete knockout mice can be  alleviated by D2/D3 
agonists (62). A research using dBTBD9 mutant flies showed a 
significant decrease in brain dopamine levels and an incoordinate 
sleep phenotype, which was majorly rescued by giving pramipexole 
(57). In contrast, the increased sensory excitability and locomotor 
activity in D3KO mice suggest that both sensory and motor circuits 
are functionally upregulated in the spinal cord of this mouse (63). 
In both D3KO and iron-deprived mice, a significant increase of the 
D1R protein expression has been found in the lumbar spinal cord 
(64, 65). Under BTBD9 deficiency, the activity of the D1R-mediated 
dopamine system may have reached its peak, which indicated a 
weakened D2R signaling but an increased D1R signaling in RLS 
syndrome (61), similar to augmentation states. In addition, a 
reasonable viewpoint was that BTBD9 is involved in dopamine 
biosynthesis by unknown pathways (66). Therefore, RLS patients 
with risk BTBD9 loci may have a tendency toward augmentation in 
the pathological process.

5. Vitamin D and RLS augmentation

Vitamin D deficiency has been shown to correlate with RLS 
symptoms on serum vitamin D level (67, 68). Vitamin D is also 
associated with pathological factors of RLS, such as iron deficiency 
(68, 69) and dopamine dysfunction (70, 71). The effect of vitamin D 
on RLS augmentation has been reported. A case report showed that 
an 81-year-old woman’s dopaminergic augmentation significantly 
improved result from the co-treatment involved in vitamin D 
supplementation (72). Besides, an unpublished study revealed a high 
prevalence of vitamin D deficiency in 9 female RLS patients using 
dopaminergic drugs, and these females showed an improved response 
to vitamin D supplementation (73).

6. Circadian rhythms and RLS 
augmentation

RLS symptoms are more apparent at night, with a higher 
occurrence reported in the evening and night hours (74). Indeed, a 
phase advance of anticipated initiation of RLS symptoms, known as a 
feature of RLS augmentation, was possibly influenced by circadian 
rhythm. A study indicates that treatment with levodopa advances the 
dim light melatonin onset (DLMO) in RLS patients experiencing 
augmentation compared to those without augmentation (75). 
Moreover, considering the deterioration of RLS symptoms in cases of 
augmentation, the intensification of augmented symptoms is 
particularly evident at night. Specifically, unlike akathisia, paresthesias 
in RLS are typically localized, usually idiopathic, and have a periodic 
maximum of expression in dusk and night (76). Therefore, given the 
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FIGURE 1

A schematic depicting the pathological model of RLS augmentation. The intensities of upregulation (length of red arrows) and downregulation (length 
of blue arrows) in presynaptic and postsynaptic DA signaling, as well as the signal strength of DAR downstream transduction pathways, changed during 
RLS augmentation. The black arrows within the yellow region represent biological processes between the post-synaptic domain and transduction 
pathways. Iron deficiency, genetic risk factors, receptor interactions, vitamin D, and circadian rhythms contribute to dopamine system dysfunction, as 
depicted by the black arrows outside the yellow region. Dopaminergic agents such as levodopa, pramipexole, ropinirole, and rotigotine temporarily 
increase the overall effect of dopamine on postsynaptic receptors, but irreversibly reduce the number of dopamine receptors. Dotted black or colored 
arrows indicate potential relationships between two entities.

fluctuation of molecular expression in RLS and the evidence for 
chronobiotic mechanisms in the disease, the potential role of circadian 
mechanisms in the RLS deterioration cannot be ignored. (77, 78).

Pathological factors involved in augmentation, such as abnormal 
dopamine system dynamics, genetic risk factors expression, and iron 
concentration, display diurnal rhythmicity. This view suggests that the 
timing of dopamine agonist treatment may influence development of 
RLS augmentation through pathological networks. Dopamine release 
has an unambiguous circadian activity pattern of decreasing in the 
evening and night and increasing in the morning (79–83). In wild-
type mice, D1R, D2L, and D2S mRNA levels were all decreased during 
the locomotion time compared with the sleep time (61). The level of 
D2R mRNA was increased in the striatum of BTBD9 complete 
knockout at midnight, indicating that the effect of BTBD9 deficiency 
on the D2R mRNA level is regulated by circadian rhythm (84). 
Arrhythmic transcription of dopamine receptor mRNAs may 
contribute to these findings. Additionally, diurnal variations of iron 
concentration have been observed in peripheral and regional brain 
areas (85). Significant diurnal changes in total iron concentrations in 
brain region were found in mice (86). Diurnal variations of iron-
regulated proteins in CSF have been previously described in RLS 
patients (87). Research on fruit flies has found that the neural circuit 
connection from the small ventrolateral clock neurons to the 
protocerebrum are reduced when the iron is chelated from the diet 
(88). In terms of the genetic factors of RLS, although a study has 
shown that BTBD9 mutant mice exhibit abnormal sleep architecture, 
which is reminiscent of RLS patients (62), it is yet to be determined if 
BTBD9 variation impacts circadian. On the other hand, MEIS1 
haploinsufficiency was associated with a sex-dependent increase in 

activity during the onset of rest, similar to the circadian rhythm of RLS 
symptoms observed in human patients (89).

7. Model of augmentation 
development

Overall, the effect of dopamine agents, potentially accompanied 
with iron deficiency, genetic risk factors, vitamin D deficiency and 
effect of circadian rhythms, contributes to the attenuation of 
dopamine signaling in patients with augmented RLS. RLS patients 
may exhibit impaired postsynaptic response to increased dopamine 
stimulation after long-term administration of low-dose dopamine 
agents, possibly due to dopamine receptor desensitization and 
interaction of dopamine receptors. When dopamine signaling is 
reduced during dusk and night, this insufficient postsynaptic 
dopamine signaling causes augmented RLS symptoms. More 
specifically, despite an overall increase in dopamine secretion in 
RLS patients, continuous treatment with dopamine agents may 
desensitize selective dopamine receptors, with a gradual decrease 
in peak dopamine efficiency over time. This leads to a deficit in 
dopamine signaling in the evening and at night compared with 
healthy people. As a result, the circadian attenuation of dopamine 
signaling in the evening and at night in augmented RLS patients 
disrupts normal sleep homeostasis, with the symptom of fragmented 
sleep at rest in these patients. The dopamine drug-induced 
incremental activation of dopamine signaling exacerbates the 
downregulation of overall post-synaptic dopamine receptors, thus 
worsening the RLS disease and expanding the symptoms (Figure 1).
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8. Conclusion

Augmentation is one of the greatest threats to RLS patients in the 
context of the widespread usage of dopamine agents. The pathological 
mechanism behind this symptom is unclear and needs to 
be  elucidated. Current clinical diagnoses and research findings 
highlight the potential mechanisms linking dopamine dysfunction, 
circadian regulation, iron deficiency, vitamin D deficiency and genetic 
risk factors to the development of augmentation. However, a multi-
perspective investigation in the field is lacking. In addition, the role of 
other transmitter signaling pathways in the development of 
augmentation remains vague. Further careful and long-term research 
is necessary to fully understand the underlying mechanisms of 
augmentation in RLS patients.
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