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Background: Early stroke prognosis assessments are critical for decision-

making regarding therapeutic intervention. We introduced the concepts of data

combination, method integration, and algorithm parallelization, aiming to build an

integrated deep learning model based on a combination of clinical and radiomics

features and analyze its application value in prognosis prediction.

Methods: The research steps in this study include data source and feature

extraction, data processing and feature fusion, model building and optimization,

model training, and so on. Using data from 441 stroke patients, clinical

and radiomics features were extracted, and feature selection was performed.

Clinical, radiomics, and combined features were included to construct predictive

models. We applied the concept of deep integration to the joint analysis of

multiple deep learning methods, used a metaheuristic algorithm to improve the

parameter search e�ciency, and finally, developed an acute ischemic stroke (AIS)

prognosis prediction method, namely, the optimized ensemble of deep learning

(OEDL) method.

Results: Among the clinical features, 17 features passed the correlation check.

Among the radiomics features, 19 features were selected. In the comparison of

the prediction performance of each method, the OEDL method based on the

concept of ensemble optimization had the best classification performance. In the

comparison to the predictive performance of each feature, the inclusion of the

combined features resulted in better classification performance than that of the

clinical and radiomics features. In the comparison to the prediction performance

of each balanced method, SMOTEENN, which is based on a hybrid sampling

method, achieved the best classification performance than that of the unbalanced,

oversampled, and undersampled methods. The OEDL method with combined

features and mixed sampling achieved the best classification performance, with

97.89, 95.74, 94.75, 94.03, and 94.35% for Macro-AUC, ACC, Macro-R, Macro-P,

and Macro-F1, respectively, and achieved advanced performance in comparison

with that of methods in previous studies.

Conclusion: The OEDL approach proposed herein could e�ectively achieve

improved stroke prognosis prediction performance, the e�ect of using

combined data modeling was significantly better than that of single clinical
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or radiomics feature models, and the proposed method had a better intervention

guidance value. Our approach is beneficial for optimizing the early clinical

intervention process and providing the necessary clinical decision support for

personalized treatment.

KEYWORDS

MRI, radiomics, deep learning, ensemble learning, metaheuristic algorithms, ischemic

stroke

Introduction

In recent years, with the increasingly serious aging

phenomenon globally, the incidence of major chronic diseases

represented by ischemic strokes has also increased (1). Stroke is

still the second leading cause of death in the world and the number

one cause of acquired long-term disability, especially in China,

which is the greatest challenge of stroke in the world, ranking

third among the leading causes of death in China, second only

to malignant tumors and heart disease (2). Acute ischemic stroke

(AIS) is associated with high morbidity, high mortality, and poor

prognoses. They have become a major public health problem

that cannot be ignored and have brought a great burden to the

economy and society. In the context of limited medical resources,

it is necessary to prioritize the implementation of nursing care for

patients with poor prognoses, thereby reducing the incidence of

disability (3). In the era of precise diagnosis and individualized

treatment, prognostic classification has become an important

strategy for stroke management (4, 5). The early prediction of

prognoses is of great significance for improving the efficiency of

stroke disease diagnosis and treatment and improving the levels of

disease prevention and control (6).

In the past, prognosis evaluations in clinical practice mostly

relied on the manual judgments of physicians, which required

high-end medical technology and much physician experience, and

the prediction effect of this approach was unstable, which limited

its clinical promotion (7, 8). As a new non-invasive technique,

radiomics can extract high-throughput quantitative information

from traditional medical images, enabling the assessment of

internal tumor textures that cannot be captured by visual

assessments (9, 10). Radiomics aims to extract quantitative

and high-dimensional data from digital biomedical images to

facilitate the comprehensive exploration of disease information and

progression, and it has been widely used in a variety of clinical fields

(11, 12). However, previous studies of this kind were mostly limited

to radiomics alone and failed to comprehensively predict disease

prognoses with clinical and radiomics features (13–17). At present,

there is still a lack of relevant research focusing on the predictive

value of combined features for stroke prognosis, which has broad

research prospects.

Compared with traditional prediction models, deep learning-

based prediction models, represented by deep neural networks

(DNNs), long short-term memory recurrent neural networks

(LSTM-RNNs), and deep belief networks (DBNs), can automate

and accurately analyze a large number of features and are suitable

for various medical fields (18–21). Ensemble learning has the

advantages of fast operation and high accuracy and has been widely

used in numerous fields, such as medical treatment, healthcare,

and information technology (22). Single machine learning and

deep learning have the problems of limited convergence effect

and difficulty in optimizing hyperparameters, which affects the

improvement of prediction efficiency. Deep ensemble learning is

expected to solve these problems and improve the accuracy of the

model. Compared with shallow learning models and individual

learning models, ensemble deep learning models can perform

better on multiple learning tasks. They can also extract deeper

essential features during the learning process, which can effectively

improve the accuracy of the model prediction results (23).

In previous radiomics studies, the applications of deep

ensemble models were relatively lacking (24–26). If the selected

network structure and parameter settings are not appropriate, this

may increase the complexity of the model and reduce its overall

operating efficiency (27). Hence, the parameter optimization

and layer number setting steps of deep ensemble models are

still key issues that need to be solved (28). To improve the

optimization accuracy of thesemodels and reduce the time required

for the optimization process, such research usually requires

the use of metaheuristic algorithms as optimization strategies

(29, 30). However, traditional algorithms often have problems

such as slow convergence speeds and ease of falling into local

optima (31, 32). Research on optimization algorithms with novel

optimization mechanisms, accurate solution methods, and robust

computing power is still an important direction for feature and

parameter selection.

This study aims to build a stroke prognosis prediction model

in a deeply integrated way to provide a reference for the diagnosis

and prevention of stroke. We adopt an ensemble concept involving

data, methods, and algorithms and achieve excellent classification

performance. Our contributions and the innovations of this study

can be summarized as follows.

(1) In terms of data fusion, we innovatively extract, select,

and fuse clinical features and imaging features. The combined

data are beneficial to fully extract information and provide

early warning for the prognosis of stroke more comprehensively

and effectively.

(2) In terms of the categorical outcome, multicategorical

outcome variables (normal group, mild group, and moderate-

severe group) are used in this study. Compared with that of

two-classification approaches, the multi-classification method is

conducive to improving the pertinence of the classification,

which is conducive to accurate prognosis judgment and

intervention guidance.
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(3) In terms of model construction, we innovatively construct

the optimized ensemble of deep learning (OEDL) method. We

comprehensively selected and integrated multiple deep learning

methods to maximize the advantages of each method and verified

the performance of the model for classification prediction. Our

proposed model increases the diversity of prognosis prediction

methods, enriches the methodological content of deep ensemble

learning, provides new methods and ideas in its research field and

clinical decision support for personalized intervention.

(4) For model optimization, we design a new Big Bang

optimization algorithm (BBOA), which aims to implement

the optimization process efficiently and accurately and then

improve the efficiency of the feature selection and parameter

search processes.

Materials and methods

The data that support the findings of this study are available

from the corresponding author upon reasonable request. This study

includes the following steps. (1) Data source and feature extraction:

The clinical features and radiomics features are extracted in turn.

(2) Data processing and feature fusion: The data filling, data noise

reduction, data standardization, data screening, data splicing, data

balancing, and related steps are performed. (3) Model construction:

Clinical features, imaging features, and combined features from

the data are included in turn. In this method, the concept of deep

integration is used for modeling, and the base learner and the

integration mode are selected in turn. (4) Model optimization: The

proposed improved metaheuristic algorithm is used to improve the

efficiency of the parameter search. Our technical route is shown in

Figure 1.

Data source and feature extraction

This retrospective study was approved by the ethics committee

of the Taizhou Municipal Hospital, and the requirement to obtain

informed consent was waived. A total of 477 acute ischemic stroke

(AIS) patients admitted to the Department of Neurology, Taizhou

Municipal Hospital, Zhejiang Province, from January 2020 to April

2021 were recruited. The inclusion criteria were as follows: those

who met the AIS diagnostic criteria, had complete clinical data, age

more than 18 years. The patient had the first episode, and the MRI

images were clear and without artifacts. Severe liver and kidney

dysfunction, blood system diseases, malignant tumors, immune

system diseases and other diseases, other serious nervous system

diseases, and failure to cooperate with clinical treatment or follow-

up as required by law were exclusion criteria. A total of 441 cases

were eventually included. To ensure that the sample size met the

needs of deep learning, we implemented balancing processing for

the study data.

The prognosis groupings were based on the National Institute

of Health Stroke Scale (NIHSS) at the time of discharge and could

be divided into three groups (33, 34): a normal group (<1 point)

with 106 cases; a mild group (1–4 points) with 289 cases; and a

moderate-severe group (≥ 5 points) with 46 cases. In the following

text, we refer to the normal, mild, and model severe groups as

groups A, B, and C, respectively. The NIHSS scores could reflect

the degrees of neurological deficit in patients and were used as

prognostic indicators in this study.

The clinical data included NIHSS score at admission, disease

type, OCSP classification, sex, age, body mass index (BMI),

systolic blood pressure (SBP), left ventricular hypertrophy (LVH),

homocysteinemia, history of hypertension, history of diabetes,

history of coronary heart disease (CHD), history of atrial

fibrillation, history of drinking, history of smoking, serum

total cholesterol (TC), and low-density lipoprotein (LDL). The

distribution of baseline data of each group is shown in Section

Results of clinical feature selection of the results. Because of the

first onset, relevant characteristics such as “stroke history” were not

included in this article.

The image data were obtained from cranial MR images, and a

Philips Achieve 1.5T scanner was used to obtain these data. The

axial DWI sequence was acquired from all patients. To obtain DW

images, the following parameters were used: the echo time was

101ms, the repetition time was 3,211ms, the number of excitations

was 1, the slice thickness was 5mm, the slice spacing was 1mm, the

acquisition matrix was 230× 230, and the field of vision was 23 cm
∗ 23 cm.

Each patient’s first MR image was collected after admission.

Two attending physicians independently segmented the regions

of interest (ROIs) from the lesions, and ITK-SNAP 3.6.0 software

was used for segmentation to obtain the 3D structural data

of the lesions. The radiomics features of each annotated lesion

were then obtained by using a radiomics analysis tool (the

Pyradiomics package). The 2D mask labeling process for each

patient is shown in Figure 2. The radiomics features included

shape features (14 features), first-order statistics (162 features),

gray-level dependence matrix features (GLDM features, 126

features), gray-level cooccurrence matrix features (GLCM features,

216 features), gray-level run length matrix features (GLRLM

features, 144 features), gray-level size zonematrix features (GLSZM

features, 144 features), and neighboring gray-tone difference

matrix features (NGTDM features, 45 features). Finally, 17 clinical

features and 851 radiomics features were initially included in

this study.

Data processing and feature fusion

After feature extraction, data preprocessing was performed,

including data filling, data noise reduction, data standardization,

data screening, data splicing, data balancing, and other steps, as

shown in Figure 3.

First, in data imputation, we usedmultiple imputationmethods

(35). Multiple imputation is a commonly used method to deal with

missing values in data. Its basic principle is to generate multiple

complete data sets through simulation, and each data set uses

different methods to impute missing values. In this study, we use

a multiple imputation method based on the multiple Monte Carlo

Method to imputation the samples to reduce the impact of missing

data on model construction. The multiple Monte Carlo method is a

statistical method that uses multiple independent random samples

to estimate the expected value. Suppose the expected value E[f (x)]
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FIGURE 1

Whole pipeline of the proposed method. The data source and feature extraction, data processing and feature fusion, model construction, model

optimization, and other processes are included. Each step is represented by a dotted box.

of some function f (x), where x ∈ Rd is a vector of dimension d. The

formula for the multiple Monte Carlo method is as follows:

f̄n =
1

N

N
∑

i=1

f (xn, i) (1)

f̄m =
1

M

M
∑

i=1

fn(j) (2)

where f̄n is the sample mean value of f (x) obtained from the n-

th sampling, xn, i is the i-th sample point obtained from the n-th

sampling, and N is the number of samples for each sampling; f̄m
is the multiple Monte Carlo estimator obtained by averaging f̄n
obtained from n samples for m times, where n(j) is the sample set

used for the j-th sample.

Second, for high-dimensional imaging features, a large number

of useless noise features will affect the screening of meaningful

features and increase the difficulty of model construction (36). In

data denoising, we chose the variance selection filtering method to

perform variance-based feature screening (37) and then filtered out

features with small differences. The variance of each feature was

calculated, and features with variances greater than the threshold

were selected. If the variance is small, it means that there is a small

difference between these samples with respect to the feature, and

this feature is not conducive to sample discrimination. We filtered

features with zero or less variance to preferentially exclude features

with lower contributions.

Third, the data were standardized by distinguishing clinical

features from radiologic features. (A) Clinical characteristics were

assigned to a range between 0 and 1 by one-hot encoding because

one-hot encoding can extend the values of discrete features to

a Euclidean geometry space and thus fuse standardized imaging

features (38, 39). The mathematical formula for one-hot encoding

is as follows. Let the value of a discrete feature x with n different

values be {x1, x2, ..., xn}; then, the one-hot encoding of this feature

is an n-dimensional vector v, where if and only if the value of x is

xi, v[i] = 1; if x is not xi, v[i] = 0. (B) For radiomics features, we

selected a normalization method for feature processing, aiming to

eliminate dimensional differences between different features, avoid

possible deviation in the model training, improve the convenience

of data processing, and speed up the model convergence (40, 41).

Normalization helps to ensure dimensional unity between different

features, thus improving the robustness and generalizability of

the model (42, 43). Normalization refers to scaling the data so

that it falls within a specific interval. Standardization (Sz) is the
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FIGURE 2

2D mask labeling process for patients.

transformation of data into a normal distribution with a mean

of 0 and a standard deviation of 1 (44). Suppose that there are

N samples, each sample has n features, and the value of the i-th

feature of all N samples is xi1, xi2, ..., xin. Then, the standardized

mathematical formula of the feature is as follows:

Sz =
xij − µi

σi
(3)

where µi denotes the mean of the i-th feature over all N

samples and σi denotes the standard deviation of the i-th feature

over all N samples. For the i-th feature in each sample, a

new value can be obtained from this formula, representing the

relative size and distribution of the feature across the entire

data set.

Fourth, we use the embedded method to filter and reduce the

dimensions of the data. The LightGBM and XGBoost algorithms

are selected to perform feature importance scoring and selection,

the top 50 most important features in terms of weight are screened

out, and the features appearing in both methods and the top 10

features in terms of weight in each method are sorted out. (A)

LightGBM is a gradient-boosting framework based on a decision

tree (DT). It uses a node segmentation strategy based on leaves,

seeks the leaf with the largest gain among all the current leaves, and

finally generates a boosted tree (45, 46). The LightGBM algorithm

is based on the selection of partition points based on the histogram

algorithm and reduces the number of samples and features required

in the training and learning processes through two methods,

namely, gradient-based one-side sampling (GOSS) and exclusive

feature bundling (EFB), tomaintain high learning performance and

reduce the resource occupation in terms of time and space in the

training process (47, 48). Let Xs be the input space, s be the feature

dimension, and Y be the output space. The given training dataset

is {(x1, y1), (x2, y2), ..., (xn, yn)}, where Exi = (Ex
(1)
i , Ex

(2)
i , ..., Ex

(s)
i ), i =

1, 2, ..., n represents the input instance and {g1, g2, ..., gn} represents

the negative gradient direction of the loss function relative to the

model output at each enhancement iteration. Let n represent the

number of samples, and let O be the training set of the DT on a

node. Then, the information gain Vj|o (d) (49) of feature j at node d

can be defined as

Vj|o (d) =
1

n0
(
(
∑

xi∈o : xij≤dgi)
2

n
j

l|o (d)
+

(
∑

xi∈o : xij>dgi)
2

n
j
r|o (d)

) (4)

where n0 =
∑

I(xi ∈ o), n
j
l|o =

∑

I[xi ∈ o] : xij ≤ d],

and n
j
r|o =

∑

I[xi ∈ o : xij > d]. (B) The XGBoost algorithm

can generate a second-order Taylor expansion of the utilized
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FIGURE 3

Feature fusion process.

FIGURE 4

SMOTEENN balancing algorithm.

loss function and obtain the optimal solution for the regular

term outside the loss function (50, 51). The larger the weight

of a feature and the more times it is selected by the boosted

tree, the more important the feature is considered to be (52,

53). Suppose that the model has t DTs, n represents the total

number of samples, ft represents the t-th regression tree, F

represents the collective space of all DTs, and ŷti represents the

total predicted value for the i-th sample after adding the outputs

of the t DTs. Then, the predicted value of XGBoost (54) can be

expressed as

ŷ(t)i =

t
∑

k=1

fk(xi) = ŷ(t−1)

i + ft(xi), fk ∈ F, i ∈ n (5)

Its loss function is

L(t) =

n
∑

i=1

l(yi, ŷ
(t)

i )+

t
∑

k=1

�(fk) (6)

�(fk) = λT +
1

2
λ‖w‖2 (7)

where l represents the error between the predicted value

and the actual value, T and w represent the number and

weight of the leaf nodes, respectively, and γ and λ represent

regularization coefficients. The k-th tree is represented by k, and the

complexity of k trees is represented by
t

∑

k=1

�(fk). (C) The Pearson
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FIGURE 5

Construction process of the deep integration learning method.

FIGURE 6

Schematic diagram of each base learner. (A) DNN, (B) LSTM-RNN, and (C) DBN.

correlation coefficient can measure the strength and direction

of the linear relationship between two variables, and different

correlation coefficients can be selected according to different data

characteristics (55). If two features have a high correlation, this

indicates that the information contained in the two features is

highly similar, and too much similar information can reduce the

performance of the chosen algorithm (56). Hence, only one feature

must be reserved for features whose correlations are higher than
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a certain threshold. To avoid the negative impact of collinearity

features on outcome variables, we randomly retained only one of

many features with Pearson correlation coefficients greater than

the threshold (0.9 in our study). (D) In this study, the SHAP

model interpreter tool is used to explain the operation mechanism

of the model. SHAP can construct a weighted explanatory model

to calculate the contribution of each feature to the results (57,

58). In the interpretation of radiomics and clinical features using

LightGBM and XGBoost, respectively, each sample can generate

a predictive value, and the SHAP value is expressed as f (x),

which can represent the numerical value assigned to each feature

in a sample. Red represents features that act positively, and blue

represents features that act negatively (5). After the screening

of clinical and radiomics features, the combined features were

constructed by stitching.

Fifth, there are three common approaches to dealing with class

imbalance: undersampling, oversampling, and hybrid sampling

techniques. Undersampling techniques include the random

undersampling technique, and oversampling techniques include

the random oversampling, SMOTE, adaptive synthetic (ADASYN),

and borderline-SMOTE techniques (59). SMOTEENN is a method

that combines oversampling and undersampling to handle both

sample imbalance and noisy data. The SMOTE method increases

the number of minority class samples by random oversampling,

while the ENN method reduces the number of majority class

samples by removing majority class samples. The combination

of these two methods can better balance the class distribution

in the dataset, thus improving the performance of the classifier

(60, 61). The balancing algorithm can balance the number of

samples for each classification, thus effectively improving the

prediction performance of the model with unbalanced datasets

(62, 63). Figure 4 shows the process of the SMOTEENN balancing

algorithm, which not only synthesizes new samples for minority

classes but also prunes duplicate samples to improve the difference

between groups.

Model construction and optimization

The content in this section can be divided into the selection

of the base learner, model construction, model optimization,

and other steps. The construction process combines the ideas of

ensemble learning and deep learning to construct an ensemble of

deep learning (EDL)model with amultilayer cascade structure. The

optimized ensemble of deep learning (OEDL) model is established

by adding an optimization algorithm. The model is built as shown

in Figure 5.

First, the selection of base learners is needed. DNN, LSTM-

RNN andDBN are used as base learners, and the schematic diagram

of each base learner is shown in Figure 6. (A) A deep neural

network (DNN) refers to a neural network with more than one

hidden layer [64]. The input layer and hidden layer, hidden layer

and hidden layer, and hidden layer and output layer all have linear

relationships, which can be expressed as

yi = σ (
∑

wn
i x

n
i + bi) (8)

where yi is the next neuron, xi is a feature or neuron connected to

yi, σ is an activation function in a layer, n is the number of neurons

or features connected to the neuron, wi is a weight coefficient

between a feature and a neuron or between neurons, and b is

a constant. (B) Long short-term memory (LSTM) is proposed to

solve the problem of vanishing or exploding gradients in recurrent

neural networks (64, 65). The unit structure records the patient

characteristic information of the current state by introducing a new

internal state and carries out internal information transmission.

First, an input gate it , a forget gate ft , and an output gate ot
are calculated by using the patient characteristic information xt
of the current state and the hidden state ht−1 of the last time.

Then, the input gate it and the forget gate ft are used to control

the retained historical characteristic information and the current

state characteristic information of the patient, respectively, to

obtain a new Ct . Finally, the input gate ot is used to transfer

the patient characteristic information of the internal state to the

hidden state ht . To achieve the classification effect, an RNN fully

connected layer is added behind the LSTM unit to construct an

LSTM-RNN to obtain a multi-classification result. (C) Deep belief

networks (DBNs) are probabilistic generative models consisting

of multiple layers of restricted Boltzmann machines. The main

structure combines several layers of RBM and one layer of a BP

network and outputs the results by the BP network. The specific

steps are as follows. First, the features are trained in each layer

of the RBM network separately in an unsupervised manner to

ensure that the feature information is reused and retained. Then,

the trained features enter the BP network to train the classifier

through supervision. Finally, a backpropagation network fine-tunes

the training error information direction of each RBM layer so that

optimization can be achieved throughout the whole network. The

parameters of the DBN are given by w (connection weights), b

(visible unit bias), and c (hidden unit bias). The probability of input

vector v and output vector h is given by

p(v, h) =
e−E(v,h)

Z
(9)

where−E(v, h) is the energy function

E(v, h) = −bTv− cTh− hTWv (10)

Z is the normalizing factor obtained by summing the

numerator over all possible statuses of h and v:

Z =
∑

v,h

−E(v, h) (11)

Second, after considering bagging, boosting, stacking, and

other methods (see the section Results), we chose the stacking

algorithm as the ensemble method in this study, and the model

constructed by it is named as the ensemble of deep learning (EDL).

Stacking is a method that combines the outputs of multiple base

learners according to a certain combination strategy (66, 67). We

chose classical and representative deep learning models such as

DNN, LSTM-RNN, and DBN as the base learner (68–70) and
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1: ----------------Step 1: Input

Dataset D ={( x1(1),x2(1),...,y(1)), (x1(2),x2(2),...,y(2)), (x1(n),x2(n),...,y(n))};

Primary learning algorithm :

PLA ={DNN,LSTM-RNN,DBN};

Secondary learning algorithm: RandomForest(RF)

3: ---------------Step 2: Process

1: split D: Train_data,Testing_data

2: for t = 1, 2,..., T do

3: h(t) = Stratified Fold ( Train_data);

4: end for

5: New_Train_data =Ø;

6: for i in PLA do

7: for t = 1, 2,..., T do

8: Zit =h(t)( PLA(i)
);

9: end for

10: New_Train_ data = Ø ∪ ((Zi1, Zi1, ..., Zi1), yi);

11: end for

12: New_Test_data = Ø;

13: for i in PLA do

14: for t = 1, 2,..., T do

15: Zit= h(t)( PLA(i)
);

16: end for

17: New_Test_data = Ø∪ ((Zi1,Zi1, ...,Zi1), yi);

18: end for

19: Training_RF = RF( New_Train_data)

3: --------------Step 3: Output

Testing_RF= Training_RF

(h(1)(New_Test_ dat a(1)), h(2)(New_Test_ dat a(1)), ...,

h(T)(New_Test_ dat a(1)))

Algorithm 1. Stacking pseudocode.

random forest (RF) as the meta-learner. After the training of

each base learner was completed, we used the stacking algorithm

for analysis; that is, the outputs of multiple base learners were

taken as a new dataset that was incorporated into the meta-

learner (random forest was selected in this study) for learning and

prediction. We integrated the results of the three neural networks

and formed probabilities for the three classifications to obtain the

final prediction for each sample. The deep learning system was

iterated 100 times, and finally, the optimal model was selected by

using a greedy strategy. The pseudocode for the stacking algorithm

is shown in Algorithm 1.

The innovations of the OEDL method proposed in this study

can be reflected in the following aspects. (A) When splitting the

training set and the test set, the random stratification method is

improved to the label percentage stratification approach to achieve

the effect of label balancing. (B) During data selection, we selected

clinical features and radiomics features in turn, analyzed clinical

features and high-dimensional, abstract radiomics information as

combined features, and finally built a combined feature model. (C)

We chose the method of deep integration and comprehensively

utilized the advantages of each deep learning model to improve

its effectiveness and generalization. (D) We innovatively used an

improved metaheuristic algorithm (see Section Model training for

details) for optimization purposes to ensure the excellence of the

classification results.

Third, we performed model optimization based on a newly

proposed optimization algorithm. The above EDL proposal

combines deep learning and ensemble learning ideas, but there

is still the problem of the slow hyperparameter search. To solve

this problem, we considered introducing ametaheuristic algorithm.

Based on the stacking idea and the framework of particle swarm

optimization, we proposed the big bang optimization algorithm

(BBOA), which aims to solve the parameter optimization problem

in deep networks and applied it to the OEDL method. During the

analysis, the algorithm draws on the particle swarm optimization

algorithm and the black hole theory of the Big Bang (71), as shown

in Figure 7. In the process of constructing the algorithm, we used

a sinusoidal chaotic map, an adaptive inertia weight, a greedy

strategy, and other optimization methods. The symbol descriptions

of the algorithm are shown in Table 1.

(A) The galaxy’s initial position can be expressed as

xj
H = Ux +mij

H ∗ (Dx − Ux) (12)

xj
L = Ux +mij

L ∗ (Dx − Ux) (13)

mij
H = a(mi−1j

H)
2
sin(πmi−1j

H) (14)

mij
L = a(mi−1j

L)
2
sin(πmi−1j

L) (15)

In the study, Formula (14) and Formula (15) add the sinusoidal

chaotic map, which acts as an initial randomization to make

the distribution range of the star group more dispersed (72). A

sinusoidal chaotic map is a non-linear map that can produce

chaotic phenomena (73), where a is any constant, and the initial

values mij
H and mij

L can be any number, but for the depth rule

suitable for the deep learning neural network, the initial value is a

random integer between 0 and 100, and the chaotic map is rounded

to indicate the number of neurons in the deep learning.

(B) The rates of expansion of the galaxies can be expressed as

Ei
H = wwE1i

t−1 + ef1 · r(yoi
t − Hi

t)+ ef2 · r(yoi
t − Hi

t) (16)

Ei
L = wwE2i

t−1 + ef1 · r(yoi
t − Li

t)+ ef2 · r(yoi
t − Li

t) (17)

ww = ws - (ws - we)
t

T
(18)

In the study, Formula (18) is the added adaptive inertia weight,

and its function is to regulate the initial expansion speed. Adaptive

inertia weights are a variant of inertia weights. Each galaxy should

constantly consider its historical and global best position when

updating its expansion speed. The adaptive inertia weight can

dynamically adjust the value of the inertia weight according to the

historical state of the galaxy so that the algorithm converges to the
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FIGURE 7

BBOA schematic diagram. To solve the parameter optimization problem faced by deep networks, we used the Big Bang optimization algorithm

(BBOA). (A) The concept of a cosmic explosion; (B) the BBOA pipeline (the PUOA algorithm procedure).

optimal solution faster. The function of the adaptive inertia weight

is to regulate the initial expansion speed.

(C) The transformation of the production expansion center of

galaxies affected by higher expansion velocities is expressed as

x(H)i = x(H)i + Ei
H (19)

x(L)i = x(L)i + Ei
L (20)

(D) The optimal solution is the velocity of the largest star in the

universe, which can be expressed as

Yo =

{

yo, if yo > Yo;

Yo, else.
(21)

In this study, to update the optimal solution, the greedy strategy

is used, which can be expressed as

yo = max(yo
t) (22)

BBOA was used in OEDL to optimize the number of

hidden layers and the number of neurons in each layer of

the DNN, LSTM-RNN, and DBN. The stacking integration

algorithm was used to integrate the three models after each model

was optimized.

Model training

This research was carried out on a Linux workstation equipped

with a GPU. The software platform was based on Python

3.7. The proposed algorithms were implemented based on the

TensorFlow 2.8 framework. The GPU was used to accelerate

the training process. Among the study population, 70% of

the data were randomly selected for the training set, and the

remaining 30% were used as the test set. Statistical analysis was

performed using Python 3.7.0, SPSS 26.0 (SPSS Inc., Chicago,

IL, USA).

For various algorithm models, the algorithm was implemented

using data split based on a ratio of 7:3 for training and testing.

The model was fitted with the training set, the hyperparameters

except for the number of hidden layers and the number of neurons

were determined by the grid search method, and the best parameter

model was selected after 50% cross-validation. Finally, the model

was tested with the test set to evaluate the generalizability of

each model. The hyperparameters determined by the grid search

method in this study were based on a learning rate of 10-4, a

batch size of 20, a momentum term of 0.9, and 1,000 epochs. In

addition, the imbalanced distribution of the sample size in each

category will lead to the prediction bias of the model. To eliminate

this effect, we used the SMOTEENN algorithm to enhance the

fused features.

In this study, the implementation of the deep learning

network was based on the Keras package in TensorFlow 2.8.

The Adam optimizer was used to optimize the gradient of

the deep learning model, and the cross-entropy loss function

was combined with the softmax activation function to obtain

better classification results. The neural network of the three base

learners was initially set as a double layer, and the number

of neurons in each layer was 10. The BBOA optimizes the

numbers of layers and neurons of each base learner to fix

the model.

The evaluation indicators in the classification model were

obtained based on a confusion matrix, and they include the
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TABLE 1 Algorithm process symbol description.

Notation Meaning

xj
H Initial position of the j-th galaxy (horizontal axis)

xj
L Initial position of the j-th galaxy (vertical axis)

mi j
H Initial position of the i-th star in the j-th galaxy (horizontal axis)

mi j
L Initial position (vertical axis) of the i-th star in the j-th galaxy

Ux Upper boundary of the galaxy (horizontal axis)

Dx Lower boundary of the galaxy (vertical axis)

ef1 The speed of the fastest star in the galaxy

ef2 The speed of the fastest star in the universe

r Random number between 0 and 1

Ej
H Galactic expansion speed (horizontal axis)

Ej
L Expansion speed of the galaxies (vertical axis)

Hi
t Time position of the largest star t in the galaxy (horizontal axis)

Li
t Time position of the largest star t in the galaxy (vertical axis)

yoi
t The speed of the fastest star in the galaxy

Yoi
t The speed of the fastest star in the universe

ws The initial inertia of stars in the galaxies

we The final inertia of stars in the galaxies

t Evolution time (number of iterations)

T Total evolution time (iterations)

ww Adaptive inertia weight

Yo Velocity of the largest star in the universe (optimal solution)

yo The velocity of the largest star in the galaxy

following four basic indicators: “true positive” (TP) means that the

prediction is true and the actual value is also true; “true negative”

(TN) means that the prediction is false and the actual value is also

false; “false positive” (FP) means that the prediction is true but the

actual value is false; “false negative” (FN) means that the prediction

is false but the actual value is true. Among multiple classes, each

class i has values TPi, TNi, FPi, and FNi. TiPi represents that the

true class i is correctly predicted as class i, and FjPi represents that

the true class j is incorrectly predicted to be class i.

In this study, the evaluation indices include Macro-AUC,

accuracy (ACC), macrosensitivity (Macro-R), macrospecificity

(Macro-P), and Macro-F1 score (Macro-F1) (74). The ROC curve

for each classification was plotted with the true positive rate of each

classification as the vertical axis and the false positive rate of each

classification as the horizontal axis. The area under the ROC curve

of each category is the AUC value of each category, andMacro-AUC

is the sum of all types of areas and the average. The value range is [0

∼ 1]. The greater the value is, the more accurate the classification.

The indicators can be expressed as follows:

ACC =

n=3
∑

i=1
TPi

n=3
∑

i=1
(TPi + FPi)

(23)

macro_PRE =
1

n

n=3
∑

i=1

(
TPi

TPi + FPi
) (24)

macro_SEN =
1

n

n=3
∑

i=1

(
TPi

TPi + FNi
) (25)

macro_F1score =
2 ·macro_PRE ·macro_SEN

macro_PRE + macro_SEN
(26)

Results

The results include the results of clinical feature selection,

imaging feature selection, comparison of the prediction

performance of each method, comparison of the prediction

performance of each feature, comparison of the prediction

performance of each balanced method, and comparison with

previous studies.

Results of clinical feature selection

In the clinical feature selection stage, 17 features were included

in the model, and all of these features passed the correlation test

(as shown in Figure 8). The clinical characteristics according to the

discharge NIHSS classification are presented in Table 2.

Results of radiomics feature selection

In radiomics feature selection, we first selected 328 features

from 851 features using variance selection (threshold 0.3), used

the LightGBM and XGBoost algorithms to screen out 81 more

important features with the top 50 weights, and sorted out 19

features that appeared in both methods and the top 10 features

in their respective methods. After the correlation test, 19 image

features were selected. A rose plot was drawn based on the 19

features and their importance weights to the model, as shown

in Figure 9.

To visualize the importance of the selected features, we used

SHAP to illustrate the degrees to which these features influenced

the prediction results, as shown in Figure 10. The SHAP value

represents the contribution of each feature to the final prediction

and can effectively explain the model prediction for each sample.

The feature ranking (y-axis) represents the importance of the

prediction model, and the corresponding SHAP value (x-axis)

represents the degree of feature influence.

Comparison of the prediction performance
of each method

Using the joint dataset as an example, the classification results

of these methods are compared. The results show that the

OEDL constructed based on the concept of ensemble optimization
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FIGURE 8

Correlation test of characteristics. (A) Correlation test of clinical characteristics and (B) correlation test of the iconographic features.

obtained the best classification performance, and its Macro-AUC,

ACC, Macro-R, Macro-P, and Macro-F1 reached 97.89, 95.74,

94.75, 94.03, and 94.35%, respectively, as shown in Table 3.

Comparison of the prediction performance
of each feature

The classification results of EDL and OEDL were compared.

The results show that compared with that using the clinical and

radiomics features, the method using the combined data had better

classification performance, and the EDLmethod achieved aMacro-

AUC of 96.68% and an ACC of 92.55%. The OEDL method

achieved a Macro-AUC of 97.89% and an ACC of 95.74%, as shown

in Table 4. We also visualized the classification results of the OEDL

method with the three features in the form of ROC curves, as shown

in Figure 11.

Comparison of the prediction performance
of each balanced method

The classification results of the combined features and the

OEDL method were compared. Compared with the unbalanced,

oversampled, and undersampled techniques, SMOTEENN based

on a mixed sampling method achieved the best classification

performance, and its Macro-AUC, ACC, Macro-R, Macro-P,

and Macro-F1 reached 97.89, 95.74, 94.75, 94.03, and 94.35%,

respectively, as shown in Table 5.

Comparison with previous studies

To demonstrate the advanced performance of the method

proposed in this study, we reviewed relevant research in the field

of AIS classification and prediction and compared the AUC and

ACC of each study. Although the datasets, classification numbers,

and other aspects of these studies differed, the differences in the

results have some implications for the excellence of the methods.

The comparison results show that the proposed method has

significantly better classification performance in terms of AUC,

ACC, and other aspects than that of previous studies, and it

has better classification advantages. For more information, see

Table 6.

Discussion

AIS is one of the many diseases that endangers the health of

Chinese residents. It is difficult and expensive to check, and it is

difficult to evaluate the early prognosis (75). We used joint features

to train the OEDLmodel to predict the prognosis of AIS, which is of

great significance to improve the diagnosis and prevention system

of AIS and promote the optimal allocation of medical resources.

In terms of data collection and processing, we used clinical

features and radiomics features creatively to build joint features,

and we built a complete and feasible data processing operation

process. Compared with the clinical and imaging feature models,

the method using the combined data had better classification

performance, and the EDL method achieved a Macro-AUC of

96.68% and an ACC of 92.55%. The OEDL method obtained

a Macro-AUC of 97.89% and an ACC of 95.74%. Joint-feature

modeling produces better results than single-feature modeling.

The reason for the analysis is that simple clinical feature model

information is easy to collect, but prediction efficiency is limited

due to clinical feature instability; radiomics features can be used

to achieve high prediction efficiency, but the inclusion of purely

influencing omics features is limited; joint feature modeling

can incorporate more comprehensive and objective information.

Feature selection is the process of finding the feature subset that
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TABLE 2 Clinical characteristics according to the discharge NIHSS category.

Number Clinical factors Group A
(n = 106)

Group B
(n = 289)

Group C
(n = 46)

a NIHSS on admission 0 (0, 1) 2 (1, 3) 7 (5, 9)

b Position Telencephalon 53 (50.00%) 122 (42.21%) 22 (47.83%)

Diencephalon 15 (14.15%) 91 (31.49%) 15 (32.61%)

Cerebellum 23 (21.70%) 5 (1.73%) 0 (0.00%)

Brain stem 15 (14.15%) 71 (24.57%) 9 (19.57%)

c OCSP typing TACI 0 (0.00%) 2 (0.69%) 9 (19.57%)

PACI 22 (20.75%) 116 (40.14%) 26 (56.52%)

LACI 44 (41.51%) 79 (27.34%) 10 (21.74%)

POCI 40 (37.74%) 92 (31.83%) 1 (2.17%)

d Age 67.17± 11.63 66.92± 12.09 65.63± 14.82

e Sex Male 66 (62.26%) 167 (57.79%) 24 (52.17%)

Female 40 (37.74%) 122 (42.21%) 22 (47.83%)

f BMI 24.29± 3.10 24.13± 3.94 25.29± 4.15

g SBP 160.79± 14.96 162.90± 13.97 161.85± 18.70

h TC 4.48± 1.05 4.60± 1.11 4.38± 1.14

i LDL 2.61± 0.92 2.70±1.01 2.64± 1.14

j LVH Yes 61 (57.55%) 161 (55.71%) 31 (67.39%)

No 45 (42.45%) 128 (44.29%) 15 (32.61%)

k HCY Yes 10 (9.43%) 30 (10.38%) 6 (13.04%)

No 96 (90.57%) 259 (89.62%) 40 (86.96%)

l AF Yes 9 (8.49%) 21 (7.27%) 10 (21.74%)

No 97 (91.51%) 268 (92.73%) 36 (78.26%)

m Hypertension Yes 93 (87.74%) 265 (91.70%) 43 (93.48%)

No 13 (12.26%) 24 (8.30%) 3 (6.52%)

n Diabetes Yes 35 (33.02%) 124 (42.91%) 23 (50.00%)

No 71 (66.98%) 165 (57.09%) 23 (50.00%)

o CHD Yes 6 (5.66%) 17 (5.88%) 6 (13.04%)

No 100 (94.34%) 272 (94.12%) 40 (86.96%)

p Smoking Yes 32 (30.19%) 62 (21.45%) 13 (28.26%)

No 74 (69.81%) 227 (78.55%) 33 (71.74%)

q Drinking Yes 25 (23.58%) 52 (17.99%) 8 (17.39%)

No 81 (76.42%) 237 (82.01%) 38 (82.61%)

Groups A, B, and C refer to the normal group, mild group, and moderate-severe group, respectively. SBP, systolic blood pressure; TC, total cholesterol; LDL, low-density lipoprotein; LVH,

left ventricular hypertrophy; HCY, homocysteinemia; AF, atrial fibrillation; CHD, coronary heart disease; TACI, OCSP classification, total anterior circulation infarcts; PACI, partial anterior

circulation infarcts; LACI, lacunar circulation infarcts; and POCI, posterior circulation infarcts.

yields the best model performance, which is conducive to removing

redundant features and avoiding the risk of overfitting. Our data

collection and processing techniques can be actively promoted in

future radiomics research.

Traditional methods for predicting AIS prognosis are shallow

and deep machine learning methods. Their ability to represent

complex problems is limited, as is their learning ability. To design

a new OEDL and apply it to the prediction of AIS prognosis,

we creatively combined the ideas of deep learning, integrated

learning, and metaheuristic optimization. A comparison of the

prediction performance of the various methods shows that the

best classification performance was obtained by OEDL based on

ensemble optimization, with Macro-AUC, ACC, Macro-R, Macro-

P, and Macro-F1 reaching 97.89, 95.74, 94.75, 94.03, and 94.35%,

respectively. The main reasons can be analyzed as follows. (1) In

complex problems, the deep learning model can outperform the

traditional shallow learning model in terms of feature learning

ability. Deep learning multilayer networks can effectively represent
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FIGURE 9

Rose plot of feature weights. The 19 extracted features are represented by A to P, and the feature weights are shown.

the complexity of prediction results and are adept at discovering

complex relationships between a large number of input features,

resulting in high prediction performance (76). (2) When compared

to a single learner, the advantage of integrated learning is that it

ensures classifier diversity and richness, as well as better prediction

effect and stability through stacking combination (77). (3) We

developed a new parameter optimization strategy based on the

traditional metaheuristic algorithm to address the problem of

superparameter optimization in machine learning algorithms. Our

optimization algorithm can effectively avoid the problem that

traditional optimization methods have of falling into a local

optimal solution, and it can also effectively improve the model

efficiency (78).

In deep learning, the quality and quantity of data have a crucial

impact on the training effect of the model. If the training data are

imbalanced, i.e., the number of samples in some classes is too small,

then the model will be biased toward those classes with a high

proportion during the training process and will perform poorly for

those classes with a low proportion. This results in poor model

performance with test data may lead to overfitting. Therefore, we

introduced a data balancing method to ensure the balance of the

training data. The classification results of various balance methods

were compared. Compared with the unbalanced, oversampled,

and undersampled techniques, SMOTEENN based on mixed

sampling can achieve the best classification performance. The

results suggest that SMOTEENN, which combines undersampling

and oversampling, is the most suitable balancing technique for

this study.

A comparison with actual scenarios can be described as follows.

Qiu (16) used a linear SVMmethod to analyze the optimal imaging

group thrombus characteristics of IV protease recanalization with

AIS patients on noncontrast CT (NCCT) and CT angiography

and obtained (0.85 ± 0.03) ACC in the comparison of actual

data. Multiple regression and machine learning models were used

by Alaka (17) to predict the related dysfunction of AIS patients

after intravascular therapy. Using an internal dataset, the model

had an AUC of 0.65–0.72, and using an external dataset, the

model had an AUC of 0.66–0.71. Hofmeister (26) investigated

the predictive value of radiomics features extracted from clots

on the first thrombosis recanalization using SVM, with an ACC

of 0.88. Wang (24) obtained an ACC of 0.73 by using the

modified Rankin scale (mRS) to predict the prognosis of AIS.

Traditional methods for complex problems have limited expression

and learning ability, so it is necessary to design a deep integration

model with a multilevel cascade structure to improve the model’s

learning ability in complex problems (35). When compared to

that of other single and integrated methods, OEDL can achieve

the best classification performance when compared to the control

method. The proposed method outperformed previous methods

in terms of classification performance (AUC, ACC, etc.) and

classification superiority. Furthermore, to address the problem of

poor interpretability that frequently exists in deep learning (79),

we used interpretable machine learning technology to understand

the model’s applicability to clinical prediction, with the goal of

revealing the reasons behind the prediction results.

In a clinical sense, the combined feature model we developed

can serve as a reliable clinical diagnostic tool for predicting

stroke prognoses. Our modeling method is more suitable for

the clinical model application scenario; it is convenient for

radiologists to understand the differences between clinical features,
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FIGURE 10

Visual interpretation of the importance of selected features. (A) Feature density scatterplot: each column represents a sample, and each row

represents a feature; the features are sorted by their average absolute SHAP values; red represents the positive direction, and blue represents the

negative direction. (B) Feature distribution heatmap: each point represents a sample, the samples are sorted by their SHAP values, and the absolute

SHAP value of a feature represents its contribution to the model. (C) Feature decision diagram: this figure represents the accumulation of all samples

and features as well as model’s decision-making process.
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FIGURE 11

Scatter plot display of the classification results of OEDL. (A) Clinical, (B) Radiomics, and (C) Joint.

morphological features, and high-dimensional omics features, as

well as diagnostic performance differences. In addition, when

building the training set, we also built a data validation set and

performed in-model validation at a single center. This study

confirmed the validity and scientific nature of the combined data,

provided an important reference for similar subsequent studies,

and facilitated further verification through the use of more external

multi-center data. Compared with traditional radiomics analysis,

our combined feature model could extract more statistical features,

thereby providing a comprehensive stroke description. In addition,

computerized tools overcome the instability of human empirical

judgments, allowing clinicians to quickly and accurately predict

long-term outcomes.

This study still has room for improvement. First, this study

is a single-center, retrospective study with a limited sample

size, and it is expected that a multi-center study with larger

samples will be implemented in future to further verify the

generalizability of the model. Second, lesion labeling comes

from manual delineation and may be affected by the subjective

judgment of investigators. Subsequent semiautomatic or fully

automatic labeling algorithms need to be further explored to

improve the stability and consistency of feature extraction.

Third, the radiomics features constructed in this study are

based on noncontrast-enhanced MR only, requiring further

advanced MR acquisitions such as contrast-enhanced DWI

to obtain a high level of evidence for clinical application.

Fourth, more efficient image preprocessing tools (80) need to

be incorporated to improve the robustness and versatility of

the method.

Conclusion

In conclusion, using a combination of clinical features and

radiomics, we developed and validated a set of methods for the

early prediction of stroke prognoses. We combined DNN ideas

with ensemble learning to use OEDL as an effective tool for

the early and non-invasive prediction of prognosis levels, thereby

optimizing the clinical decision-making process and improving

the efficiency of clinical intervention. The ideas in this study can

provide new research directions for the effective establishment of

stroke prevention and control mechanisms.

Frontiers inNeurology 16 frontiersin.org

https://doi.org/10.3389/fneur.2023.1158555
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ye et al. 10.3389/fneur.2023.1158555

TABLE 3 Comparison of the classification e�ects of di�erent methods (%).

Type Name Macro-AUC ACC Macro-R Macro-P Macro-F1

Machine learning DT 90.53 75.53 59.62 50.37 54.41

SVM 97.69 82.45 72.56 82.71 74.11

RF 95.90 87.77 79.67 85.28 81.14

Deep learning DNN 93.13 82.96 83.26 83.02 83.12

LSTM-RNN 94.56 84.81 84.81 84.66 84.63

DBN 94.39 83.70 83.70 83.61 83.61

Deep learning+ Ensemble learning Hard-voting 95.36 87.23 86.86 87.01 86.90

Soft-voting 93.45 87.23 86.86 87.10 86.92

EDL 96.68 92.55 92.10 91.42 91.72

OEDL OEDL 97.89 95.74 94.75 94.03 94.35

EDL represents a deep ensemble learning model based on DNN, LSTM-RNN, DBN, and stacking ensemble; OEDL is an optimization algorithm based on EDL and BBOA.

These bold characters represent the predictive performance of the optimal method.

TABLE 4 Comparison of classification performance of various feature combinations (%).

Feature Model Macro-AUC ACC Macro-R Macro-P Macro-F1

Clinical EDL 97.15 88.30 87.60 86.78 86.82

Radiomics EDL 90.79 90.74 74.10 80.28 75.82

Joint EDL 96.68 92.55 92.10 91.42 91.72

Clinical OEDL 96.13 90.43 90.57 89.29 89.35

Radiomics OEDL 90.50 93.21 82.19 86.27 83.87

Joint OEDL 97.89 95.74 94.75 94.03 94.35

EDL represents a deep ensemble learning model based on DNN, LSTM-RNN, DBN, and stacking ensemble; OEDL is an optimization algorithm based on EDL and BBOA.

These bold characters represent the predictive performance of the optimal method.

TABLE 5 Comparison of the classification performance of various balancing methods (%).

Method Type Macro-AUC ACC Macro-R Macro-P Macro-F1

Original None 92.60 81.16 85.01 74.62 78.75

Random Oversample Oversampling 91.84 80.37 80.37 81.14 80.49

Random

Undersample

Oversampling 82.78 73.81 71.82 74.52 72.47

SMOTE Undersampling 90.98 85.93 86.10 85.85 85.85

ADASYN Undersampling 95.74 84.84 85.05 85.35 84.28

Borderline-SMOTE Undersampling 96.10 87.04 87.12 87.68 86.75

SMOTEENN Mixed-sampling 97.89 95.74 94.75 94.03 94.35

TABLE 6 Comparison of classification performance with previous studies.

Authors Data Methods Number of categories AUC (%) ACC (%)

Qiu (16) Radiomics SVM 2 85 -

Alaka (17) Clinical LR+Machine Learning 2 66–71 -

Hofmeister (26) Clinical+ Radiomics SVM 2 88.1 -

Wang (24) Clinical+ Radiomics LR 2 73 -

Ours Clinical+ Radiomics OEDL 3 97.89 95.74

These bold characters represent the predictive performance of the optimal method.
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