The network mechanism underlying the initial response to antiseizure medication in epilepsy has not been revealed yet. Given the central role of the thalamus in the brain network, we conducted a case-control study to investigate the association between thalamic connectivity and medication response.
We recruited 39 patients with newly diagnosed and medication-naïve epilepsy of genetic or unknown etiology, including 26 with a good response (GR group) and 13 with a poor response (PR group), and 26 matched healthy participants (control group). We measured the gray matter density (GMD) and the amplitude of low-frequency fluctuation (ALFF) of bilateral thalami. We then set each thalamus as the seed region of interest (ROI) to calculate voxel-wise functional connectivity (FC) and assessed ROI-wise effective connectivity (EC) between the thalamus and targeted regions.
We found no significant difference between groups in the GMD or ALFF of bilateral thalami. However, we observed that the FC values of several circuits connecting the left thalamus and the cortical areas, including the bilateral Rolandic operculum, the left insula, the left postcentral gyrus, the left supramarginal gyrus, and the left superior temporal gyrus, differed among groups (False Discovery Rate correction,
Our finding suggested that patients with stronger thalamocortical connectivity, potentially driven by both thalamic outflowing and inflowing information, may be more likely to respond poorly to initial antiseizure medication.