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Vulnerable carotid atherosclerotic plaque (CAP) significantly contributes to

ischemic stroke. Neovascularization within plaques is an emerging biomarker

linked to plaque vulnerability that can be detected using contrast-enhanced

ultrasound (CEUS). Computed tomography angiography (CTA) is a common

method used in clinical cerebrovascular assessments that can be employed to

evaluate the vulnerability of CAPs. Radiomics is a technique that automatically

extracts radiomic features from images. This study aimed to identify radiomic

features associated with the neovascularization of CAP and construct a prediction

model for CAP vulnerability based on radiomic features. CTA data and clinical data

of patients with CAPs who underwent CTA and CEUS between January 2018 and

December 2021 in Beijing Hospital were retrospectively collected. The data were

divided into a training cohort and a testing cohort using a 7:3 split. According to the

examination of CEUS, CAPs were dichotomized into vulnerable and stable groups.

3D Slicer software was used to delineate the region of interest in CTA images,

and the Pyradiomics package was used to extract radiomic features in Python.

Machine learning algorithms containing logistic regression (LR), support vector

machine (SVM), random forest (RF), light gradient boosting machine (LGBM),

adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-

layer perception (MLP) were used to construct the models. The confusion matrix,

receiver operating characteristic (ROC) curve, accuracy, precision, recall, and f-1

score were used to evaluate the performance of the models. A total of 74 patients

with 110CAPswere included. In all, 1,316 radiomic featureswere extracted, and 10

radiomic features were selected for machine-learning model construction. After

evaluating several models on the testing cohorts, it was discovered that model_RF

outperformed the others, achieving an AUC value of 0.93 (95% CI: 0.88–0.99).

The accuracy, precision, recall, and f-1 score of model_RF in the testing cohort

were 0.85, 0.87, 0.85, and 0.85, respectively. Radiomic features associated with the

neovascularization of CAP were obtained. Our study highlights the potential of

radiomics-based models for improving the accuracy and e�ciency of diagnosing

vulnerable CAP. In particular, the model_RF, utilizing radiomic features extracted

from CTA, provides a noninvasive and e�cient method for accurately predicting
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the vulnerability status of CAP. This model shows great potential for o�ering

clinical guidance for early detection and improving patient outcomes.

KEYWORDS

CTA radiomics, carotid atherosclerotic plaque, vulnerability, CEUS, machine learning

algorithms

Introduction

Ischemic stroke (IS) is associated with high morbidity and

mortality, resulting in a high socioeconomic burden (1, 2, 48).

Carotid atherosclerotic plaque (CAP) is closely related to the

occurrence of IS (3, 4). Vulnerable plaques are prone to rupture

and hemorrhage under the action of various hemodynamics,

leading to the occurrence of clinical symptoms, which is

an important mechanism leading to IS (5, 6). Therefore,

it is of great clinical importance to apply assessment and

early clinical intervention to prevent cerebrovascular events in

patients with vulnerable plaques. Pathological studies suggest that

neovascularization is directly related to plaque vulnerability (7),

which is also consistent with the findings from clinical studies

(8, 9).

Neovascularization could promote plaque inflammatory

response and accelerate foam cell aggregation (10, 11), producing a

larger lipid necrotic core and increased fibrinolysis, thus resulting

in a thinner fibrous cap and aggravating plaque vulnerability.

Neovascularization in plaques is considered an emerging

biomarker related to plaque vulnerability (12, 13). Contrast-

enhanced ultrasound (CEUS) could detect neovascularization

in CAPs and assess the vulnerability of CAPs (14). The

status of plaque enhancement in carotid atherosclerosis

under CEUS was associated with the vulnerability of CAPs

(15, 16).

Computed tomography angiography (CTA) is a widely used

clinical cerebrovascular examination (17). CTA has a high

resolution, and the morphology of the lumen and plaque can

be accurately judged. Both pathological and clinical studies

suggest that plaque morphology may reflect plaque vulnerability

(18–20). Therefore, it could be speculated that the lumen or

plaque morphology reflected by CTA is highly correlated with

plaque vulnerability.

However, the relationship between existing morphological

features obtained by CTA and the vulnerability status of CAPs

was not intuitive; therefore, more efforts are needed to get more

intuitive and meaningful morphological features.

“Artificial intelligence (AI) technology” is an emerging

technical science to simulate and expand human intelligence

(21, 22). As a part of AI, machine learning (ML) has been

widely used in many medical fields, especially for disease

prediction and diagnosis (23–25). Moreover, radiomics is a medical

imaging field involving the extraction and analysis of quantitative

features from medical images. Compared with traditional imaging

phenotypic features, more objective and quantitative imaging

features that are difficult to identify with the naked eye could

be obtained using radiomics techniques (26–28). The model

established by radiomic features with ML algorithms showed

great predictive performance (29, 30). Owing to the low cost of

clinical application, it could easily provide individual diagnosis

and treatment services. However, few ML diagnostic models for

predicting plaque vulnerability based on radiomic features of CTA

have been reported. This study aimed to identify the radiomic

features associated with the neovascularization of CAP and to

construct a prediction model based on CTA radiomic features,

which may guide the detection of vulnerable carotid plaque and

treatment decisions.

Materials and methods

Study population

The included patients were treated for atherosclerosis stenosis

of the carotid artery at Beijing Hospital from January 2018 to

December 2021. The inclusion criteria for this study were (1)

adult patients over 18 years old, (2) a diagnosis of CAP on

CTA and CEUS, and (3) relevant CTA and CEUS examinations

that were performed simultaneously, not exceeding 3 weeks. The

exclusion criteria included (1) cases without available clinical

records and (2) CTA images of poor quality that could not extract

radiomic features.

Clinical and imaging data

Clinical and CTA data were collected retrospectively. The

clinical information included the patient’s sex, age, smoking history,

alcohol history, and history of hypertension and diabetes mellitus.

Plaques were divided into two groups based on the status of plaque

enhancement in CEUS as follows: the vulnerable and stable plaque

groups. The contrast agent development of plaque was utilized as

an indicator to evaluate angiogenesis, and a plaque was considered

stable if no contrast agent development was observed, indicating

the absence of new blood vessels.

Conversely, a vulnerable plaque was identified if a single or

simultaneous development of contrast agent was observed at the

bottom, top, and shoulder of the plaque, indicating the presence of

new blood vessels. Carotid CTA scans were performed with a 320×

0.5-mm detector row CT scanner (AquilionONE, Canon Medical

Systems). Scanning parameters were as follows: 80 kV, 100 mAs, a

cover range of 16 cm, reconstruction with adaptive iterative dose

reduction, and a layer thickness of 0.5 mm.
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Image segmentation and feature extraction

3D Slicer software was used to delineate ROI on the obtained

CTA images. In the image segmentation process, the threshold

segmentation method was used to delineate the area with a fixed

threshold range, and then, the selected area was adjusted manually.

The included segment was the carotid artery corresponding to the

CAP. Two general radiologists with 5 and 7 years of experience

in head CTA independently completed the work using 3Dslicer

4.10.1. The segmentation was performed using 3D segmentation,

and a strictly consistent criterion was followed to modify the

segmentation and avoid calcification. The Pyradiomics package in

Python software was used to perform radiomic feature extraction,

and from all features, three types of features were mainly extracted:

(1) first-order features, mainly included features such as energy,

entropy, kurtosis, and skewness; (2) shape features, which mainly

included features such as volume, surface, sphericity, compactness,

diameter, and flatness; (3) texture features, usually based on

different matrices to extract texture features, such as Gray Level

Co-occurrence Matrix (GLCM) features, Gray Level Size Zone

Matrix (GLSZM) features, Gray Level Run LengthMatrix (GLRLM)

features, Neighboring Gray Tone Difference Matrix (NGTDM)

features, and Gray Level Dependence Matrix (GLDM) features.

Shape features were extracted from the original image, while

first-order features and texture features were extracted from both

the original image and the original image transformed by filters,

including Laplacian of Gaussian (LoG), wavelet decompositions

with all possible combinations of high-(H) or low-(L) pass filters in

each of the three dimensions (HHH, HHL, HLH, LHH, LLL, LLH,

LHL, HLL), and exponential and gradient filters.

Radiomic feature selection

The intraclass correlation coefficient (ICC) was calculated on

a subset of 50 images to evaluate the consistency and reliability

of the radiomic features obtained from the segmented images,

and features with an ICC of >0.9 were selected for further study.

The independent samples t-test was used to identify significantly

different variables between the vulnerable and stable plaque groups.

Features with a P < 0.05 were considered statistically significant.

Radiomic features that met the requirements for being different

between groups were considered. The basic radiomic features of

vulnerable plaques were identified as the most highly expressed

radiomic features in the vulnerable plaque group. Furthermore, the

radiomic features of group differences were selected for subsequent

model construction.

Predictive model construction and
evaluation

Machine learning algorithms were used for model building,

which included logistic regression (LR), the support vectormachine

(SVM), the random forest (RF), the light gradient boostingmachine

(LGBM), adaptive boosting (AdaBoost), extreme gradient boosting

(XGBoost), and multi-layer perception (MLP) based on the ML

frameworks Scikit-learn (31) and XGBoost in Python (32). The

data were divided into training and testing cohorts at a ratio of

7:3. A prediction model was constructed based on the radiomic

features related to CAP vulnerability. Model fitting was performed

with the training cohort data to construct a plaque vulnerability

prediction model. Each of the seven models was constructed using

training cohort data. Confusion matrices were constructed for the

training and testing cohorts of each model. The corresponding

receiver operating characteristic (ROC) curve was generated, and

the predictive performance of the models was evaluated by the

area under the curve (AUC). The t-distribution method was used

to calculate the 95% confidence interval (CI) of the AUC value.

The accuracy, precision, recall, and f-1 score evaluation metrics

were calculated to evaluate the model’s effectiveness. In addition, a

predictive model based on the RF algorithm was built using clinical

information from the patients included in the study. The model

with the best performance was selected for the plaque vulnerability

prediction model. The technical roadmap is shown in Figure 1.

Statistical analysis

Statistical analyses were performed using R software. The ROC

curves were generated to assess the performance of the radiomics

model in the training and testing cohorts. The accuracy, precision,

recall, and f-1 score were used to measure the comprehensive level

of the model. The significance level was set at a p-value of = 0.05

for the basic statistical analyses.

Results

Clinical features

A total of 74 patients (mean age, 66.9 ± 8.82 years; 85.1%

men) with 110 CAPs were included. A flowchart was drawn to

describe the patient inclusion process (Figure 2). The baseline

characteristics of the patients are shown in Table 1. Out of a total

of 74 patients, 30 were identified during routine physical check-

ups, while the remaining 44 were detected during post-stroke

examinations. Patients with stroke accounted for 59.5% of the

total number of patients. Among the stroke patients, a total of 64

plaques were discovered, out of which 40 were linked to ipsilateral

strokes. Additionally, the median value for enrolled patients with

carotid artery stenosis was 64%. After being identified through

CEUS examination, it was found that there were 50 stable plaques

and 60 vulnerable plaques among a total of 110 plaques in the

examined area.

Selected stable features

In total, 1,316 radiomic features were extracted, which

included 252 first-order features, 14 shape features, and 1,050

texture features. Texture features consisted of 336 GLCM features,

224 GLSZM features, 224 GLRLM features, 70 NGTDM features,

and 196 GLDM features. After performing ICC testing, a total

of 990 radiomic features that met the required conditions
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FIGURE 1

The technical roadmap of the research. The study consisted of four stages: population inclusion and data collection, radiomic features extraction

and selection, predictive model construction, and predictive model evaluation.

FIGURE 2

The flowchart of the patient inclusion process. A total of 74 patients with 110 CAPs were included after analyzing patient imaging data and medical

records according to the inclusion and exclusion criteria. CAP, carotid atherosclerotic plaque.

were selected for further analysis (Supplementary Figure S1).

Subsequently, 10 radiomic features were identified as significantly

different between the vulnerable and stable plaque groups using

the t-test. These features were chosen for further model-

building processes based on their potential to effectively

differentiate between the various types of plaques being studied.

The selected features included “square_glszm_ZoneEntropy,

square_glszm_SizeZoneNonUniformityNormalized, wavelet-

LLL_glcm_MaximumProbability, wavelet-LLL_glcm_Joint

Energy, original_glcm_JointEnergy, wavelet- HHL_glszm_Low

GrayLevelZoneEmphasis, wavelet-HHH_glszm_GrayLevelNon

UniformityNormalized, wavelet- LLL_firstorder_Uniformity,
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TABLE 1 Study population characteristics.

Characteristics Patients (N = 74)

Age, mean± SD, yr 66.9± 8.82

Men, n (%) 63(85.1%)

Smoking history, n (%) 41(55.4%)

Alcohol history, n (%) 28(37.8%)

Hypertension, n (%) 52(70.3%)

Diabetes mellitus, n (%) 29(39.2%)

TABLE 2 AUC of ML models.

Model AUC (95%CI)

Model_LR 0.731 (0.651–0.811)

Model_SVM 0.717 (0.713–0.721)

Model_RF 0.933 (0.880–0.985)

Model_LGBM 0.635 (0.581–0.688)

Model_AdaBoost 0.644 (0.471–0.817)

Model_XGBoost 0.727 (0.604–0.849)

Model_MLP 0.729 (0.637–0.820)

95% CIs of AUC value of model_LR, model_SVM, model_RF model_LGBM,

model_AdaBoost, model_XGBoost and model_MLP in the testing cohort. AUC, area

under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector

machine; RF, random forest; LGBM, light gradient boosting machine; AdaBoost, adaptive

boosting; XGBoost, extreme gradient boosting; MLP, multi-layer perception.

wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis, and

wavelet- LLH_firstorder_Kurtosis.” Based on these differences,

high-expressing radiomic features in vulnerable plaques were

selected as the basic radiomic features of vulnerable plaques,

including “square_glszm_SizeZoneNonUniformityNormalized,

wavelet-LLL_glcm_MaximumProbability, wavelet-

LLL_glcm_JointEnergy, original_glcm_JointEnergy,

wavelet-HHL_glszm_LowGrayLevelZoneEmphasis, wavelet-

HHH_glszm_GrayLevelNonUniformityNormalized,

and wavelet-LLL_firstorder_Uniformity.”

Predictive model construction and
evaluation

A total of seven ML algorithms were applied to the

dataset, resulting in the construction of seven ML models.

These models were named as follows: model_LR, model_SVM,

model_RF, model_LGBM, model_AdaBoost, model_XGBoost, and

model_MLP. The AUC values of the models are shown in

Table 2. The confusion matrices of the training and testing cohorts

were constructed. The AUC values of model_LR, model_SVM,

model_RF, model_LGBM, model_AdaBoost, model_XGBoost, and

model_MLP in training cohorts were 0.74, 0.74, 1.00, 0.88,

1.00, 1.00, and 0.79, respectively. Moreover, the AUC values

of the testing cohorts were 0.73, 0.72, 0.93, 0.63, 0.64, 0.73,

and 0.73. The ROC curves of all models in the testing cohorts

are shown in Figure 3. The accuracy, precision, recall, and

f-1 score of models are shown in Table 3. After evaluating

various combinations of hyperparameters, it was observed that

model_RFwith n_estimators=35 andmax_depth=20 as their main

parameters exhibited the most superior performance compared to

other configurations. In addition, a model named model_clinical

was built using clinical information based on the RF algorithm.

The AUC values for the training and testing cohorts were recorded

as 0.90 and 0.61, respectively, and the model’s accuracy, precision,

recall, and f-1 score were measured as 0.55, 0.54, 0.55, and 0.54,

respectively. Model_RF outperformed model_clinical significantly,

indicating that it is more effective and efficient in accomplishing the

task (Supplementary Figure S2).

Discussion

Carotid atherosclerosis is a common mechanism of IS (33,

34). The vulnerability of CAP is closely related to the occurrence

of stroke (35, 36). The rupture of vulnerable CAPs causes

thromboembolism, which could lead to IS. Therefore, early

identification of vulnerable CAPs is of great significance for

improving the prognosis of patients.

CTA has been widely used in the assessment of CAPs based on

its non-invasiveness and wide availability of accurate information.

Previous studies have shown that the shape of CAPs is closely

related to plaque vulnerability. The carotid artery lumen could

be detected through CTA examination, and then, the shape

characteristics of the plaque in the lumen could be obtained to

predict the vulnerability of the plaque. While previous studies

mostly focused on traditional plaque features, such as plaque

volume, neovascularization, and inflammatory features, which

have been extensively identified as biomarkers of carotid plaque

vulnerability (12, 37), existing morphological features are not

accurate enough. Moreover, radiomics, capable of high-throughput

extraction of radiomic features, holds great potential for medical

imaging to provide more information for clinical decision-making

in a non-invasive manner. Currently, studies have demonstrated

promising results in predicting the clinical symptoms of carotid

artery atherosclerosis patients by utilizing radiomic features and

machine-learning algorithms that are based on patient images.

As noted in previous studies, the imaging modalities used for

diagnosis primarily consist of magnetic resonance imaging (MRI),

ultrasound, and computed tomography angiography (CTA) (38–

41). Moreover, recent research has indicated that CT texture

analysis (CTTA) may play an important role in identifying

vulnerable plaques in patients with carotid artery atherosclerosis.

The study indicates that CTTA has the potential to become a novel

risk stratification tool for carotid artery atherosclerosis patients,

helping to identify patients with a higher risk of stroke and TIA

(42). However, the aforementioned studies were mainly grouped

based on the symptoms of patients, and there were still few

radiomicsmodels to predict the vulnerability of CAPs. In this study,

the radiomics approach was used to extract radiomic features from

conventional CTA images, and related machine-learning models

were constructed to predict the vulnerability of CAPs. Just as

mentioned, the morphology of CAPs might reflect vulnerability.

Therefore, the blood vessels where the CAPs are located were

selected as the ROI to predict the vulnerability of CAPs.
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FIGURE 3

The ROC curves of seven ML models in the training and testing cohorts. (A) ROC curves of model_LR, model_SVM, model_RF, model_LGBM,

model_AdaBoost, model_ XGBoost and model_MLP in the training cohort. (B) ROC curves of model_LR model_ SVM, model_RF, model_LGBM,

model_AdaBoost, model_ XGBoost, and model_ MLP in the testing cohort. ROC, receiver operating characteristic; ML, machine learning; LR, logistic

regression; SVM, support vector machine; RF, random forest; LGBM, light gradient boosting machine; AdaBoost, adaptive boosting; XGBoost,

extreme gradient boosting; MLP, multi-layer perception.

TABLE 3 Performance of ML models.

Model Accuracy Precision Recall F1-
score

Model_LR 0.61 0.61 0.61 0.61

Model_SVM 0.64 0.64 0.64 0.64

Model_RF 0.85 0.87 0.85 0.85

Model_LGBM 0.64 0.66 0.64 0.64

Model_AdaBoost 0.67 0.66 0.67 0.66

Model_XGBoost 0.70 0.70 0.70 0.70

Model_MLP 0.58 0.58 0.58 0.58

The accuracy, precision, recall, and f1-score of model_LR, model_SVM, model_RF,

model_LGBM, model_AdaBoost, model_XGBoost and model_MLP in the testing cohort.

In this retrospective study, various features

were extracted using PyRadiomics. The top three

radiomic features were square_glszm_ZoneEntropy,

square_glszm_SizeZoneNonUniformityNormalized, and wavelet-

LLL_glcm_MaximumProbability. Square_glszm_ZoneEntropy

refers to the ZoneEntropy of glszm obtained by applying

the square filter. A lower value of this feature may

indicate the formation of new blood vessels within the

plaque, which could suggest increased plaque vulnerability.

Square_glszm_SizeZoneNonUniformityNormalized refers to the

SizeZoneNonUniformityNormalized (SZNN) of glszm obtained

by applying the square filter.

A higher value of this feature indicates greater homogeneity

among zone size volumes in the image, which suggests plaque

vulnerability. Wavelet-LLL_glcm_MaximumProbability refers

to the maximum probability of glcm obtained by applying

the wavelet-LLL filter. An increase in this feature’s value

indicates the presence of neovascularization within the plaque,

which is another indicator of plaque vulnerability. Moreover,

wavelet-LLL_glcm_MaximumProbability has been reported to

distinguish sinonasal primary lymphomas from squamous cell

carcinomas (43).

ML has made great progress in disease prediction with the

improvement of computing power and the update of algorithms

(44–46). Various machine learning models, such as LR, RF, SVM,

LGBM, Adaboost, XGBoost, and MLP, have been applied in

different scenarios, each with its own strengths. For instance,

LR, RF, Adaboost, XGBoost, and MLP are capable of performing

classification tasks, while LGBM and SVM can be utilized for

regression tasks. Additionally, large-scale datasets benefit from the

faster training speed and higher accuracy of LGBM, while XGBoost

exhibits better overall performance. However, RF, Adaboost, and

XGBoost are ensemble learning methods that leverage multiple

decision trees to obtain better results, while SVM, LGBM, andMLP

are single models.

Therefore, choosing the appropriate machine learning model

for specific data and tasks is crucial. These common models

offer a diverse range of choices that can cater to various fields.

In summary, these ML models have differences in application

scenarios, performance, and efficiency, requiring decisions based

on specific problems and data characteristics. The current study

constructed seven predictive models to identify the vulnerability

of CAP. Among these models, model_RF demonstrated superior

performance. Model_RF had better AUC, accuracy, precision,

recall, and f-1 scores than the other models. In both the

training and testing cohorts, model_RF effectively predicted

the vulnerability of CAPs by predicting vulnerable and stable

plaques. Model_RF outperformed traditional model_LR in the

testing cohort because the emerging ML algorithm has the

advantage of processing massive data and many parameters
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for configuration optimization, making it more flexible than

traditional model_LR.

Furthermore, the performance of model_RF was superior to

that of model_clinical, which relied solely on clinical features.

This indicates that the radiomics-based ML model outperforms

traditional clinical features in assessing the stability of CAPs.

Furthermore, radiomic feature calculation is a fast and automatic

process once the ROI has been delineated; therefore, the selected

radiomic signature can be integrated with the automatic 3D carotid

segmentation system (47) for a comprehensive CAP detection

and vulnerability prediction, which could contribute to clinical

decision-making in CAPs.

The study has some limitations. First, the retrospective

enrollment utilized in the study was determined by our

clinicians, which may introduce some selection bias and limit the

generalizability of the findings. Second, this study selected the

luminal area where the CAP is located as the ROI because CAP

morphology has an excellent predictive value for CAP vulnerability.

However, if the characteristics of the CAPs themselves could

be combined, it might further improve the prediction ability,

which is also our follow-up research direction. Additionally, the

sample size in this study was relatively small, which may limit

the generalizability of our findings. Although we have attempted

to mitigate this limitation by carefully selecting our cohort and

applying rigorous statistical methods, future studies with larger and

more diverse cohorts will be needed to validate and extend our

results. This study obtained radiomic features associated with the

neovascularization of CAP. Model_RF with CTA radiomics was

constructed to predict the vulnerability status of CAP. The current

study serves as an important initial step toward developing more

accurate and efficient diagnostic tools for diagnosing and treating

CAP. Although our model_RF with CTA radiomics showed high

accuracy in predicting the vulnerability status of CAP, further

validation in larger cohorts is necessary to confirm its clinical

utility. Therefore, prospective studies are needed to further validate

its classification ability and assess its potential clinical impact. In

general, our study emphasizes the potential of radiomics-based

models to enhance the accuracy and efficiency of diagnosing

vulnerable CAP. Specifically, the model_RF offers a non-invasive

and efficient approach to predicting the vulnerability status of

CAP by utilizing radiomic features extracted from CTA. The

model may enable earlier detection of vulnerable CAPs, improving

patient outcomes.
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SUPPLEMENTARY FIGURE S1

ICC test results. Features with an ICC value >0.9 were considered highly

consistent and reliable and were thus selected for further research. These

features were deemed to have minimal variability across imaging modalities

and were considered to provide a stable representation of the underlying

biological characteristics of the analyzed lesions. ICC Intraclass Correlation

Coe�cient.
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SUPPLEMENTARY FIGURE S2

Comparison of Model Performance through the AUC Value. The ROC

curves of model_RF and model_clinical on a testing cohort are presented

together for a performance comparison through AUC value analysis. It can

be observed from the figure that model_RF has a higher AUC value than

model_clinical, indicating that model_RF outperforms model_clinical.

References

1. Hankey GJ. Secondary stroke prevention. The Lancet Neurol. (2014) 13:178–
94. doi: 10.1016/S1474-4422(13)70255-2

2. Lioutas VA, Ivan CS, Himali JJ, Aparicio HJ, Leveille T, Romero JR, et al. Incidence
of transient ischemic attack and association with long-term risk of stroke. JAMA.
(2021) 325:373–81. doi: 10.1001/jama.2020.25071

3. Kamtchum-Tatuene J, Noubiap JJ, Wilman AH, Saqqur M, Shuaib A. Prevalence
of high-risk plaques and risk of stroke in patients with asymptomatic carotid stenosis:
a meta-analysis. JAMANeurol. (2020) 77:1524–35. doi: 10.1001/jamaneurol.2020.2658

4. Gasbarrino K, Iorio DD, Daskalopoulou SS. Importance of sex and gender in
ischaemic stroke and carotid atherosclerotic disease. Eur Heart J. (2022) 43:460–
73. doi: 10.1093/eurheartj/ehab756

5. Biscetti F, Tinelli G, Rando MM, Nardella E, Cecchini AL, Angelini
F, et al. Association between carotid plaque vulnerability and high mobility
group box-1 serum levels in a diabetic population. Cardiovasc Diabetol. (2021)
20:114. doi: 10.1186/s12933-021-01304-8

6. Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, et al. Targeting non-coding
RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and
limitations. Int J Biol Sci. (2021) 17:3413–27. doi: 10.7150/ijbs.62506

7. Camaré, C., Pucelle, M., and Nègre-Salvayre, A., and Salvayre,
R. (2017). Angiogenesis in the atherosclerotic plaque. Redox Biol 12,
18–34. doi: 10.1016/j.redox.2017.01.007

8. Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL.
Imaging atherosclerosis and vulnerable plaque. J Nucl Med. (2010)
51:51s−65s. doi: 10.2967/jnumed.109.068163

9. Ylä-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J,
et al. Stabilization of atherosclerotic plaques: an update. Eur Heart J. (2013) 34:3251–
8. doi: 10.1093/eurheartj/eht301

10. Jaipersad AS, Lip GY, Silverman S. The role of monocytes in angiogenesis and
atherosclerosis. J Am Coll Cardiol. (2014) 63:1–11. doi: 10.1016/j.jacc.2013.09.019

11. Guo LH, Akahori E, Harari SL, Smith R, Polavarapu V, Karmali
F. CD163+ macrophages promote angiogenesis and vascular permeability
accompanied by inflammation in atherosclerosis. J Clin Invest. (2018)
128:1106–24. doi: 10.1172/JCI93025

12. Saba L, Saam T, Jäger HR, Yuan C, Hatsukami TS, Saloner D,
et al. Imaging biomarkers of vulnerable carotid plaques for stroke risk
prediction and their potential clinical implications. Lancet Neurol. (2019)
18:559–72. doi: 10.1016/S1474-4422(19)30035-3

13. Song Y, Dang Y, Wang J, Cai H, Feng J, Zhang H, et al. Carotid intraplaque
neovascularization predicts ischemic stroke recurrence in patients with carotid
atherosclerosis. Gerontology. (2021) 67:144–51. doi: 10.1159/000511360

14. Shah BN, Gujral DM, Chahal NS, Harrington KJ, Nutting CM. Plaque
neovascularization is increased in human carotid atherosclerosis related to prior neck
radiotherapy: a contrast-enhanced ultrasound study. JACC Cardiovascular Imaging.
(2016) 9:668–75. doi: 10.1016/j.jcmg.2015.07.026

15. Li Z, Wang Y, Wu X, Liu X, Huang S, He Y, et al. Studying the factors of
human carotid atherosclerotic plaque rupture, by calculating stress/strain in the plaque,
based on ceus images: a numerical study. Front Neuroinform (2020) 14:596340.
dosi: 10.3389/fninf.2020.596340

16. Zhang Y, Cao J, Zhou J, Zhang C, Li Q, Chen S, et al. Plaque elasticity and
intraplaque neovascularisation on carotid artery ultrasound: a comparative histological
study. Eur J Vasc Endovasc Surg. (2021) 62:358–66. doi: 10.1016/j.ejvs.2021.05.026

17. Wei L, Zhu Y, Deng J, Li Y, Li M, Lu H, et al. Visualization of thrombus
enhancement on thin-slab maximum intensity projection of ct angiography: an
imaging sign for predicting stroke source and thrombus compositions. Radiology.
(2021) 298:374–81. doi: 10.1148/radiol.2020201548

18. Wendorff C, Wendorff H, Pelisek J, Tsantilas P, Zimmermann A,
Zernecke A, et al. Carotid plaque morphology is significantly associated
with sex, age, and history of neurological symptoms. Stroke. (2015)
46:3213–9. doi: 10.1161/STROKEAHA.115.010558

19. Rafailidis V, Chryssogonidis I, Tegos T, Kouskouras K, Charitanti-Kouridou A.
Imaging of the ulcerated carotid atherosclerotic plaque: a review of the literature.
Insights Imaging. (2017) 8:213–25. doi: 10.1007/s13244-017-0543-8

20. Jiang P, Chen Z, Hippe DS, Watase H, Sun B, Lin R, et al. Association
between carotid bifurcation geometry and atherosclerotic plaque vulnerability: a

chinese atherosclerosis risk evaluation study. Arterioscler Thromb Vasc Biol. (2020)
40:1383–91. doi: 10.1161/ATVBAHA.119.313830

21. Segal M. A more human approach to artificial intelligence. Nature. (2019)
571:S18. doi: 10.1038/d41586-019-02213-3

22. Rampton V. Artificial intelligence versus clinicians. BMJ. (2020)
369:m1326. doi: 10.1136/bmj.m1326

23. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M,
et al. Artificial intelligence in cardiology. J Am Coll Cardiol. (2018) 71:2668–
79. doi: 10.1016/j.jacc.2018.03.521

24. Lynch CJ, Liston C. New machine-learning technologies for computer-aided
diagnosis. Nat Med. (2018) 24:1304–5. doi: 10.1038/s41591-018-0178-4

25. Myszczynska MA, Ojamies PN, Lacoste AMB, Neil D, Saffari A, Mead R, et al.
Applications of machine learning to diagnosis and treatment of neurodegenerative
diseases. Nat Rev Neurol. (2020) 16:440–56. doi: 10.1038/s41582-020-0377-8

26. Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of
contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular
carcinoma. J Hepatol. (2019) 70:1133–44. doi: 10.1016/j.jhep.2019.02.023

27. Mouraviev A, Detsky J, Sahgal A, Ruschin M, Lee YK, Karam I, et al. Use of
radiomics for the prediction of local control of brain metastases after stereotactic
radiosurgery. Neuro Oncol. (2020) 22:797–805. doi: 10.1093/neuonc/noaa007

28. Schniering J, Maciukiewicz M, Gabrys HS, Brunner M, Blüthgen C, Meier
C, et al. Computed tomography-based radiomics decodes prognostic and molecular
differences in interstitial lung disease related to systemic sclerosis. Eur Respir J. (2021)
59:5. doi: 10.1183/13993003.04503-2020

29. Brendlin AS, Peisen F, Almansour H, Afat S, Eigentler T, Amaral T, et al.
A machine learning model trained on dual-energy ct radiomics significantly
improves immunotherapy response prediction for patients with stage iv melanoma.
J Immunother Cancer. (2021) 9:261. doi: 10.1136/jitc-2021-003261

30. Farwell MD,Mankoff DA. Analysis of routine computed tomographic scans with
radiomics and machine learning: one step closer to clinical practice. JAMA Oncol.
(2022) 8:393–4. doi: 10.1001/jamaoncol.2021.6768

31. Gheselle D, Tilleman K. Machine learning for prediction of euploidy in human
embryos: in search of the best-performing model and predictive features. Fertil Steril.
(2022) 117:738–46. doi: 10.1016/j.fertnstert.2021.11.029

32. Zhao Y, Wang T, Bove R, Cree B, Henry R, Lokhande H, et al. Ensemble learning
predicts multiple sclerosis disease course in the SUMMIT study. NPJ Digit Med. (2020)
3:135. doi: 10.1038/s41746-020-00338-8

33. Amarenco P, Hobeanu C, Labreuche J, Charles H, Giroud M, Meseguer E, et al.
Carotid atherosclerosis evolution when targeting a low-density lipoprotein cholesterol
concentration<70mg/dl after an ischemic stroke of atherosclerotic origin. Circulation.
(2020) 142:748–57. doi: 10.1161/CIRCULATIONAHA.120.046774

34. Kopczak AA, Schindler A, Bayer-Karpinska ML, Koch D, Sepp J. Complicated
carotid artery plaques as a cause of cryptogenic stroke. J Am Coll Cardiol. (2020)
76:2212–22. doi: 10.1016/j.jacc.2020.09.532

35. Bos D, Arshi B, van den Bouwhuijsen QJA, Ikram MK, Selwaness M, Vernooij
MW, et al. Atherosclerotic carotid plaque composition and incident stroke and
coronary events. J Am Coll Cardiol. (2021) 77:1426–35. doi: 10.1016/j.jacc.2021.01.038

36. Fasolo FH, Jin G, Winski E, Chernogubova J, Pauli H, Winter
DY. Long noncoding RNA MIAT controls advanced atherosclerotic
lesion formation and plaque destabilization. Circulation. (2021) 144:1567–
83. doi: 10.1161/CIRCULATIONAHA.120.052023

37. Yang S, Koo BK, Hoshino M, Lee JM, Murai T, Park J, et al. CT
angiographic and plaque predictors of functionally significant coronary disease
and outcome using machine learning. JACC Cardiovasc Imaging. (2021) 14:629–
41. doi: 10.1016/j.jcmg.2020.08.025

38. Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, et al. Identification of high-risk
carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. (2021)
31:3116–26. doi: 10.1007/s00330-020-07361-z

39. Chen S, Liu C, Chen X, Liu WV, Ma L. A Radiomics approach to assess high risk
carotid plaques: a non-invasive imaging biomarker, retrospective study. Front Neurol.
(2022) 13:788652. doi: 10.3389/fneur.2022.788652

40. Dong, Z., Zhou, C., Li, H., Shi, J., Liu, J., Liu, Q., et al.(2022). Radiomics
versus conventional assessment to identify symptomatic participants at

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1151326
https://doi.org/10.1016/S1474-4422(13)70255-2
https://doi.org/10.1001/jama.2020.25071
https://doi.org/10.1001/jamaneurol.2020.2658
https://doi.org/10.1093/eurheartj/ehab756
https://doi.org/10.1186/s12933-021-01304-8
https://doi.org/10.7150/ijbs.62506
https://doi.org/10.1016/j.redox.2017.01.007
https://doi.org/10.2967/jnumed.109.068163
https://doi.org/10.1093/eurheartj/eht301
https://doi.org/10.1016/j.jacc.2013.09.019
https://doi.org/10.1172/JCI93025
https://doi.org/10.1016/S1474-4422(19)30035-3
https://doi.org/10.1159/000511360
https://doi.org/10.1016/j.jcmg.2015.07.026
https://doi.org/10.1016/j.ejvs.2021.05.026
https://doi.org/10.1148/radiol.2020201548
https://doi.org/10.1161/STROKEAHA.115.010558
https://doi.org/10.1007/s13244-017-0543-8
https://doi.org/10.1161/ATVBAHA.119.313830
https://doi.org/10.1038/d41586-019-02213-3
https://doi.org/10.1136/bmj.m1326
https://doi.org/10.1016/j.jacc.2018.03.521
https://doi.org/10.1038/s41591-018-0178-4
https://doi.org/10.1038/s41582-020-0377-8
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1093/neuonc/noaa007
https://doi.org/10.1183/13993003.04503-2020
https://doi.org/10.1136/jitc-2021-003261
https://doi.org/10.1001/jamaoncol.2021.6768
https://doi.org/10.1016/j.fertnstert.2021.11.029
https://doi.org/10.1038/s41746-020-00338-8
https://doi.org/10.1161/CIRCULATIONAHA.120.046774
https://doi.org/10.1016/j.jacc.2020.09.532
https://doi.org/10.1016/j.jacc.2021.01.038
https://doi.org/10.1161/CIRCULATIONAHA.120.052023
https://doi.org/10.1016/j.jcmg.2020.08.025
https://doi.org/10.1007/s00330-020-07361-z
https://doi.org/10.3389/fneur.2022.788652
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shan et al. 10.3389/fneur.2023.1151326

carotid computed tomography angiography. Cerebrovascular Diseases. 51,
647–654. doi: 10.1159/000522058

41. Huang Z, Cheng XQ, Liu HY, Bi XJ, Liu YN, Lv WZ, et al. Relation of carotid
plaque features detected with ultrasonography-based radiomics to clinical symptoms.
Transl Stroke Res. (2022) 13:970–82. doi: 10.1007/s12975-021-00963-9

42. Zaccagna F, Ganeshan B, ArcaM, RengoM, Napoli A, Rundo L, et al. CT texture-
based radiomics analysis of carotid arteries identifies vulnerable patients: a preliminary
outcome study. Neuroradiology. (2021) 63:1043–52. doi: 10.1007/s00234-020-
02628-0

43. Wang X, Dai S, Wang Q, Chai X, Xian J. Investigation of MRI-based
radiomics model in differentiation between sinonasal primary lymphomas and
squamous cell carcinomas. Jap J Radiol. (2021) 39:755–62. doi: 10.1007/s11604-021-
01116-6

44. Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, et al. Disease variant
prediction with deep generative models of evolutionary data. Nature. (2021) 599:91–
5. doi: 10.1038/s41586-021-04043-8

45. Katsaouni N, Tashkandi A, Wiese L. Machine learning based disease prediction
from genotype data. Biol Chem. (2021) 402:871–85. doi: 10.1515/hsz-2021-0109

46. Wang L, Wong L, Li Z, Huang Y, Su X, Zhao B, et al. A machine learning
framework based on multi-source feature fusion for circRNA-disease association
prediction. Briefings Bioinf. (2022) 23:388. doi: 10.1093/bib/bbac388

47. Wang J, Yu Y, Yan R, Liu J, Wu H, Geng D, et al. Coarse-to-fine multiplanar D-
SEA UNet for automatic 3D carotid segmentation in CTA images. Int J Comput Assist
Radiol Surg. (2021) 16:1727–36. doi: 10.1007/s11548-021-02471-5

48. The L. Stroke-acting FAST at all ages. Lancet. (2018)
391:514. doi: 10.1016/S0140-6736(18)30240-X

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2023.1151326
https://doi.org/10.1159/000522058
https://doi.org/10.1007/s12975-021-00963-9
https://doi.org/10.1007/s00234-020-02628-0
https://doi.org/10.1007/s11604-021-01116-6
https://doi.org/10.1038/s41586-021-04043-8
https://doi.org/10.1515/hsz-2021-0109
https://doi.org/10.1093/bib/bbac388
https://doi.org/10.1007/s11548-021-02471-5
https://doi.org/10.1016/S0140-6736(18)30240-X
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Computed tomography angiography-based radiomics model for predicting carotid atherosclerotic plaque vulnerability
	Introduction
	Materials and methods
	Study population
	Clinical and imaging data
	Image segmentation and feature extraction
	Radiomic feature selection
	Predictive model construction and evaluation
	Statistical analysis

	Results
	Clinical features
	Selected stable features
	Predictive model construction and evaluation

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


