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The hallmarks of Parkinson’s disease (PD) include the loss of dopaminergic

neurons and formation of Lewy bodies, whereas multiple sclerosis (MS) is an

autoimmune disorder with damaged myelin sheaths and axonal loss. Despite

their distinct etiologies, mounting evidence in recent years suggests that

neuroinflammation, oxidative stress, and infiltration of the blood-brain barrier

(BBB) all play crucial roles in both diseases. It is also recognized that therapeutic

advances against one neurodegenerative disorder are likely useful in targeting the

other. As current drugs in clinical settings exhibit low e�cacy and toxic side e�ects

with long-term usages, the use of natural products (NPs) as treatment modalities

has attracted growing attention. This mini-review summarizes the applications

of natural compounds to targeting diverse cellular processes inherent in PD and

MS, with the emphasis placed on their neuroprotective and immune-regulating

potentials in cellular and animal models. By reviewing the many similarities

between PD and MS and NPs according to their functions, it becomes evident

that some NPs studied for one disease are likely repurposable for the other.

A review from this perspective can provide insights into the search for and

utilization of NPs in treating the similar cellular processes common in major

neurodegenerative diseases.
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Introduction

Parkinson’s disease (PD), characterized by striatonigral and dopaminergic degeneration

and the Lewy body formation, is a major neurodegenerative disorder affecting mainly

elderly people (1), while multiple sclerosis (MS) is an autoimmune demyelinating disease

of the central nervous system (CNS) and the commonest neurological disabling disease

inflicting young adults (2). Historically, PD and MS were considered movement disorders,

as the former affects the direct and indirect pathways of basal ganglia that are key to the

facilitation of movements, while the latter, with damaged myelin sheaths, axonal loss, and

sclera formation, impairing the transmission of action potential and hardening multiple

muscles (3, 4). Some other non-movement symptoms are also shared between these two

diseases, which include impaired cognition, atrophy, and depression (5).
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Although the etiology/pathophysiology of these two diseases

appears to be distinctive, mounting evidence suggests that they

are caused by exogenous antigens capable of infiltrating toxins or

cytokines across a leaky blood-brain barrier (BBB) (6–8). Clinically,

patients with MS or other immune disorders were found to have

a 33% higher risk of developing PD (9). Genetically, 17 loci on

chromosomes are shared by PD and MS (10). Neuroinflammation

and oxidative stress (OS) cause cell death, contributing to the

ultimate etiologies of PD and MS (11, 12). As shown in Figure 1,

T cells, macrophages, and dendritic cells (DCs), along with

pro-inflammatory cytokines such as interleukin 6 (IL-6), IL-1β,

tumor necrosis factor-α (TNF-α), and reactive oxygen/nitrogen

species (ROS/RNS), penetrate the BBB from the peripheral to

activate astrocyte and microglial cells. In the presence of cytokines

and chemokines, the astrocyte and microglial cells are activated,

eliciting a cascade of cellular processes (6, 7). For example, in PD

brain α-synuclein (α-syn) becomes misfolded to produce highly

neurotoxic oligomers and fibrils (13). The oligomers impact on the

integrity of cell membrane, resulting in the death of dopaminergic

neurons in the substantia nigra pars compacta (SNpc) (14). α-Syn

aggregates, which are a major component in the Lewy body, also

accumulate at activated microglia (15), further wreaking havoc to

neurons. In these dying neurons, damaged mitochondria in turn

produce additional ROS to aggravate the situation (16). In MS,

neuroinflammation and OS gradually destroy oligodendrocytes,

eventually leading to a significant loss of myelin sheaths and

the underlying axons in areas as diverse as the brainstem, spinal

cord, and optical nerves (17). To offset these damages, cellular

defense systems are often stimulated. For example, inMS regulatory

T (Treg) and Th2 cells secrete anti-inflammatory cytokines such

as IL-10 and transforming growth factor (TGF)-β to suppress

neuroinflammation (18, 19). In both PD and MS, the Nrf2/Kelch-

like ECH-associated protein1 (Keap1) pathway (20) is important

for upregulating antioxidative proteins and redox molecules that

counteract OS initiated by ROS/RNS.

Thus far, experiments on humans and other primates
are limited for both diseases. For PD, disease models are

created in animals such as rodents, zebrafish, Caenorhabditis

(C.) elegans, and Drosophila (21). Commonly used neurotoxins
are 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), paraquat, and rotenone (21). Genetic

manipulation of PD-related genes, such as α-syn (SNCA) and
protein deglycase (DJ-1), are used in transgenic models (21,

22). PD models induced by inflammatory species such as
lipopolysaccharide (LPS) are also employed (23). For MS, the
mouse model is used, and the predominant one is the experimental

autoimmune encephalomyelitis (EAE), along with cuprizone- and

lysolecithin-induced demyelination models (24).

Several cell signaling pathways are related to PD,MS, or both, as

listed in Table 1. Nuclear factor-κB (NF-κB) (25), mitogen-activated

protein kinase (MAPK) (26), and Janus kinase/signal transducers

and activators of transcription (JAK/STAT) (27) all contribute to

neuroinflammation. Neuroinflammation is capable of inducing

the cell apoptosis and/or pyroptosis pathways such as the nod-

like receptor pyrin domain-containing protein 3 (NLRP3)/caspase-

1/gasdermin D (GSDMD) (28) and the silent mating type

information regulation 2 homolog (SIRT1) (29) pathways in PD

and the peroxisome proliferator-activated receptor γ (PPARγ) (30)

pathway in MS, which inhibits the NF-κB pathway and stimulates

Nrf2 expression to counteract OS. Similarly, the NADPH oxidase

pathway also causes OS via the production of ROS (31). We

should note that these signaling pathways are not independent

but interconnected. For instance, NF-κB pathway displays dual

effects on OS (32) and Nrf2 can inhibit NF-κB activation

(33). Mitochondrial dysfunction is closely linked to PD and

other neurodegenerative diseases. Consequently, the peroxisome

regulated-activated receptor gamma coactivator-1 alpha (PCG-1α)-

NRF-mitochondrial transcription factor A (TFAM) or PCG-1α-

NRF-TFAM pathway is generally impacted, leading to impaired

oxidative metabolism and mitochondrial biogenesis (34, 35).

Because different brain regions are compromised in PD and

MS and some cellular processes vary, the clinical modalities are

different. Unfortunately, many clinical drugs for PD andMS exhibit

limited efficacy and have toxic side effects. One remedy is to

resort to the use of natural products (NPs), on the basis that

they generally have few side effects. Moreover, many of them are

either ingredients in traditional medicines or have been used to

treat other neurological disorders, cancers, and diseases related to

inflammation (36–38).

Many reviews have summarized the results of using NPs for

treating PD, MS, or other neurodegenerative diseases according

to their molecular structures (34, 38–44). To our knowledge,

few categorized based on their functions toward cellular and

subcellar processes inherent in both PD and MS. No reviews

have linked the use of NPs for PD to those utilizing the same

or similar type of NPs as MS modalities. The motivation behind

our attempts to review the NP modalities for both PD and MS

stems from the abovementioned similarities and the general belief

that therapeutic advances against one neurodegenerative disorder

is likely to be useful in targeting the other (45, 46). Both PD

and MS have multifactorial traits in their etiology/pathophysiology

and molecular mechanisms. Therefore, we focus on those NPs

that possess multiple therapeutic effects. Specifically, we emphasize

on NPs that are antioxidative/anti-neuroinflammatory, as these

properties can help ameliorate both PD and MS (cf. Figure 1).

Owing to the limited scope of a mini-review, both NPs and

the many cellular and subcellular events reviewed herein are

not exhaustive. Furthermore, we only described results that

delineated the specific function(s) of each NP and did not

include complex mixture in which the role of each species was

not elucidated.

NPs targeting di�erent pathways or
cellular processes

Below we review some findings about the efficacy of select

NPs for the various pathways and processes shown in Table 1 and

Figure 2, respectively, with emphases placed on the modalities of

NPs in counteracting neuroinflammation and OS. We describe the

functions and modes of actions of different NPs in the order of

names enclosed in the boxes of Figure 2, beginning with those in

the shaded area (common in both PD and MS) and progressing to

those related only to PD (shown at the top of the figure) and only

to MS (encompassed by the dashed box).
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FIGURE 1

Schematic illustration of PD and MS pathogeneses triggered by neuroinflammation and OS, with an emphasis placed on their commonalities. The red

and green arrows represent the neuronal lesions and repairs, respectively. The upper half of the scheme (above the dashed blue line) is related to PD

and the lower half is specific to MS.

TABLE 1 Cell signaling pathways involved in PD and/or MS.

PD and MS Mainly in PD Mainly in MS

• NF-κB
• MAPK
• JAK-STAT
• Nrf2
• NADPH oxidase

• SIRT1
• NLRP3/caspase-

1/GSDMD
• PGC-

1α/NRF/TFAM

PPARγ

Protection against neuroinflammation

(–)-Epigallocatechin-3-gallate (EGCG), a polyphenol abundant

in green tea, can downregulate inducible NO synthase (iNOS)

and TNF-α expression, and inhibit neuronal death via direct

modulation of microglial activation both in SH-SY5Y and in

primary rat mesencephalic cultures employed for studying PD

(48). It also diminishes IL-6 and IL-1β in LPS-induced rats (48),

and reduce the 6-OHDA-induced expression of TNF-α and IL-

1β in SK-N-AS cells (49). EGCG also shows anti-inflammatory

function toward MS patients and EAE mice (50, 51). The EGCG

treatment reverses clinical severity in EAE by modulating the

ratio of M1/M2 macrophages both in vivo and in vitro, with

decreased levels of pro-inflammatory cytokines and increased levels

of transforming growth factor (TGF)-β (52). Besides, it reduces the

levels of phosphorylated NF-κB p65 in M1 macrophages (53).

Resveratrol, another extensively investigated polyphenol, is

present in grapes, berries, and peanuts and exerts its anti-

neuroinflammatory effect through the NF-κB signaling pathway

(54). It suppresses the expression of TNF-α and promotes the

expression of IL-10 in BV2 microglia, and mitigates 6-OHDA-

induced brain injury (55). Additionally, it renders neuroprotection

to MPTP (55) and EAE mice (56).

Curcumin, a polyphenol extract from turmeric, inhibits the

secretion of inflammatory cytokines in lipoteichoic acid-induced

microglial cells (57) and transforms microglia into the M2-

phenotype (58, 59). Additionally, immunomodulatory properties

of curcumin were observed in treating MS and EAE (60, 61). Its

treatment reduces the clinical severity of EAE by modulating T

cell differentiation, with decreased levels of Th1 and Th17-related

factors and increased levels of Th2 and Treg responses (18). Besides,
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FIGURE 2

Summary of NPs studied for di�erent cellular processes in PD and MS, with the names of NPs used for the same and di�erent processes in PD and

MS shown in black and red, respectively. NPs studied thus far only for PD are shown in green, while those only for MS in brown. The shaded area

contains processes related to inflammation and OS common in both diseases, whereas the top unshaded area depicts some extensively studied

processes inherent in PD and the unshaded area encircled by the dashed box shows myelin protection and regeneration, which are unique of MS.

The names of some clinical drugs targeting di�erent processes are listed in italic. For PD, levodopa (L-Dopa), monoamine oxidase (MAO) inhibitor

(rasagiline and selegiline), catechol-O-methyl transferase (COMT) inhibitor (tolcapone and entacapone) and DA agonists (ropinirole and pramipexole)

are employed (47). In MS, methylprednisolone, glatiramer acetate, interferon-β 1b, fingolimod, and teriflunomide are used (2).

it increases the expression of TGF-γ-coding genes in the EAE

mice (61).

Other anti-inflammatory phenolic compounds include ellagic

acid (EA) and its metabolites such as urolithins A (UA) and B

(UB), which decreases the NO level and suppressing expression

of cyclooxygenase (COX)-2 and other cytokines in LPS-treated

BV2 microglial cells (62). The UA treatment reduces the loss

of dopaminergic neurons, ameliorating neuroinflammation in the

MPTP mice (63). In addition, EA protects brains of 6-HODA rats

(64) and MPTP mice (65) against neuroinflammation. Besides PD,

EA has been reported to ameliorate demyelination, reduce MS

severity and partially restore tissue levels of TNF-α, IL-6, IL-17A,

and IL-10 in EAE rodents (66).

6-Gingerol, a substance in ginger, was found to significantly

inhibit 6-OHDA-induced cell apoptosis of PC12 cells through the

MAPK pathway (67), and suppresses expressions of TNF-α, IL-6,

and iNOS in LPS-induced astrocytes and rats (68). Moreover, in

the EAE mouse mode 6-gingerol inhibits the DC activity and Th17

polarization, resulting in induction of tolerogenic DCs (69).

Some flavonoids were found to inhibit the NF-κB pathway.

Baicalein, an extract from the plant Scutellaria baicalensis, reduces

cytokine production in LPS-activated BV2 cells and inhibits
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the expression of COX-2 and NF-κB/p65 (70). It mitigates the

NLRP3/caspase-1/GSDMD pathway in both MPTP (71) and

rotenone (72) mouse models. For MS, baicalein alleviates disease

severity by reducing Th1 and Th17 cell migration and impairing

microglia activation (73), and improves cuprizone-induced EAE

mice by inhibiting the ionized calcium binding adapter molecule

1 (Iba1)-positive microglia (74). Furthermore, it decreases levels of

CXCR6+ CD4+, CD8+, and Th17 cells in EAE mice (75). Another

study showed that it inhibits the M1 macrophage but promotes the

M2 macrophage by modulating the STAT1 level (76). Hesperidin,

abundant in the citrus fruits, shows efficacy in decreasing many

cytokines depicted in Figure 2 in the MPTP mice (77). It also

increases the production of IL-10 and TGF-β to confer protection to

MS mice (78). Kurarinone, an NP from only in Sophora flavescens,

is reported to attenuate the MPTP-mediated neuroinflammation

(79). In addition, it inhibits clinical progression of EAE by

decreasing levels of several pro-inflammatory cytokines and

preventing Th1 and Th17 cell differentiation and proliferation (80).

Some alkaloids and triterpenes are also anti-

neuroinflammatory. For instance, caffeine suppresses the

NF-κB and MAPK pathways in LPS-induced macrophages (81)

and attenuates production of cytokines in LPS-induced mouse

brain (82) and EAE rats (83). Piperine, an alkaloid in black pepper,

depletes pro-inflammatory cytokines in both 6-OHDA rats (84)

and EAE mice (85) while enhancing IL-10 production the latter.

Glycyrrhizic acid, a triterpene in the licorice plant, decreases

COX-2 and iNOS induction in rotenone and MPTP mice (86, 87),

and attenuates EAE severity by suppressing pro-inflammatory

cytokines (88). Crocin, a major component of saffron, inhibits

inflammatory gene expression and ameliorates neuropathology in

PD (89) and MS (90, 91).

Other NPs possessing anti-neuroinflammatory properties

have only been studied for either PD or MS. Chlorogenic

acid, a major component in coffee, inhibits the NF-κB

pathway and suppresses IL-1β, IL-6, and TNF-α release in

LPS-induced microglia (92). Its supplementation mitigates

motor dysfunction in MPTP mice and increases IL-10 (93).

Quercetin, present in flowers, leaves, and fruits of many plants,

has been shown to suppress inflammatory cytokine levels in

LPS-induced primary microglia, zebrafish, and mice, as well

as rotenone-induced mice (94). Garcinol, a tri-isoprenylated

benzophenone isolated from Garcinia sp., is capable of

reducing inflammatory markers in the SNpc of MPTP mice

(95). Ginkgolide K (96–98) and oleanolic acid (OA) (99) have

the same functions in EAE mice by modulating T cell and

macrophages/microglia differentiation.

Protection against OS

EGCG can react with ROS and activate the Nrf2 signaling

pathway (48). It inhibits MPP+-induced OS in PC12 cells

via the SIRT1 pathway, and increases glutathione level

and mitigates the OS-induced cell death in L-Dopa-treated

PC12 cells (48). Moreover, it reduces the NO level and

lipid peroxidation in rotenone-induced PD rats (100) and

prevents paraquat-induced OS in Drosophila (101). In the

EAE model, EGCG reduces the ROS level and modulates

macrophage subtypes (52). It also directly suppresses M1

macrophage differentiation with lower level of iNOS in

vitro (52).

Resveratrol was demonstrated to activate the Nrf2 pathway in

the brain of rotenone-induced rats (102), and attenuate OS via the

Nrf2/Keap1 pathway in a microglia cell line (103). Curcumin was

found to enhance Nrf2 expression and stability, thereby resisting

OS and reducing apoptosis in H2O2-treated RAW264.7 cells (104).

Additionally, it reduces ROS in paraquat-induced SH-SY5Y cells

to enhance cell survival (105). EA can inhibit Keap1 to accumulate

Nrf2 in the nucleus, which alleviates the impact of ROS on neuronal

cells. EA can prevent DA neuron degeneration from OS in MPTP

mice (65), reduce ROS level, and reverse the superoxide dismutase

and catalase activities in the cuprizone-induced demyelination

model (106).

Other compounds also exhibited antioxidant activities.

Baicalein (107), hesperidin (108), quercetin (109), caffeine (110),

piperine (85), Ginkgolide K (97), and naringin (111) can all

activate the Nrf2 pathway, modulate macrophage differentiation,

or reduce OS both in cells and in animals. Crocin reduces OS and

attenuates damage to dopaminergic neurons in MPTP mice (112).

In addition, it inhibits the level of lipid peroxide and increases

the total antioxidant capacity in MS patients (91). OA alleviates

detrimental effects in EAE mice by reducing lipid peroxidation and

superoxide anion accumulation (99). Our group demonstrated that

ginnalin A, a polyphenol from the red maple, is a ROS scavenger

and can activate Nrf2-regulated antioxidant defense system in

SH-SY5Y cells (113).

Natural products targeting processes
inherent in PD and in MS

NPs have also been used as potential therapeutics targeting

processes specific to PD or MS, as depicted by the areas at the top

of Figure 2 and encompassed by the dashed box, respectively. We

briefly review these aspects as follows.

Dopaminergic cell preservation and inhibition of
protein aggregation

In PD studies, a number of NPs were found to behave

similarly to synthetic drugs used clinically, which are shown

in italics in Figure 2, to activate DA receptors and inhibit

MAO and COMT. EGCG inhibits COMT and preserves the DA

level in the brains of LPS-induced rats and MPTP mice (48).

Quercetin and fisetin preferentially inhibit MAO-A to MAO-B

(114), similar to caffeine (115). Daphnetin, a hydroxycoumarin

extract from Daphne species, can halt the COMT-mediated DA

O-methylation (115). Recently, (1R,3S)-6,7-dihydroxy-1-methyl-

1,2,3,4-tetrahydroisoquinoline-1,3-dicarboxylic acid (DMTDA),

a tetrahydroisoquinoline identified in Mucuna pruriens, was

reported to inhibit COMT (116). It enhances the L-Dopa

potency in 6-HODA rats and restores motor behavior of

MPP+-induced C. elegans.

NPs have been identified to inhibit the formation of α-

syn oligomers and fibrils, disaggregate aggregates into non-toxic
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forms, or disrupt their interaction with lipid membranes. EGCG

was demonstrated to inhibit fibrillation and disaggregate fibrils,

thus enhancing cell survival (48). Curcumin can prevent α-syn

aggregation in LPS-induced PD model (117). Baicalein was shown

to inhibit fibrillation of the wild-type α-syn and disaggregate

fibrils, as one of us found with his co-workers (118). It can also

disrupt fibrils of an α-syn mutant (119). Crocin can inhibit α-

syn aggregation and disassemble mature fibrils (120). We found

that ginnalin A is effective in disrupting the oligomerization

and fibrillation of both α-syn and amyloid-β peptides (121),

in line with the finding that an NP effective in inhibiting the

aggregation of one amyloid species is often capable of acting

the same way on another. Alkaloids such as synephrine and

trigonelline can also inhibit seed-induced α-syn aggregation,

increasing cell viability of SH-SY5Y (122). Squalamine (123) and

trodusquemine (124) were reported to inhibit lipid- and fibril-

induced α-syn aggregation and alleviate α-syn toxicity to cells.

They also showed promising treatment results in animal model

studies (124, 125).

Many NPs can modulate autophagy to counteract protein

misfolding/aggregation and to attenuate cell death and PD

symptoms. Curcumin can enhance autophagy and rescue

chloroquine-treated SH-SY5Y cells (105). A chronic caffeine

treatment was demonstrated to selectively reverse α-syn-

induced autophagy defects in PD mouse striata (126). Ursolic

acid, a triterpenoid compound in fruit peels, also promotes

autophagic clearance and ameliorates symptoms in rotenone-

induced mice (127). Glycyrrhizic acid was reported to alleviate

6-HODA and corticosterone-induced neurotoxicity in SH-

SY5Y cells by modulating autophagy (128). Trehalose (129), a

disaccharide in some fungi, and maysin (130), the most abundant

C-glycosilflavone in corn silk, counteract α-syn toxicity via

autophagy induction.

Preservation and regeneration of myelin
EA promotes oligodendrocyte maturation, decreases

oligodendrocyte apoptosis, and decreases demyelination and

axonal loss in EAE (66). Additionally, EA, UA, and UB increase

the expression of sphingolipids in human oligodendroglioma

cells, rendering neuroprotective effects (131). Piperine facilitates

myelin repair, suppresses astrocyte activation, and increases the

expression of neurotrophins, i.e., brain-derived neurotrophic

factor (BDNF) and myelin basic protein (MBP), to attenuate

clinical features of the lysolecithin-induced demyelinated model

(132). Crocin increases the level of MBP, preserving myelination

and axonal density in EAE (90). Ginkgolide K maintains the

integrity of myelin and promotes regeneration in EAE via the Nrf2

pathway (97).

Ursolic acid, similar to EA, decreases CNS demyelination,

preserves axonal integrity, increases the level of ciliary

neurotrophic factor (CNTF), and promotes myelin regeneration

in a PPARγ-dependent manner (133). Moreover, it enhances

myelin repair in EAE mice by promoting the expression of OPC

marker transcription factors (134), and alleviates the symptom

of cuprizone-induced EAE mice by modulating the IGF-1

expression (135).

Protection of BBB
The MS pathogenesis is concomitant with BBB dysfunction,

leading to permeation of inflammatory factors across BBB into

brain. Resveratrol was found to protect the BBB integrity in

EAE mice by suppressing the level of tight junction proteins and

inhibiting the expression of adhesion factors ICAM-1 and VCAM-

1 (136). Dietary naringenin preserves the BBB integrity in EAE by

inhibiting the level of tight junction-associated factors including

ZO-1 and occluding (137). Ginsenoside-Rg3-enriched Korean red

ginseng extract (Rg3-KRGE) also preserves the BBB integrity,

increases the levels of zonula occludens-1, claudin-3, claudin-5,

platelet endothelial cell adhesion molecule-1, and fibronectin, and

inhibits the level of MMP-9 in EAE by modulating the NADPH

oxidase pathway (138). Matrine upregulates the expression of

occludin, claudin 5, and tight junction proteins, and attenuates

EAE severity (139). These functions are analogous to those of some

drugs used currently in clinical settings, which are denoted in italics

in the box at the bottom right of Figure 2.

Conclusions

The diverse functions of the select NPs organized in Figure 2

and reviewed herein bode well with many beliefs in the field

while revealing some interesting trends. First, PD and MS share

many characteristics, especially in terms of neuroinflammation

and OS. It is therefore not surprising that NPs capable of

ameliorating PD symptoms have similar effects on MS. In this

regard, to select NPs targeting a cellular/subcelluar process of one

disease, one can draw on the knowledge of NPs that had been

investigated for the same process of the other. A large stockpile

of NPs has been examined thus far for only PD or only MS. At

least some of them can be repurposed reciprocally or even for

other neurodegenerative diseases such as Alzheimer’s disease and

amyotrophic lateral sclerosis. Second, among the countless NPs,

special attention should be given to those that have displayed

efficacy in modulating/intervening multiple cellular processes and

signaling pathways, owing to the complexity of both PD and MS.

Third, from Figure 2 it is apparent that even an NP possessing

different functions is incapable of counteracting all the detrimental

effects inherent in the many factors or processes. Thus, the

combined use of multiple NPs might be needed for regulating

the different pathways. Fourth, NPs have shown great promise in

addressing the pathological processes for which no clinical drugs

are available. Even for processes that have been dealt with by

clinical drugs, NPs offer as alternatives to afford equally effective

treatments without severe side effects. Finally, an increasingly

accepted notion in the PD field is that inflammation is significantly

manifested. In particular, increased levels of pro-inflammatory

cytokines, activation of the immune cells, and their infiltration

through a more permeable BBB are hallmarks being recognized. As

these processes have long been studied in the MS field, many NPs

and their known functions are likely translatable to PD research

and modalities. As the research continues to progress from cellular

and rodent models to primates and patients, it is foreseeable that

the vast pool of NPs should afford at least a few highly effective

therapeutics with low or little toxicity.
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