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N-methyl-D-aspartate receptors (NMDARs) play a critical role in excitotoxicity

caused by ischemic stroke, but NMDAR antagonists have failed to be translated

into clinical practice for treating stroke patients. Recent studies suggest that

targeting the specific protein–protein interactions that regulate NMDARs may be

an e�ective strategy to reduce excitotoxicity associated with brain ischemia. α2δ-

1 (encoded by the Cacna2d1 gene), previously known as a subunit of voltage-

gated calcium channels, is a binding protein of gabapentinoids used clinically

for treating chronic neuropathic pain and epilepsy. Recent studies indicate that

α2δ-1 is an interacting protein of NMDARs and can promote synaptic tra�cking

and hyperactivity of NMDARs in neuropathic pain conditions. In this review, we

highlight the newly identified roles of α2δ-1-mediated NMDAR activity in the

gabapentinoid e�ects and NMDAR excitotoxicity during brain ischemia as well as

targeting α2δ-1-bound NMDARs as a potential treatment for ischemic stroke.
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1. Introduction

Stroke is the second most common cause of death and the leading cause of morbidity

and disability worldwide (1). Ischemic stroke accounts for 85% of stroke patients and results

from cerebral ischemia and ischemia-reperfusion injury (2). Brain ischemia causes a complex

series of pathophysiological events, including oxidative stress, inflammation, apoptosis,

ionic imbalance, and excitotoxicity, with glutamate-gated N-methyl-D-aspartate receptor

(NMDAR)-mediated excitotoxicity being a key factor (3–5). NMDARs are fundamental

to both the physiology and pathology of the mammalian central nervous system (CNS),

with dual roles in neuronal survival and death (6, 7). Normal NMDAR activity is essential

for many neurological functions, including neuronal plasticity, brain development, and

memory (8). Nevertheless, NMDAR over-activation can cause calcium overload, activating

the downstream death-signaling pathways, and ultimately leading to irreversible neuronal

death, which is called “excitotoxicity” (9–11). Although a number of animal studies have

indicated that NMDAR blockers have neuroprotective effects on ischemic brain injury,

NMDAR antagonists have proven largely unsuccessful in clinical trials mainly due to

inhibiting physiological functions of NMDARs and intolerable side effects (12, 13). Further
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elucidating the molecular mechanism leading to pathological

NMDAR hyperactivity during brain ischemia is essential for

developing effective treatments for ischemic stroke. α2δ-1 (encoded

by Cacna2d1), commonly known as a subunit of voltage-gated

calcium channels (VGCCs), is a newly identified interacting protein

of NMDARs in neuropathic pain (14–16). In this review, we briefly

discuss recent findings about α2δ-1-bound NMDARs and their

roles in excitotoxicity in ischemic stroke and the potential of

targeting α2δ-1-bound NMDARs for treating cerebral ischemia.

2. Dual roles of NMDARs in neuronal
survival and death

As the main subtype of ionotropic glutamate receptors,

NMDARs are heterotetramers formed mostly by two GluN1

subunits and two GluN2 subunits (mainly GluN2A and GluN2B),

serving as an important component of the excitatory post-synaptic

membrane (17). Some studies suggest that activation of synaptic

NMDARs may promote neuronal survival, whereas stimulation of

extrasynaptic NMDARs may mediate pro-death effects (11, 18–

20). However, this remains a hypothesis, and it is uncertain how

the survival and death-signaling proteins are segregated to the

subcellular synaptic or extrasynaptic sites (11). In this regard,

post-synaptic density-95 (PSD95) is involved in NMDAR-mediated

excitotoxic injury in synaptic sites (21). Moreover, it has been

hypothesized that GluN2A-containing NMDARs are involved in

neuronal survival, whereas GluN2B-containing NMDARs cause

neuronal apoptosis and excitotoxicity (22). Contrary to this

assumption, GluN2A-containing NMDARs can mediate neuronal

death, and GluN2B-containing NMDARs may promote neuronal

survival under certain experimental conditions (23). In the

adult brain, GluN2A- and GluN2B-containing NMDARs may be

preferentially localized at the synaptic and extrasynaptic sites,

respectively (8). It is unclear how these NMDARs are differentially

involved in the activation of the downstream neuronal survival-

signaling complex (NSC) and/or the neuronal death-signaling

complex (NDC) (Supplementary Figure 1).

NSC and NDC may be closely associated with the NMDAR

channels either through protein–protein interactions or through

spatial compartmentalization to synaptic or extrasynaptic sites (13,

24). Targeting protein–protein interactions required for NMDAR-

mediated death-signaling pathways may be a promising strategy for

effectively treating stroke.

3. NMDAR protein–protein
interactions in ischemic stroke

The cytoplasmic C-terminal domains (CTDs) of NMDARs

are distinct and contain specific motifs for interactions with a

variety of scaffolding proteins, enzymes, and synapse-associated

signaling proteins (26, 27). Due to the unique role of CTDs in

the downstream intracellular signaling and synaptic retention of

NMDARs, the altered binding of proteins with NMDAR subunits

has been identified to be closely related to specific downstream

signaling pathways and aberrant NMDAR synaptic localization in

several disease states, such as cerebral ischemia (28–31).

Protein–protein interactions involving the CTDs of NMDAR

subunits in experimental models of cerebral ischemia have

been reported (28, 30). The GluN2B/PSD95/neuronal nitric

oxide synthase (nNOS) complex may play a key role in

driving excitotoxic signals in ischemic stroke (21, 32). PSD95

can couple with the CTDs of GluN2B to trigger the pro-

death-signaling pathway, and cerebral ischemia may induce the

interaction of the downstream nNOS with post-synaptic PSD95

at excitatory synapses, produce a toxic level of NO, and lead

to neuronal death (21). Disrupting nNOS-PSD95 interaction via

overexpressing the N-terminal amino acid residues 1-133 of

nNOS (nNOS-N1−133) or a small-molecular inhibitor of nNOS-

PSD95 interaction, ZL006, showed potent neuroprotective activity

(21). Furthermore, cell-permeable peptides interfering with the

PSD95/GluN2B interaction, such as the NA-1, a peptide sequence

of the GluN2B CTD (KLSSIESDV), seem to reduce ischemic

stroke (33). Moreover, the activation of the GluN2B/CaMKII

cascade may increase CaMKII-dependent phosphorylation of

acid-sensing ion channels (ASICs) in hippocampal neurons,

which can result in an increased intracellular Ca2+ and the

subsequent acidotoxic neuronal death (34). In the oxygen-glucose

deprivation (OGD) condition, CaMKII inhibition or knockdown

can produce a neuroprotective effect (35). Furthermore, death-

associated protein kinase 1 (DAPK1) can interact directly with

the CTD of GluN2B, which may be a therapeutic target for

ischemic stroke (36, 37). Cerebral ischemia may promote the

formation of the GluN2B/DAPK1 complex, activate DAPK1-

dependent phosphorylation of GluN2B, and enhance the NMDAR

channel conductance, leading to neuronal death (36). In a mouse

model of experimental stroke, administration of a cell membrane—

permeable NR2BCT peptide—can protect neurons against cerebral

ischemic insults (36, 38).

Although GluN2B-containing NMDARs, especially the CTD

and phosphorylation of GluN2B, have been suggested to play a

role in inducing NMDAR-dependent neurotoxicity, the interaction

between GluN2A and metabotropic glutamate receptor 1

(mGluR1) C-terminus seems to be also important for excitotoxicity

in a rat model of ischemic stroke (30, 39). The disruption of

GluN2A/mGluR1 interaction protected neurons against NMDAR-

mediated excitotoxicity and reversed NMDAR-mediated regulation

of ERK1/2 (39). Both GluN2A and GluN2B subunits may form a

complex with transient receptor potential cation channel subfamily

M member 4 (TRPM4) at the extrasynaptic site (40).

4. α2δ-1 as a novel NMDAR-interacting
protein

4.1. α2δ-1 and VGCCs

The VGCCs are fundamental regulators of intracellular calcium

homeostasis, which are composed of pore-forming α1, auxiliary

β, and α2δ subunits (41, 42). α2δ subunits belong to glycosyl-

phosphatidylinositol (GPI)-anchored protein family, which in

addition to being the binding site of gabapentinoids α2δ-1 and α2δ-

2), were also identified as pain genes in a forward genetic screen

(α2δ-3) (43–46). Among them, α2δ-1 is strongly expressed in many

brain regions, including the cerebral cortex and hippocampus,
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FIGURE 1

Molecular mechanisms involved in the therapeutic e�ects of gabapentinoids in cerebral ischemia. The thrombospondin-α2δ-1 interaction may play a

role in synaptogenesis, but it is unlikely involved in the gabapentinoid e�ects on acute cerebral ischemia. Gabapentinoids likely act on α2δ-1-bound

NMDARs to reduce excitotoxic Ca2+ overload and glutamate-induced excitotoxicity as well as produce antioxidant, anti-inflammatory, and

anti-apoptosis e�ects in cerebral ischemia.

and α2δ-1 is preferentially localized in excitatory neurons (47,

48). However, quantitative proteomic analysis indicates that α2δ-

1 has a weak interaction with VGCCs in the brain tissue (49).

In addition, α2δ-1 ablation has no effect on the expression

pattern of the VGCC α1 subunit or VGCC currents in the

brain (50, 51).

4.2. α2δ-1 as a binding target of
gabapentinoids

Gabapentinoids (i.e., pregabalin, gabapentin, and mirogabalin)

are widely used to treat neuropathic pain and epilepsy in clinic

(52–54). α2δ-1 and α2δ-2 are the binding target of gabapentinoids

(55, 56). Compared with α2δ-2, gabapentinoids have a much higher

affinity for α2δ-1 (56). The binding of gabapentinoids to α2δ-1,

but not α2δ-2, is mainly responsible for its efficacy in neuropathic

pain and epilepsy (15, 45, 47). Furthermore, α2δ-2 seems to be

preferentially expressed in inhibitory interneurons, which may

be related to the CNS side effects of gabapentinoids. However,

gabapentinoids have no evident effect on VGCC activity or VGCC-

mediated neurotransmitter release at presynaptic terminals (15, 57–

59). Thus, the exact mechanisms underlying gabapentinoid actions

are not known until recently.

4.3. The α2δ-1-NMDAR complex and
neuropathic pain

NMDAR hyperactivity at the spinal cord level plays a central

role in the development of chronic pain after nerve injury. Recent

studies reveal that α2δ-1 can directly interact with NMDARs,

forming a heteromeric complex through its C-terminal domain

(15). In contrast, α2δ-1 seems to interact with VGCCs and

thrombospondins via the von Willebrand factor type A domain

on the N terminus (60). The functional significance of the α2δ-

1-NMDAR complex has been demonstrated in various disease

conditions, including neuropathic pain caused by traumatic

nerve injury, chemotherapy, small-fiber neuropathy, calcineurin

inhibitors, genetic and stress-induced hypertension, opioid-

induced hyperalgesia and analgesic tolerance, opioid addiction,

and ischemic brain injury (16, 25, 61–71) (Supplementary Table 1).

Mechanistically, α2δ-1 preferentially binds to phosphorylated

NMDARs and promotes surface and synaptic trafficking of

NMDARs, and also reduces the Mg2+ block of NMDAR channels

to trigger Ca2+ influx (15, 72). In neuropathic pain, the increased

synaptic expression of α2δ-1-NMDAR complex is essential for

the enhancement of synaptic NMDAR activity, and the synaptic

NMDAR hyperactivity can be reversed by interrupting the α2δ-

1-NMDAR interaction (15, 16, 64). The importance of the

α2δ-1 C-terminus in the induction of neuropathic pain has

been shown using α2δ-1 chimera in which the C-terminus is

mutated (73).

5. α2δ-1-NMDAR complex and
ischemic stroke

5.1. The e�ects of gabapentinoids in
ischemic stroke

Gabapentin was initially developed as an anticonvulsant, but

it is also used to treat neuropathic pain. Gabapentin has been

shown to reduce acute ischemic seizures, post-stroke pain, and

spreading depression in brain injury (74–76). In an animal

model of ischemic injury in the immature brain, gabapentin

significantly decreases the severity of brain atrophy and acute

seizures (74). The neuroprotective effects of gabapentinoids in

ischemic stroke have been shown in various animal models

(Supplementary Table 2). In a mouse model of transient focal

ischemia, gabapentin pretreatment reduces the infarct volume by
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FIGURE 2

Schematic showing the potential role of α2δ-1 in NMDAR-mediated excitotoxicity in cerebral ischemia and reperfusion. (A) Cerebral ischemia can

increase α2δ-1 expression and α2δ-1-NMDAR interactions to promote the synaptic tra�cking of α2δ-1-bound NMDARs, resulting in NMDAR

hyperactivity, calcium overload, and downstream cell death-signaling pathways and eventually neuronal death and brain damage [modified from

Luo et al. (25)]. (B) α2δ-1-free NMDARs present in excitatory and inhibitory neurons likely mainly mediate the physiological functions of NMDARs via

the neuronal survival-signaling complex (NSC), whereas α2δ-1-bound NMDARs expressed in excitatory neurons may predominantly activate the

neuronal death-signaling complex (NDC).

23% independent of peri-infarct depolarization suppression (75).

In patients with thalamic pain syndrome, gabapentin reduces

the pain severity and the thalamus impairment (76). In the in

vitro oxygen-glucose deprivation (OGD) model, gabapentin has a

protective effect against neuronal injury (77). Systemic treatment

of gabapentin reduces middle cerebral artery occlusion-induced

infarct volumes, neurological deficit scores, and apoptosis (25).

Furthermore, the neuroprotective effects of pregabalin on cerebral

ischemia have been reported in a rodent stroke model, including

the suppression of calcium-mediated proteolysis and the damage

of oxidative stress, the attenuation of inflammation, and improving

axon regeneration and motor outcome (78–81). Gabapentin and

pregabalin have been extensively used in patients with chronic pain

and anxiety disorders, exhibiting an excellent safety profile (82, 83).

Thus, gabapentinoids could be repurposed for treating ischemic

stroke in future.

5.2. The new insight of α2δ-1 in ischemic
stroke

It has been reported that α2δ-1 may bind to thrombospondin,

an astrocyte-secreted protein, to promote synaptogenesis (84).

Gabapentin may reduce α2δ-1 interaction with thrombospondin

and inhibit the new synapse formation (85). Pregabalin treatment

induces axon sprouting and functional recovery in a mouse

model of cortical stroke (81). However, astrocyte-derived

thrombospondin-1 is upregulated in the astroglial peri-infarct

scar but not elevated in remote cortical projection areas (81).

This interaction may not account for the relatively rapid onset of

gabapentinoid effects on acute cerebral ischemia. Another study

suggested that the association between thrombospondin and α2δ-1

is rather weak, and no obvious α2δ-1-thrombospondin interaction

can be detected on the cell surface (86).
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During cerebral ischemia, excessive release of glutamate

from presynaptic terminals can result in sustained Ca2+

influx through post-synaptic NMDARs and VGCCs. The

neuroprotection by pregabalin was suggested to be associated

with targeting VGCCs (78). The levels of α2δ-1 subunit can

be detected in serum specimens, and the serum levels of

α2δ-1 are significantly higher in ischemic stroke patients

(87). Nevertheless, as mentioned above, gabapentinoids have

no effect on VGCC activity in vitro and in neural tissues.

Moreover, nimodipine, a widely used VGCC antagonist, has no

efficacy in stroke patients as L-type Ca2+ channels are mainly

distributed in cell bodies and proximal dendrites of neurons

(88, 89).

Inhibiting α2δ-1 with gabapentin has a profound

inhibitory effect on oxygen-glucose deprivation-induced

NMDAR hyperactivity in hippocampal CA1 neurons (25).

In a heterologous expression system, gabapentin inhibits

NMDAR activity only when α2δ-1 is coexpressed (15).

Thus, the action of α2δ-1 in vivo is predominantly related

to its association with NMDARs, which account for the

protective actions of gabapentinoids in ischemic stroke

(Figure 1).

5.3. α2δ-1-bound NMDAR as a potential
therapeutic target in ischemic stroke

α2δ-1 can readily form a heteromeric protein complex with

phosphorylated NMDARs mainly through its C-terminus domain

(15, 72). In the striatum, α2δ-1-bound NMDARs account for

∼44% NMDARs present on the plasma membrane (90). In

Cacna2d1 knockout mice, transient cerebral ischemia does not

increase the basal NMDAR currents, suggesting that the α2δ-

1 may be essential for ischemia-induced neuronal NMDAR

hyperactivity in the brain tissue (25). Accordingly, ischemia

can increase the α2δ-1-NMDAR association, and α2δ-1-bound

NMDARs mediate brain damage caused by cerebral ischemia or

intracerebral hemorrhage (25, 69). Because α2δ-1 is preferentially

expressed in excitatory neurons (47), α2δ-1-bound NMDARs may

be the critical component for the NMDAR-mediated excitotoxicity

(Figure 2). Targeting the α2δ-1-bound NMDARs using specific

α2δ-1 C-terminus peptides or inhibitors would not interfere

with the physiological, α2δ-1-free NMDAR function. Thus, α2δ-

1-bound NMDARs could be targeted for the development of

new neuroprotective drugs for treating and preventing ischemic

stroke, including patients undergoing major neurological and

cardiac surgeries.

6. Conclusion and implication

In summary, recent findings about α2δ-1-bound NMDARs

have greatly advanced our understanding of the molecular

mechanism of excitotoxicity associated with ischemic stroke.

Compared with traditional non-selective NMDAR antagonists,

treatment with α2δ-1 competing peptides or inhibitors (e.g.,

gabapentinoids) may represent an effective therapy for ischemic

stroke. The subunit composition, synaptic localization, and

numbers of NMDARs are not static but are dynamically regulated

in response to neuronal activities (11). Further clinical research is

needed to determine whether α2δ-1-bound NMDARs are a valid

target for treating ischemic stroke.
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Potential dual roles of NMDARs in neuronal survival and death. (A) NMDARs

present at synaptic and extrasynaptic sites, which may be di�erentially

involved in neuronal survival and death. (B) GluN2A- and GluN2B-containing

NMDARs may have a di�erent role in neuronal survival and death-signaling

via the activation of downstream neuronal survival-signaling complex (NSC)

and the activation of neuronal death-signaling complex (NDC).

SUPPLEMENTARY TABLE 1

The potential roles of α2δ-1-NMDAR complexes in various disease

conditions.

SUPPLEMENTARY TABLE 2

Therapeutic e�ects of gabapentinoids in ischemic brain injury.
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