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Stroke is a leading cause of disability with limited e�ective interventions that

improve recovery in the subacute phase. This protocol aims to evaluate the

safety and e�cacy of a non-invasive, extremely low-frequency, low-intensity,

frequency-tuned electromagnetic field treatment [Electromagnetic Network

Targeting Field (ENTF) therapy] in reducing disability and promoting recovery in

people with subacute ischemic stroke (IS) with moderate-severe disability and

upper extremity (UE) motor impairment. Following a sample-size adaptive design

with a single interim analysis, at least 150 and up to 344 participants will be

recruited to detect a 0.5-point (with a minimum of 0.33 points) di�erence on the

modified Rankin Scale (mRS) between groups with 80% power at a 5% significance

level. This ElectroMAGnetic field Ischemic stroke–Novel subacutE treatment

(EMAGINE) trial is a multicenter, double-blind, randomized, sham-controlled,

parallel two-arm study to be conducted at approximately 20 United States sites,

and enroll participants with subacute IS and moderate-severe disability with

UE motor impairment. Participants will be assigned to active (ENTF) or sham

treatment, initiated 4–21 days after stroke onset. The intervention, applied to the

central nervous system, is designed for suitability in multiple clinical settings and

at home. Primary endpoint is change in mRS score from baseline to 90 days

post-stroke. Secondary endpoints: change from baseline to 90 days post-stroke

on the Fugl-Meyer Assessment - UE (lead secondary endpoint), Box and Block Test,

10-Meter Walk, and others, to be analyzed in a hierarchical manner. EMAGINE will

evaluate whether ENTF therapy is safe and e�ective at reducing disability following

subacute IS.

Trial registration: www.ClinicalTrials.gov, NCT05044507 (14 September 2021).
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Introduction

Stroke is a leading cause of long-term disability, especially as
mortality rates are declining (1, 2). Given the aging population
and increased stroke risk, annual stroke-related costs in the
United States (US) are projected to reach $240.67 billion by 2030
(2). Reperfusion interventions are beneficial but invasive, are only
available in the most acute stages, require skilled personnel, and are
limited to eligible patients; 73% have a disabled or fatal outcome by
90 days (3).

Beyond the acute phase (1–7 days) (4) and into the early
subacute phase (< 3 months) (4), stroke rehabilitation focuses
on physical, occupational and speech therapies (PT, OT, SLP).
However, standard of care (SOC) varies across facilities, and only
a fraction of patients completely recover (5, 6). Moreover, the
treatment pathway is fragmented, with patients treated in a variety
of inpatient and outpatient clinical settings as well as at home
(6). Preclinical (7, 8) and clinical trials (9, 10) indicate heightened
plasticity in the post-stroke brain that declines in the first few
weeks, highlighting the importance of early intervention. There is
an urgent need for effective and accessible early subacute therapy
that is suitable across multiple settings.

Following injury, neuronal network connectivity is disrupted,
with aberrant oscillatory patterns on electroencephalography
(EEG) (11). As network dynamics are sensitive to external
electromagnetic fields at specific frequencies (12–14), the proposed
mechanism of action of the experimental treatment involves
exposing impaired neuronal networks to oscillating fields
similar to those of a healthy central nervous system to induce
neuroprotective cellular mechanisms and promote network
reorganization (13, 15–17). Prominent frequencies of these
oscillations were identified using EEG recordings of healthy and
impaired populations and translated into a non-invasive, extremely
low-frequency, low-intensity, frequency-tuned electromagnetic
field treatment [Electromagnetic Network Targeting Field
(ENTF) therapy].

Preclinical results suggest that ENTF therapy post-stroke
impacts cellular mechanisms and network reorganization (18, 19).
In a rodent stroke model, oscillating extremely low-frequency, low-
intensity electromagnetic fields (ELF-EMF) stimulation (exposure
to sham field, 3.93Hz or 15.72Hz, every second day, for 4
weeks) was associated in treated animals with decreased edema,
increased white matter integrity, evidence of neural regeneration,
and improved sensorimotor function on the modified Neurological
Severity Score and forelimb placement test (18). Overall, data
suggest that such treatment targets functional neural networks,
promotes neural plasticity and modulates the secondary injury
cascade, thus aiding clinical recovery.

A pilot randomized controlled trial (n = 21) found that ENTF
therapy delivered in the early subacute phase (3–15 days post-
ischemic stroke; 21 days if unstable) increased upper extremity
(UE) motor function across multiple metrics and reduced disability
(20). This was observed by a greater improvement with ENTF
compared to sham stimulation on the trial primary outcome of
the Fugl-Meyer Assessment–Upper Extremity (FMA-UE): from
baseline to week 4 (23.2± 14.1 vs. 9.6± 9.0, p= 0.007); baseline to
week 8 (31.5 ±10.7 vs. 23.1 ± 14). Similar favorable effects at week
8 were observed for other UE assessments, including the Action

Research Arm Test (Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008)
and Box and Blocks Test (affected hand, 22.5 ± 12.4 vs. 8.5 ±

8.6, p < 0.0001). Reduction of global disability was assessed by
the modified Rankin Scale (mRS) (20), a global outcome measure
scored from 0 (no symptoms) to 6 (death). At baseline, participants
were moderate-severely disabled (mRS 3-4) and by day 70 post-
stroke, the ENTF therapy group improved by a mean 2.5 (±0.66)
points relative to 1.3 (±0.46) points for the sham group. As a
comparison, in a novel analysis of data from large trials (detailed
in Supplementary File 1), moderate-severely disabled patients, with
SOC treatment, improved by a mean of ∼1 point by day 90 post-
stroke.

The ElectroMAGnetic field Ischemic stroke–Novel subacutE
treatment (EMAGINE) trial investigates the impact of ENTF
therapy, on disability and functional recovery, in conjunction
with SOC; ENTF treatment is introduced within 3 weeks post-
stroke, a period in which the post-stroke brain has heightened
plasticity potential (7–10). ENTF therapy involves non-invasive
stimulation that is suitable and easy to use in multiple settings,
including at home. To date, there have been no serious adverse
events; EMAGINE is being conducted as a non-significant risk
device study.

The primary objective of EMAGINE is to determine the
efficacy and safety of ENTF therapy in reducing disability in the
subacute phase post-stroke. The hypothesis for efficacy is that mean
improvement in the primary outcome, mRS score, from baseline
to 90 days post-stroke will be significantly greater in participants
allocated to active stimulation (ENTF group) than in participants
allocated to sham stimulation (sham) group.

Materials and methods

Formal study reporting methods

This methods manuscript adheres to the methodology of the
Standard protocol items: recommendations for interventional trials
(SPIRIT) statement and checklist. Additionally, the description
of the study intervention adheres to the methodology of the
Template for Intervention Description and Replication statement
and checklist (TIDieR). The primary results paper will adhere to
the methodology of the Consolidated Standards of Reporting Trials
(CONSORT) statement and checklist.

Study design

EMAGINE is a multicenter, double-blind, randomized, sham-
controlled, parallel, two-arm study following a sample-size-
adaptive design with a single planned interim analysis. The study
will be conducted at approximately 20 US-based acute care and
inpatient rehabilitation facilities (IRFs) with enrollment from any
site not exceeding 20% of the total sample size. Informed consent
will be obtained 3–21 days post-stroke, and participation will
continue up to 180 (±15) days post-stroke.

Participants will undergo initial screening and detailed baseline
assessment, followed by 45 treatment sessions over 9 weeks. Follow-
up assessments will be at the 20th treatment session (±4 days), 90
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FIGURE 1

Trial design.
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(±15) days post-stroke, and 180 (±15) days post-stroke (long-term
outcome; global disability and quality of life measures) (Figure 1).

Patient population–Inclusion and exclusion

Prospective participants 3–21 days post-stroke will be
consented to enter the study screening phase and at 4–21 days
post-stroke, participants fully meeting entry criteria will proceed to
the randomization phase and be allocated to a study treatment arm.
This ensures that treatment will begin soon after stroke onset, when
the brain has heightened plasticity potential (7–10). Key inclusion
criteria: mRS score of 3 or 4; Fugl-Meyer Assessment (FMA) score
of 10–45 (of 66) for impaired UE (this range was informed by the
results of the pilot study, which demonstrated improvements after
4 and 8 weeks, and allows for further improvement on the scale);
22–85 years of age; diagnosed with an ischemic stroke, confirmed
by CT or MRI; 4–21 days post-stroke onset; pre-stroke mRS of 0 or
1; and availability of a relative or caregiver to assist with treatment.
Key exclusion criteria: implanted active electronic or passive
MR-incompatible device; ischemic or hemorrhagic stroke within
2 weeks prior to index stroke (participants with prior strokes that
occurred more than 2 weeks prior to the index will be allowed
for inclusion); pre-existing neurological condition or physical
limitation that would significantly interfere with participation;
active epilepsy or taking anti-epileptic medication or seizure in last
5 years; and unstable serious illness/condition or life expectancy
of <12 months. Research involving Human Participants, approval
of the protocol and the informed consent form was obtained from
a central Institutional Review Board (IRB) before any participant
was consented/enrolled. Informed consent will be obtained from
all participants included in the study. The detailed inclusion
and exclusion criteria can be found in Supplementary Table 1,
ethics in Supplementary File 2 and recruitment strategies in
Supplementary File 3.

Randomization

Participants will be equally allocated (1:1 ratio) based on
a permuted block randomization scheme, stratified by site, age
(22–69, 70–85 years) and baseline mRS (3 or 4) to either the
active (ENTF) or sham stimulation group. An authorized, trained,
unblinded individual at the site will enter group assignment into
the device based on a pre-programmed randomization algorithm
embedded in an electronic data capture system (Syncrony).
Participants, caregivers, outcome assessors, site investigators
(aside from the one unblinded individual responsible for group
assignment), and the sponsor will be unaware of group assignment.
The device produces no noticeable sound, light or sensation
in connection with stimulation, facilitating blinding. Blinding
methods will incorporate appropriate security measures and access
control. In an emergency, investigators may determine that a
participant be unblinded.

Intervention

The investigational medical device (BQ 2.0; BrainQ
Technologies Ltd., Jerusalem, Israel) delivers a non-invasive,
extremely low-frequency (1–100Hz) and intensity (≤1 Gauss),
frequency-tuned electromagnetic field. The device is portable,
wearable and designed for use in multiple settings (e.g., clinic,
home); it includes embedded magnetic coils, a mobile device
with a dedicated app that guides the treatment session, and a
single-use adhesive electromagnetic sensor placed on the forehead
to monitor treatment (the data from the sensor will not be
reviewed or analyzed for the duration of the study in order to
maintain blinding). The device can be used by a professional
operator or lay person (i.e., caregiver). The device does not require
installation and it comes with all the necessary equipment and
instructions for use. A video demonstrating the application of
the device and general overview of the treatment session can be
found in Supplementary Video 1. The device technology utilized
explanatory machine learning and brain-computer interface-based
tools to identify relevant spectral patterns based on a database
of EEG recorded during functional motor tasks. These spectral
patterns were then translated into ENTF therapy that applies
similar patterns directly to the participant’s head and spine.

The first treatment session will be within 48 h from
randomization and 4–21 days from stroke onset. There will
be 45 treatment sessions over 9 weeks (5 per week). Each session
will last up to 60min, with ENTF or sham field applied for 40min
together with an evidence-based, functional, repetitive and graded
PT/OT regimen (21) guided by an app. The PT/OT will include
approximately 30min dedicated to UE exercises and 30min to
lower extremity (20min without the device). This is consistent
with Class 1 Level A recommendation for people with stroke
to perform functional, task-specific, graded and repetitive tasks,
and participate in home-based rehabilitation (6). Adherence to
treatment is captured in the electronic data capture system and by
data logs collected via the app.

A trained site study team member (trained by sponsor
personnel) will be responsible for training the participant’s
caregiver to operate sessions independently, whether in the clinic
or at home. Sessions will be supervised, in person or remotely, until
the caregiver is deemed capable of operating sessions independently
with periodic study team oversight.

Concomitant therapy

All sites will provide concomitant SOC medical and
rehabilitation therapies to prevent recurrent stroke and maximize
recovery according to US national guidelines (6).

Clinical outcomes

The primary efficacy, secondary efficacy and exploratory
endpoints are listed below, with a description of the clinical
relevance of the main endpoints.
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Primary e�cacy endpoint
EMAGINE’s primary outcome measure is the modified Rankin

Scale (mRS; global disability) change from baseline (4–21 days post-
stroke) to 90 days post-stroke. The mRS is a broad scale with 7
levels fromnormal through increasing disability to death (scored 0–
6). The modified Rankin Scale is the most frequently used outcome
measure in stroke trials (22). The mRS measures the degree of
disability or dependence in the daily activities of people who have
suffered a stroke or other causes of neurological disability (23). In
wide use, the mRS shows strong construct validity, with strong
correlations with prognostic indicators such as stroke type, lesion
size, etc., in addition to convergent validity between mRS and other
related disability scales (24–26).

A known limitation of the original mRS is score assignment
based on poorly specified, non-operationalized distinctions
between levels, leading to poor reproducibility of the score by
various examiners (27, 28). Inter-rater reliability of the original,
holistic mRS scoring process is especially reduced in multicenter
studies employing many raters (28). Initiatives to improve the
use of the mRS have included: (1) training and certification of
examiners, (2) structured interviews and questionnaires, and
(3) centralized review of videotape assessments (29). However,
substantial interobserver variability in mRS assessment persists
even following the certification of assessors or the use of structured
interviews (26, 29).

Given these limitations, the Rankin Focused Assessment (RFA)
was developed with clear operationalized criteria for evaluating and
determining disability levels; the RFA has high inter-rater reliability
when used in a randomized control trial setting (30).

To increase outcome comparability andminimize bias, themRS
assessments of global disability in the EMAGINE trial are obtained
using the formal, algorithmic Rankin Focused Assessment-
Ambulatory (RFA-A) method by RFA-A-certified raters (30, 31). A
panel of independent blinded experts will remotely and centrally
assess the mRS (using the RFA), as well as a set of additional
questionnaire-based secondary and exploratory outcomes - Stroke
Impact Scale - Hand Domain (SIS-Hand), Stroke Impact Scale-
16 (SIS-16), 5-level EuroQol-5 Dimension (EQ-5D-5L), 8-Item
Patient Health Questionnaire (PHQ-8), and Academic Medical
Center (AMC) Linear Disability Score (ALDS).

Remote centralized assessment of the mRS via telehealth tools
has been established in other trials (32–34). Consistent remote
centralized assessment via telehealth will minimize inconsistency
among assessors across timepoints, enhance level of expertise,
and minimize interrater variability across the trial. An additional
advantage of using a centralized rating panel is that it reinforces the
maintenance of blinding in outcome assessment.

Secondary e�cacy endpoints
Secondary efficacy endpoints will be analyzed in the following

hierarchical order:

• Fugl-Meyer Assessment for Upper Extremity (FMA-UE;
upper limb function) – change from baseline (4–21 days
post-stroke) to 90 days post-stroke. The Fugl-Meyer

Assessment–Upper Extremity (FMA-UE) is a performance-
based impairment index designed to assess motor functioning,
balance, sensation, and joint function in patients with post-
stroke hemiparesis (35). FMA-UE is frequently applied
clinically and in research to determine disease severity
and describe motor recovery in order to plan and assess
rehabilitation (36). The FMA-UE is one of the most common
instruments in rehabilitation and has established validity,
reliability, and sensitivity to treatment-related change
(25, 37–39)

• Box and Block Test (BBT; arm motor function)–change from
baseline (4–21 days post-stroke) to 90 days post-stroke. The
BBT (40) measures unilateral gross manual dexterity, and has
shown reliability and validity inmultiple studies of post-stroke
patients (41).

• 10-Meter Walk Test (10MWT; gait speed)–change from
baseline (4–21 days post-stroke) to 90 days post-stroke.1

• Stroke Impact Scale - Hand Domain (SIS-Hand; patient-
reported hand function)–change from baseline (4–21 days
post-stroke) to 90 days post-stroke.

• Stroke Impact Scale - 16 (SIS-16; patient-reported physical
and functional limitation) –change from baseline (4-21 days
post-stroke) to 90 days post-stroke.

• 5-level EuroQol-5 Dimension (EQ-5D-5L; health-related
quality of life) at 90 days.

Safety endpoints
• Serious procedure- or device-related adverse events (AE).
• Device deficiencies to detect operational reliability.

Exploratory endpoints
• Montreal Cognitive Assessment (MoCA; global cognitive

function)–at 90 days post-stroke.
• Patient Health Questionnaire-8 (PHQ-8; depression)–at 90

days post-stroke.
• Academic Medical Center Linear Disability Scale (ALDS;

granular level of disability) at 90 days post-stroke.
• modified Rankin Scale (mRS; global disability)–change from

baseline to 180 days post-stroke.
• Stroke Impact Scale - Hand Domain (SIS-Hand; patient-

reported hand function)–change from baseline to 180 days
post-stroke.

• 5-level EuroQol-5 Dimension (EQ-5D-5L; health-related
quality of life) at 180 days post-stroke.

• Formal cost-effectiveness analysis over a lifetime horizon from
the perspective of the United States healthcare system. An
expert in cost-effectiveness analysis will provide the planned
analysis for inclusion in the final statistical analysis plan prior
to unblinding.

• Relationship between adherence to treatment and the clinical
outcomes as measured by the adhesive electromagnetic
sensor. Treatment adherence impact will be explored using
correlation analysis, odds ratios, and cluster analysis (42).

1 Participants who aren’t able to walk are scored 300

seconds automatically.
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All assessments are performed by blinded assessors. To reduce
inter-rater variability and enhance data integrity, in all participants
nationally, the primary endpoint, as well as a set of additional
questionnaire-based secondary and exploratory outcomes (SIS-16,
SIS hand domain, EQ-5D-5L, PHQ-8, ALDS), will be assessed
via telehealth tools by a centralized expert rater. The small panel
of central expert raters will be highly experienced in outcome
assessment and specifically certified in mRS administration. The
remaining endpoints, which require physical presence (e.g., FMA-
UE, BBT, 10MWT) or access to records (e.g., cost-effectiveness
endpoint) are assessed or collected by blinded site clinical staff who
underwent training and certification.

Data monitoring body

An independent Data and Safety Monitoring Board (DSMB)
will be established to oversee trial safety and efficacy. The DSMB
will provide recommendations regarding recruitment, enrollment,
AEs, modifying, or stopping the trial based on data review.
The board will meet at least semiannually, either in person or
by teleconference.

Sample size estimate

Sample size was calculated to detect a 0.5-point difference
between groups with 80% power at a 5% two-tailed level of
significance, assuming a standard deviation (SD) of 1 point and 1:1
allocation ratio. The calculated sample size (PROC POWER in SAS
V9.4) is 128 total participants, 64 participants per arm. Allowing for
a 15% dropout rate, 150 participants should be randomized.

Estimates for mean and SD of changes from baseline to Day
90 are taken from literature and pilot data (20, 43). In the pilot
study, mean change in mRS score from baseline to Day 70 was 2.5
(±0.66) for ENTF vs. 1.3 (±0.46) for sham. A 0.5-point difference
on the mRS is roughly 40% of the difference in the pilot study (20)
and above the clinically meaningful difference (22). One interim
analysis is planned after 61% of evaluable participants complete the
Day 90 visit, with rules for continuation to the original sample size,
reassessment (allowance for up to 344 participants), or stopping
due to futility (44, 45). Interim analysis will be performed by an
independent unblinded statistician, and the DSMB will inform
sponsor and investigators of its recommendation.

Statistical analyses

Study data will be summarized with descriptive statistics
presenting: count and percent for categorical and discrete data,
mean, standard deviation, minimum, and maximum for normally
distributed continuous variables, and median, interquartile range,
minimum and maximum for non-normally distributed continuous
variables. Demographic and other baseline data will be compared
between the groups. For comparison of continuous variables,
two-sample t-test or Wilcoxon rank sum test will be used. For
comparison of proportions (categorical variables), chi-squared test
or Fisher’s exact test will be used.

The primary endpoint, mRS change from baseline to Day
90, will be compared between treatment groups using repeated
measures analysis of covariance (fixed effects: treatment group,
visit (midterm and Day 90 follow-up visit), treatment group by
visit interaction with baseline mRS and age entered as covariates,
random effect: site). Shift analysis of the primary endpoint will be
performed as a sensitivity analysis. A hierarchical approach will
be adopted for primary and secondary endpoints to control type
I error due to multiple endpoint testing, such that the primary
endpoint will be analyzed first and, only if the null hypothesis is
rejected at a significance level of ≤5%, will secondary endpoints
be tested.

Overall significance level will be 5% using two-tailed tests.
Nominal p-values will be reported for each endpoint even if, due
to the hierarchy, the result is not considered statistically significant.

The primary safety variable, the cumulative incidence (and
95% confidence interval) of AEs reported throughout the study in
each of the study groups, will be presented in tabular format and
will include incidence tables by severity and relationship to study
device and/or procedure. Cumulative incidence will be summarized
based on the percent of participants with one or more events with
the associated confidence interval. Additionally, incidence will be
summarized based on the total number of events allowing for
multiple events per participant (without a confidence interval). AE
rates will be compared between the study groups with a Fisher’s
exact test.

The following analysis sets are defined for the EMAGINE
study: Intent-to-treat (ITT) including all participants randomized,
Modified ITT (mITT) including all participants from the ITT set
for whom treatment was initiated, Per-protocol (PP) including
all participants from the mITT analysis who have no clinically
significant protocol deviations and were treated for a minimum
of 20 completed sessions with one post-baseline data point,
and Safety analyses set (SAF) including all participants who
initiated treatment. The mITT analysis will serve as the principal
analysis set for efficacy assessments and SAF as the principal
analysis set for the analysis of safety. Further details and
definitions can be found in Supplementary File 4. Further details
regarding how discontinuation will be handled can be found in
Supplementary File 5.

Discussion

Despite effective SOC acute interventions and established
benefits of post-stroke rehabilitation programs, many patients have
significant residual disability. Long-term disability is associated
with economic burden, which is projected to increase with the
aging population. Annual long-term post-hospitalization costs for
patients with mRS 4 are estimated at $43,755 compared to $10,883
for mRS 1 (46). EMAGINE aims to leverage neuroplasticity in the
early post-stroke period to promote recovery. ENTF therapy is
initiated 4-21 days post-stroke, consisting of five weekly 60-min
sessions over 9 weeks. ENTF is non-invasive, complements SOC
and is suitable for clinic and home administration, ensuring
continuity of care. If effective in reducing disability, ENTF therapy
may yield substantial gains in quality-adjusted life-years and
significant cost savings.
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EMAGINE is designed to assess the safety and efficacy of ENTF
therapy during the subacute phase post-ischemic stroke. Given
high stroke prevalence and limited treatment options beyond the
acute phase, EMAGINE results may indicate the viability of a
post-stroke treatment that non-invasively targets and rehabilitates
compromised brain networks to reduce disability and improve
quality of life. If effective, ENTFmay provide accessible and scalable
treatment that follows the patient from clinic to home, unifying a
fragmented care pathway.
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15. Cichoń N, Bijak M, Miller E, Saluk J. Extremely low frequency electromagnetic
field (ELF-EMF) reduces oxidative stress and improves functional and
psychological status in ischemic stroke patients. Bioelectromagnetics. (2017)
38:386–96. doi: 10.1002/bem.22055
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