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Background: The activation patterns and functional network characteristics 
between stroke survivors and healthy individuals based on resting-or task-
state neuroimaging and neurophysiological techniques have been extensively 
explored. However, the discrepancy between stroke patients at different recovery 
stages remains unclear.

Objective: To investigate the changes in brain connectivity and network 
topology between subacute and chronic patients, and hope to provide a basis for 
rehabilitation strategies at different stages after stroke.

Methods: Fifteen stroke survivors were assigned to the subacute group (SG, 
N = 9) and chronic group (CG, N = 6). They were asked to perform hand grasping 
under active, passive, and MI conditions when recording EEG. The Fugl-Meyer 
Assessment Upper Extremity subscale (FMA_UE), modified Ashworth Scale (MAS), 
Manual Muscle Test (MMT), grip and pinch strength, modified Barthel Index (MBI), 
and Berg Balance Scale (BBS) were measured.

Results: Functional connectivity analyses showed significant interactions 
on frontal, parietal and occipital lobes connections in each frequency band, 
particularly in the delta band. The coupling strength of premotor cortex, M1, S1 
and several connections linked to frontal, parietal, and occipital lobes in subacute 
subjects were lower than in chronic subjects in low alpha, high alpha, low beta, 
and high beta bands. Nodal clustering coefficient (CC) analyses revealed that the 
CC in chronic subjects was higher than in subacute subjects in the ipsilesional S1 
and occipital area, contralesional dorsolateral prefrontal cortex and parietal area. 
Characteristic path length (CPL) analyses showed that CPL in subacute subjects 
was lower than in chronic subjects in low beta, high beta, and gamma bands. 
There were no significant differences between subacute and chronic subjects for 
small-world property.

Conclusion: Subacute stroke survivors were characterized by higher transfer 
efficiency of the entire brain network and weak local nodal effects. Transfer 
efficiency was reduced, the local nodal role was strengthened, and more neural 
resources needed to be mobilized to perform motor tasks for chronic survivors. 
Overall, these results may help to understand the remodeling pattern of the brain 
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network for different post-stroke stages on task conditions and the mechanism 
of spontaneous recovery.
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stroke stage, brain network topology, upper limb, electroencephalography, task-related 
coherence

1. Introduction

Stroke is still the leading cause of disability in China with over 2 
million new cases annually (1). Upper limb impairment and recovery 
are important for stroke survivors (2). Post-stroke motor impairment 
is closely associated with altered brain functions (3). Investigating the 
brain network characteristics of stroke survivors is one way to learn 
the underlying mechanisms of stroke recovery and rehabilitation. 
Numerous studies have investigated the characteristics of resting-or 
task-state functional networks between stroke survivors and healthy 
individuals to find new targets for stroke rehabilitation through 
functional magnetic resonance imaging (fMRI), electroencephalogram 
(EEG) or functional near-infrared spectroscopy (fNIRS) (4–7). In fact, 
comparing altered brain networks between stroke survivors and 
health control seems far from enough. There was an obvious 
discrepancy for stroke patients at different recovery stages. The time 
interval from stroke was considered a grouping factor to analyze its 
impact on the post-stroke recovery (8). Spontaneous recovery in the 
first six months after stroke (i.e., subacute phase) has been widely 
accepted (9–12). Consensus statements from the Stroke Recovery and 
Rehabilitation Roundtable suggested that individualized rehabilitation 
strategies should be  developed for different timelines of stroke 
recovery (13). Thus, exploring changes in brain networks between 
subacute and chronic patients seems necessary.

Resting-state functional networks are valuable in 
understanding complex brain communication (14). Task-related 
connectivity is also essential to reflect the human brain’s ability to 
alter adaptively. Recently, the important role of task-related 
functional connections in dynamically reshaping brain network 
organization, shifting the flow of neural activity has been reported 
(15, 16). However, task-based fMRI or EEG tended to investigate 
activation patterns during task conditions through blood oxygen 
level-dependent (BOLD) response or event-related 
desynchronization (ERD) changes in previous research, which 
focused on a small fraction of overall brain activity (17, 18). 
Although several studies have probed neural networks that are 
involved in brain activation by dynamic causal modeling (DCM), 
DCM as a prior approach requires user-specified regions of interest 
(ROI) and is limited by model numbers (19, 20). Therefore, the 
number of regions of interest (ROIs) that can be used for DCM 
analysis is limited. Coherence is not limited by such factors and 
could be applied in both resting-state and task-state conditions, as 
well as seen as reflecting changes in the degree of coupling between 
areas (21). Graph theory approach is a very useful tool for 
exploring advanced neural networks. Human brain function 
networks typically have a high clustering coefficient (CC) and short 
characteristic path length (CPL), which is also known as small-
world (SW) property. After stroke, the small-world model of the 

brain network usually decreased but was frequency-dependent in 
the EEG study (22). In addition, compared to EEG, fMRI is more 
susceptible to head movement. Maintaining head stability during 
tasks was a major challenge for stroke survivors. Meanwhile, 
patients performing motor tasks in daily treatment states are more 
convenient with EEG. Therefore, calculating network 
characteristics based on coherence and graph theory via EEG is a 
good choice.

Selection of task paradigms during EEG signal acquisition should 
be noted. Numerous task-based EEG studies have used active, passive, 
and motor imagery (MI) tasks alone, or two or all of them in study 
design (23–25). In fact, these task paradigms are commonly used in 
clinical practice. Active tasks included motor execution and motor 
attempt, in which the former required the subject to have a visible 
motor output and the latter required only an attempt to exercise. 
Therefore, motor attempts are more suitable for stroke survivors. 
Unlike active task, MI task is the cognitive rehearsal of specific actions 
without overt motor output (26). Active and MI task belonged to 
active-rehabilitation techniques, while passive task was as an auxiliary 
training strategy. In this study, participants were asked to perform 
hand grasping under active, passive, and MI conditions to fully 
understand changes in the task-induced neural network between 
subacute and chronic patients. Based on the current study, 
we  hypothesize that neural resource recruitment of brain regions 
associated with the frontoparietal motor network for chronic stroke 
survivors was higher than for patients with subacute stroke when 
performing the different task with the affected hand, which may 
provide more insights into post-stroke motor recovery.

2. Method

2.1. Subjects

Survivors with hemiparesis and a radiologically confirmed stroke 
from inpatient services in Huashan Hospital were recruited. All subjects 
signed informed consent forms. Inclusion criteria were 25 to 75 years of 
age, unilateral ischemic or hemorrhagic stroke for the first time, and 
stroke that occurred more than 1 week. Survivors with psychiatric 
disorder, epilepsy, active malignant disease or multiple organ failure, 
excessive cognitive impairment, neglect, or apraxia and allergy to EEG 
electrode cream were excluded. The study was approved by the 
Institutional Review Boards of Huashan Hospital (KY2022-041). Using 
the above inclusion/exclusion criteria, 16 subjects were recruited. One 
subject’s EEG data was discarded due to large artifacts. They were 
assigned to two groups: the subacute phase group (n = 9, 7 males and 2 
females) and the chronic phase group (n = 6, 4 males and 2 females) 
according to the stroke recovery timeline presented at the first Stroke 
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Recovery and Rehabilitation Roundtable (13). Their demographic and 
clinical characteristics are shown in Table 1.

2.2. Experimental paradigm and tasks

Subjects were tested in a quiet room with sitting position and kept 
hands on the table for stability. There are three tasks (active, MI, and 
passive movement) performed in three sessions consisting of 60 trials 
each. Each trial started with a “+” in the center of the monitor for 1 s. 
After the “+” disappeared, text prompts corresponding to the task of 
3 s hand grip and 6 s hand extension appeared. Ten seconds of rest 
between every 10 trials to avoid fatigue. Ten minutes of breaks 
between active, MI, and passive tasks to avoid interference with brain 
activity by different task types. In the active task, subjects were asked 
to grip and extend themselves with the affected hand. In the MI task, 
subjects were asked to imagine the affected hand grip and extension. 
In the passive task, robotic equipment (YS™ SY-HR06R Rehabilitation 
Robot Gloves, Shanghai, China) is worn on the affected hand and 
performs the movement. Robotic equipment helped all subjects grip 
and open their hands passively in a fixed time. The study design for 
active, MI and passive tasks is shown in Figure 1.

2.3. Clinical outcome measures

The Fugl-Meyer Assessment Upper Extremity subscale 
(FMA_UE) was used to assess motor impairment in the upper 

extremity. A higher score means less damage to the upper limb. 
The modified Ashworth Scale (MAS) and Manual Muscle Test 
(MMT) were used to assess the muscle tone and strength of the 
elbow and wrist flexor and extensor, respectively. A higher score 
indicated more severe spasticity and stronger muscles. Grip and 
pinch strength were used to measure muscle fitness and overall 
muscle strength. The modified Barthel Index (MBI) is an 11-item 
scale that assesses the activity of daily living capacity. The Berg 
Balance Scale (BBS) was used to measure balance and 
control levels.

2.4. EMG recordings

Four bipolar surface electromyograph electrodes (Noraxon 
U.S.A. INC., Clinical DTS) were fixed to flexor digitorum 
superficialis and extensor digitorum on bilateral upper 
extremities to monitor movement and ensure the absence of 
EMG activity in the relevant muscle groups during MI and 
passive task.

2.5. EEG recordings and preprocessing

EEG signals were obtained with a 64 Ag/AgCl scalp electrode 
positioned according to the international 10–20 system at a 
sampling rate of 1,000 Hz (Brain Products, Gilching, Germany). 

TABLE 1 Demographics data and clinical outcomes of stroke survivors.

Characteristics SG CG p

Age, years, mean (SD) 63.11 (11.74) 54.00 (14.97) 0.586

Months after stroke onset, mean (SD) 2.40 (1.54) 59.64 (58.28) <0.001*

Gender, N

1.000  Male 7 4

  Female 2 2

Side of paralysis, N

0.622  Right 3 3

  Left 6 3

FMA, Q2 (Q1, Q3)

  FMA_UE (max = 66) 19.00 (1.00, 55.50) 37.00 (9.25, 52.50) 0.595

  FMA-hand (max = 24) 2.00 (0, 11.00) 7.00 (2.50, 11.75) 0.285

Grip strength, Q2 (Q1, Q3)

  Unaffected hand 24.70 (19.90, 25.95) 27.40 (17.50, 28.85) 0.205

  Affected hand 3.20 (0, 11.00) 11.7 (1.20, 14.10) 0.408

Pinch strength, Q2 (Q1, Q3)

  Unaffected hand 5.20 (4.25, 6.90) 7.00 (5.05, 7.35) 0.254

  Affected hand 0 (0, 1.20) 2.00 (0.95, 3.10) 0.152

MBI, Q2 (Q1, Q3) 94.00 (65.00, 97.50) 98.00 (26.00, 100.00) 0.789

BBS, Q2 (Q1, Q3) 52.50 (33.75, 56,00) 53.00 (31.50, 55.00) 0.552

BBS, berg balance scale; CG, chronic group; FMA_UE, fugl-meyer assessment upper extremity subscale; MBI, modified barthel index; SG, subacute group.
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EEG data was exported to Python 3.8 and PyCharm 2022.1.3 
(Community Edition) for subsequent preprocessing and analysis. 
The bandpass filter range was 1–60 Hz and the sampling rate was 
down to 500 Hz. A 50 Hz notch filter and independent component 
analysis (ICA) were adopted to mitigate the effect of power line 
noise and eye movement artifacts in pre-processing. EEG signals 
were filtered into eight frequency bands: delta (1–4 Hz), low 
alpha (8–10 Hz), high alpha (10–13 Hz), low beta (13–20 Hz), 
high beta (20–30 Hz) and gamma (30–48 Hz). Then, we flipped 
the scalp electrode position data of subjects with right-sided 
lesions along the mid-sagittal plane to perform a group analysis 
of all 15 subjects.

2.6. Task-related coherence (TRCoh)

For normalization of the underlying distribution, coherence 
estimate was subjected to a hyperbolic inverse tangent (tanh−1) 
transformation. Then, to reduce inter-subject variability, coherence 
estimates recorded during task execution were normalized with 
coherence estimates during rest (27). TRCoh was derived using the 
following formula:

 TRCoh Coh Cohtask rest= ( ) − ( )− −
tanh tanh

1 1

Coherence is a measure of the linear association between two 
signals and is calculated by the square of the absolute value of the 
coherence function (K), where K is the cross-spectral density, 
according to the formula (28):

 
COH f K f

S f
S f S fxy xy

xy

xx yy
( ) = ( ) =

( )
( ) ( )

2
2

,

where S denotes the cross-spectrum at any given frequency, and x  
and y are regions, S fxy ( ) , S fxx ( ) , and S fyy ( ) are power spectral 
densities between x t( ) and y t( ), and, respectively. COH fxy ( ) is a 
bounded measure taking values from 0 to 1, where 0 indicates that there 
is no linear association between x t( ) and y t( ) at frequency f, and 1 
indicates a perfect linear association between x(t) and y(t) at frequency f.

2.7. Network topology

Three different weighted network indices were evaluated in this 
study based on graph theory (29): (1) nodal clustering coefficient 
(CC), (2) characteristic path length (CPL), and (3) small-world (SW).

A coherence matrix was used identically as a graph (G) consisting 
of node (N) and edge (E), and coherence presents the weight (w) of an 
edge between two nodes.

CC indicates how well a brain region is clustered with neighboring 
regions (segregation), quantifying by the degree of clustering among 
three nodes, creating a triangle. To compute nodal CC, the values of 
neighboring triangles of the node should be computed before:

 
t w w wi

j h N
ij jh hi= × ×( )

∈
∑1

2
,

,

where N represents all nodes included in G, and j and h are all 
possible pairs of adjacent nodes that create triangles with a specific 
node. Nodal CC is defined as:

 
C

n
t

k ki
i N

i

i i
=

−( )∈
∑1 2

1
,

Where n  is the number of nodes, and ki is the number of all 
connected nodes for a specific node. In this study, n  and ki were 63 

FIGURE 1

Study setup and experimental protocol.
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and 62, respectively, because the number of nodes was 63 and 
we assumed that each node was fully connected to the other nodes.

CPL (L) represents the overall connectivity of the entire network 
structure, and is defined as:

 
L

n n
d

i j N i j
ij=

−( ) ∈ ≠
∑1

1
, ,

,

where dij indicates the shortest distance between two nodes (i and 
j), quantified by an inverse of the weight, when using a fully connected 
weight graph.

SW indicates how brain networks work cost effectively when 
transferring information from one region to another. SW is defined as:

 
S CC CC

PL PL
r

r
=

/
/

where CCr  and PLr  represent CC and CPL equivalent random 
networks with the same degree distribution.

2.8. Select ROIs for brain connectivity and 
network properties

In this study, we selected 13 ROIs (C3, C4, FC3, FC4, Fz, CP3, 
CP4, F3, F4, P3, P4, O1, O2) in primary motor cortices (M1), 
premotor cortices (PMC), supplementary motor area (SMA), 
somatosensory cortices (S1), dorsolateral prefrontal cortex (DLPFC), 
parietal areas and occipital areas based on previous studies on motor 
tasks. Kim et  al. showed meaningful features in brain networks 
between M1, S1, SMA, and PMC during active motor and MI task 
(24). Lam et al. asserted that connectivity within and between motor 
(M1, SMA) and frontoparietal (DLPFC) networks correlates with 
motor outcome after stroke (30). Van Wijk et al. identified that the 
interaction between occipital areas and primary motor cortices led to 
a greater gamma increase and beta decrease in occipital areas during 
motor imagery (31). Based on these studies, we  analyzed brain 
connectivity and network properties around the M1, PMC, SMA, S1, 
DLPFC, parietal, and occipital regions during three motor tasks. The 
ROIs is shown in Figure 2.

FIGURE 2

ROIs (Regions of Interest). In this study, we selected 13 ROIs in M1 (C3, C4), PMC (FC3, FC4), SMA (Fz), S1 (CP3, CP4), DLPFC (F3, F4), parietal (P3, P4), 
and occipital (O1, O2) based on previous studies on motor tasks.

https://doi.org/10.3389/fneur.2023.1143955
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2023.1143955

Frontiers in Neurology 06 frontiersin.org

2.9. Statistical analyses

Statistical analyses were performed with SPSS version 25.0 
(SPSS Inc., Chicago, IL, United States) and figures were drawn with 
Python 3.8 and PyCharm 2022.1.3 (Community Edition). The 
Mann–Whitney U test was used to analyze the difference in clinical 
outcome measures between subacute and chronic subjects, 
including FMA_UE, Grip and pinch strength, MBI, and 
BBS. (Chi-square was used to compare the clinical outcome 
measures of MAS) and MMT between two groups. Two-way 
repeated ANOVAs taking task (3 levels: active, MI and passive task) 
as the within-subject factor and group as the between-subject factor 
were performed on the strength of connectivity, and network 
parameters (nodal CC, CPL, and S). Bonferroni correction was used 
to adjust p values for multiple tests of functional connectivity and 
network parameters between different tasks. Results are presented 
as mean with standard deviations (SD). The statistical significance 
was set at p < 0.05 with a 2-sided test.

3. Result

3.1. Clinical outcome measures between 
two groups

Using Mann–Whitney U test and Chi-square, there were no 
significant differences in each clinical outcome measure between 
subacute and chronic subjects.

3.2. Significant frequency band and 
connectivity

Using the TRCoh approach, we calculated delta, low alpha, high 
alpha, low beta, high beta, and gamma band coherence for each 
condition, followed by significant tests. Whole brain connectivity 
under active, MI, and passive conditions was shown in Figure 3. For 
each significant ROIs connection, the mean, standard deviation, and 

FIGURE 3

Whole brain connectivity under active, MI, and passive conditions. (A) The connectivity under active task condition. (B) The connectivity under MI task 
condition. (C) The connectivity under passive task condition.
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value of p of these functional connectivity measures (using two-way 
repeated ANOVAs) in different frequency bands are shown in 
Tables 2–7 respectively.

 a) Significant connectivity in the delta band
There were 7 pairs of significant connections in the delta band. 

Significant task differences were found between ipsilesional M1 and 
S1 (C3-CP3, F = 9.422, p = 0.031). However, post hoc analyses 
(Bonferroni adjusted) indicated that the pairwise comparison of three 
tasks was not significant. Significant task × group interactions were 
observed on the connections between contralesional M1 and DLPFC 
(C4-F4, F = 9.835, p = 0.029), between contralesional M1 and 
ipsilesional parietal areas (C4-P3, F = 36.871, p = 0.003), between 
contralesional M1 and parietal areas (C4-P4, F = 11.538, p = 0.022), 
between ipsilesional DLPFC and S1 (F3-CP3, F = 10.555, p = 0.025), 
between contralesional DLPFC and PMC (F4-FC4, F = 7.839, 
p = 0.041), and between ipsilesional and contralesional occipital area 
(O1-O2, F = 15.811, p = 0.013).

 b) Significant connectivity in the low alpha band
There were 5 pairs of significant connections in the low alpha 

band. Significant task differences were found between ipsilesional M1 
and S1 (C3-CP3, F = 11.915, p = 0.021). Post hoc analyses (Bonferroni 
adjusted) indicated that the C3-CP3 connection was comparable 
between active and MI tasks (p = 0.008). Significant group differences 
were found in the connections between ipsilesional M1 and 

contralesional parietal areas (C3-P4, F = 65.848, p = 0.015), and 
between ipsilesional DLPFC and contralesional parietal areas (F3-P4, 
F = 22.046, p = 0.042). Significant task × group interactions were 
observed on the connections between ipsilesional and contralesional 
parietal areas (P3-P4, F = 9.063, p = 0.033), and between contralesional 
parietal areas and ipsilesional S1 (P4-CP3, F = 8.838, p = 0.034).

 c) Significant connectivity in the high alpha band
There were 8 pairs of significant connections in the high alpha 

band. Significant task differences were observed between ipsilesional 
DLPFC and contralesional M1 (F3-C4, F = 9.990, p = 0.028), between 
ipsilesional DLPFC and contralesional S1 (F3-CP4, F = 26.265, 
p = 0.005), between SMA and contralesional S1 (Fz-CP4, F = 20.676, 
p = 0.008), between contralesional occipital area and S1 (O2-CP4, 
F = 59.219, p = 0.001). Post hoc analyses (Bonferroni adjusted) 
indicated that the F3-CP4 connection was comparable between MI 
and passive task. And the O2-CP4 connection was also comparable 
between active and MI task, as well as MI and passive task (p = 0.029 
and p = 0.034, respectively). Group differences were significant in the 
connections between contralesional M1 and ipsilesional S1 (C4-CP3, 
F = 123.177, p = 0.008), between ipsilesional PMC and contralesional 
S1 (FC3-CP4, F = 39.213, p = 0.025), between contralesional PMC and 
ipsilesional S1 (FC4-CP3, F = 254.819, p = 0.004), and between 
ipsilesional parietal areas and S1 (P3-CP3, F = 27.723, p = 0.034).

 d) Significant connectivity in the low beta band

TABLE 2 Significance connectivity in delta band (1–4 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

C3-CP3

active task 0.80 (0.10) 0.84 (0.05) 0.792 0.031* 0.741

MI task 0.68 (0.17) 0.76 (0.19)

passive task 0.75 (0.10) 0.75 (0.17)

C4-F4

active task 0.27 (0.09) 0.40 (0.13) 0.029* 0.601 0.788

MI task 0.44 (0.30) 0.32 (0.17)

passive task 0.41 (0.18) 0.51 (0.13)

C4-P3

active task 0.18 (0.04) 0.34 (0.12) 0.003* 0.703 0.574

MI task 0.34 (0.13) 0.30 (0.14)

passive task 0.36 (0.10) 0.30 (0.12)

C4-P4

active task 0.55 (0.19) 0.68 (0.10) 0.022* 0.735 0.630

MI task 0.63 (0.05) 0.48 (0.23)

passive task 0.66 (0.05) 0.53 (0.15)

F3-CP3

active task 0.30 (0.14) 0.38 (0.22) 0.025* 0.753 0.656

MI task 0.28 (0.11) 0.26 (0.07)

passive task 0.35 (0.17) 0.19 (0.04)

F4-FC4

active task 0.73 (0.02) 0.64 (0.21) 0.041* 0.703 0.826

MI task 0.73 (0.17) 0.75 (0.11)

passive task 0.66 (0.19) 0.81 (0.10)

O1-O2

active task 0.86 (0.03) 0.91 (0.03) 0.013* 0.719 0.151

MI task 0.82 (0.10) 0.90 (0.06)

passive task 0.84 (0.07) 0.87 (0.05)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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There were 15 pairs of significant connections in the low beta 
band. Significant task × group interactions were found on the 
connections between ipsilesional occipital area and S1 (O1-CP3, 
F = 7.513, p = 0.044), and between contralesional parietal areas and 
S1 (P4-CP4, F = 13.631, p = 0.016). Task differences were 
significant in the connection between ipsilesional DLPFC and 
parietal areas (F3-P3, F = 11.693, p = 0.021). However, post hoc 
analyses (Bonferroni adjusted) indicated that the pairwise 
comparison of three tasks was not significant. The strength of 
connectivity in SG were all significantly lower than the CG on the 
connections between bilateral M1 (C3-C4, F = 29.400, p = 0.032), 
between ipsilesional M1 and contralesional S1 (C3-CP4, 
F = 40.086, p = 0.024), between ipsilesional M1 and contralesional 
PMC (C3-FC4, F = 24.137, p = 0.039), between ipsilesional M1 and 
contralesional occipital area (C3-O2, F = 26.093, p = 0.036), 
between ipsilesional M1 and contralesional parietal areas (C3-P4, 
F = 294.146, p = 0.003), between contralesional M1 and ipsilesional 
parietal areas (C4-P3, F = 27.678, p = 0.034), between ipsilesional 
DLPFC and S1 (F3-CP3, F = 31.897, p = 0.030), between 
ipsilesional PMC and contralesional S1 (FC3-CP4, F = 46.568, 
p = 0.021), between ipsilesional S1 and contralesional PMC (FC4-
CP3, F = 56.512, p = 0.017), between ipsilesional parietal areas and 
contralesional PMC (P3-FC4, F = 360.911, p = 0.003), between 
contralesional parietal areas and ipsilesional S1 (P4-CP3, 
F = 28.072, p = 0.034), and between contralesional parietal areas 
and ipsilesional PMC (P4-FC3, F = 359.422, p = 0.003), 
respectively.

 e) Significant connectivity in the high beta band
There were 13 pairs of significant connections in the high beta 

band. Significant task × group interactions were observed on the 
connections between contralesional M1 and ipsilesional S1 
(C4-CP3, F = 12.278, p = 0.020), between contralesional M1 and 

ipsilesional parietal areas (C4-P3, F = 178.855, p < 0.001), between 
ipsilesional occipital area and SMA (O1-Fz, F = 7.604, p = 0.043). 
Task differences were significant in the connection between 
(F3-O1, F = 9.443, p = 0.031). However, post hoc analyses 
(Bonferroni adjusted) showed that the pairwise comparison of 
three tasks was not significant. The strength of connectivity in SG 
was significantly lower than CG on the connections between 
ipsilesional M1 and contralesional S1 (C3-CP4, F = 22.027, 
p = 0.043), between ipsilesional M1 and contralesional parietal 
areas (C3-P4, F = 349.550, p = 0.003), between ipsilesional DLPFC 
and M1 (F3-C3, F = 19.705, p = 0.047), between ipsilesional PMC 
and contralesional S1 (FC3-CP4, F = 21.012, p = 0.044), between 
contralesional PMC and ipsilesional S1 (FC4-CP3, F = 19.913, 
p = 0.047), between ipsilesional parietal areas and SMA (P3-Fz, 
F = 31.587, p = 0.030), between ipsilesional parietal areas and 
ipsilesional occipital area (P3-O1, F = 91.371, p = 0.011). 
Significant task × group interactions and group difference 
significant were observed on the connections between ipsilesional 
parietal areas and contralesional PMC (P3-FC4, F task×group = 12.025, 
P task×group = 0.020, F group = 93.588, P group = 0.011), and between 
contralesional parietal areas and ipsilesional PMC (P4-FC3,  
F task×group = 9.990, P task×group = 0.028, F group = 367.452, P group = 0.003).

 f) Significant connectivity in the gamma band
There were 9 pairs of significant connections in the gamma 

band. Significant task × group interactions were found on the 
connections between SMA and contralesional S1 (Fz-CP4, 
F = 12.652, p = 0.019), between ipsilesional occipital area and S1 
(O1-CP3, F = 37.129, p = 0.003), between contralesional parietal 
areas and S1 (P4-CP4, F = 7.312, p = 0.046), between contralesional 
parietal and occipital area (P4-O2, F = 13.130, p = 0.017). The 
connectivity strength in SG was significantly lower than CG on the 
connections between contralesional DLPFC and ipsilesional 

TABLE 3 Significant connectivity in low alpha band (8–10 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

C3-CP3 active task 0.83 (0.02) 0.83 (0.04) 0.850 0.021* 0.886

MI task 0.81 (0.04) 0.82 (0.04)

passive task 0.82 (0.01) 0.82 (0.04)

C3-P4 active task 0.43 (0.02) 0.55 (0.06) 0.933 1.000 0.015*

MI task 0.43 (0.08) 0.55 (0.02)

passive task 0.43 (0.05) 0.55 (0.05)

F3-P4 active task 0.57 (0.01) 0.69 (0.04) 0.506 0.964 0.042*

MI task 0.59 (0.07) 0.66 (0.08)

passive task 0.58 (0.04) 0.67 (0.07)

P3-P4 active task 0.14 (0.01) 0.17 (0.06) 0.033* 0.922 0.919

MI task 0.16 (0.03) 0.14 (0.03)

passive task 0.15 (0.02) 0.15 (0.03)

P4-CP3 active task 0.21 (0.03) 0.33 (0.07) 0.034* 0.971 0.160

MI task 0.23 (0.03) 0.31 (0.08)

passive task 0.20 (0.04) 0.34 (0.09)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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parietal areas (F4-P3, F = 20.821, p = 0.045), between ipsilesional 
occipital area and PMC (O1-FC3, F = 50.804, p = 0.019), between 
ipsilesional occipital area and contralesional PMC (O1-FC4, 
F = 27.368, p = 0.035), between contralesional occipital area and 
ipsilesional PMC (O2-FC3, F = 143.301, p = 0.007), between 
contralesional parietal areas and ipsilesional PMC (P4-FC3, 
F = 36.379, p = 0.026).

3.3. Characteristics of brain network 
properties in ROIs

In this study, we analyzed the characteristics of the nodal CC, 
CPL, and SW under active, MI, and passive motor task conditions.

3.3.1. Nodal CC
We found that task × group interactions was significant mainly in 

the occipital area (F = 14.870, p = 0.014) in high alpha band, and in the 
contralesional DLPFC, PMC and occipital area (F = 19.566, p = 0.009; 
F = 26.009, p = 0.005; F = 23.997, p = 0.006) in low beta band. Significant 
task differences were observed in ipsilesional PMC (F = 9.824, 

p = 0.029) in delta band, ipsilesional DLPFC and contralesional PMC 
(F = 14.590, p = 0.015; F = 24.678, p = 0.006) in high beta band, and 
ipsilesional parietal area and contralesional occipital area (F = 22.213, 
p = 0.007; F = 10.854, p = 0.024) in gamma band. Post hoc analyses 
(Bonferroni adjusted) indicated that the higher value on FC3 of 
passive task compared to active task in delta band, the higher value on 
FC4 of active task compared to MI task in high beta band, and the 
higher value on P3 of MI task compared to passive task in gamma 
band. Significant group differences were found in the ipsilesional 
occipital area (F = 25.377, p = 0.037) in the low alpha band, the 
contralesional parietal area (F = 19.551, p = 0.048), ipsilesional S1 and 
occipital area (F = 41.076, p = 0.023; F = 44.431, p = 0.022) in the high 
alpha band, the contralesional parietal area (F = 24.017, p = 0.039) in 
the low beta band, bilateral S1 (F = 38.611, p = 0.025; F = 32.062, 
p = 0.030) in high beta band, and contralesional DLPFC (F = 39.967, 
p = 0.024) in gamma band (Figure 4).

3.3.2. Characteristic PL
In low beta, high beta and gamma bands, CPL in subacute subjects 

was significantly lower than in chronic subjects (F = 21.294, p = 0.044; 
F = 107.349, p = 0.009; F = 161.922, p = 0.006) (Table 8).

TABLE 4 Significance connectivity in the high alpha band (10–13 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

C4-CP3

active task 0.35 (0.08) 0.56 (0.07) 0.293 0.916 0.008*

MI task 0.35 (0.15) 0.55 (0.10)

passive task 0.40 (0.07) 0.48 (0.14)

F3-C4

active task 0.26 (0.02) 0.35 (0.09) 0.059 0.028* 0.126

MI task 0.27 (0.06) 0.41 (0.13)

passive task 0.19 (0.02) 0.29 (0.10)

F3-CP4

active task 0.31 (0.10) 0.52 (0.06) 0.684 0.005* 0.085

MI task 0.34 (0.06) 0.58 (0.06)

passive task 0.30 (0.06) 0.51 (0.04)

FC3-CP4

active task 0.24 (0.09) 0.53 (0.08) 0.486 0.158 0.025*

MI task 0.25 (0.08) 0.60 (0.08)

passive task 0.25 (0.04) 0.53 (0.04)

FC4-CP3

active task 0.35 (0.12) 0.54 (0.09) 0.250 0.656 0.004*

MI task 0.35 (0.15) 0.57 (0.10)

passive task 0.39 (0.09) 0.50 (0.11)

Fz-CP4

active task 0.18 (0.04) 0.28 (0.10) 0.996 0.008* 0.165

MI task 0.23 (0.04) 0.34 (0.08)

passive task 0.16 (0.01) 0.27 (0.08)

O2-CP4

active task 0.20 (0.03) 0.27 (0.06) 0.799 0.001* 0.107

MI task 0.25 (0.03) 0.32 (0.02)

passive task 0.18 (0.03) 0.27 (0.06)

P3-CP3

active task 0.81 (0.05) 0.76 (0.06) 0.109 0.860 0.034*

MI task 0.80 (0.05) 0.79 (0.04)

passive task 0.81 (0.05) 0.75 (0.07)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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TABLE 5 Significant connectivity in low beta band (13–20 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

C3-C4

active task 0.19 (0.02) 0.43 (0.08) 0.976 0.978 0.032*

MI task 0.18 (0.06) 0.42 (0.09)

passive task 0.18 (0.02) 0.43 (0.18)

C3-CP4

active task 0.22 (0.05) 0.46 (0.07) 0.724 0.587 0.024*

MI task 0.19 (0.06) 0.47 (0.04)

passive task 0.21 (0.03) 0.51 (0.11)

C3-FC4

active task 0.14 (0.03) 0.35 (0.08) 0.624 0.949 0.039*

MI task 0.18 (0.05) 0.34 (0.12)

passive task 0.14 (0.03) 0.37 (0.15)

C3-O2

active task 0.28 (0.01) 0.36 (0.04) 0.984 0.381 0.036*

MI task 0.27 (0.07) 0.36 (0.02)

passive task 0.25 (0.03) 0.34 (0.07)

C3-P4

active task 0.25 (0.05) 0.52 (0.07) 0.976 0.081 0.003*

MI task 0.22 (0.08) 0.50 (0.01)

passive task 0.26 (0.04) 0.53 (0.08)

C4-P3

active task 0.23 (0.02) 0.52 (0.08) 0.316 0.907 0.034*

MI task 0.24 (0.08) 0.48 (0.07)

passive task 0.30 (0.05) 0.45 (0.22)

F3-CP3

active task 0.16 (0.03) 0.36 (0.08) 0.160 0.064 0.030*

MI task 0.14 (0.01) 0.23 (0.08)

passive task 0.15 (0.07) 0.27 (0.04)

F3-P3

active task 0.18 (0.05) 0.14 (0.01) 0.883 0.021* 0.559

MI task 0.21 (0.09) 0.19 (0.05)

passive task 0.15 (0.02) 0.13 (0.02)

FC3-CP4

active task 0.17 (0.02) 0.46 (0.11) 0.884 0.652 0.021*

MI task 0.20 (0.03) 0.48 (0.07)

passive task 0.16 (0.02) 0.47 (0.10)

FC4-CP3

active task 0.18 (0.01) 0.49 (0.07) 0.609 0.982 0.017*

MI task 0.22 (0.09) 0.46 (0.07)

passive task 0.22 (0.06) 0.47 (0.17)

O1-CP3

active task 0.15 (0.01) 0.22 (0.07) 0.044* 0.592 0.182

MI task 0.17 (0.04) 0.19 (0.02)

passive task 0.14 (0.03) 0.25 (0.07)

P3-FC4

active task 0.28 (0.06) 0.58 (0.08) 0.356 0.942 0.003*

MI task 0.31 (0.17) 0.57 (0.07)

passive task 0.34 (0.12) 0.52 (0.16)

P4-CP3

active task 0.21 (0.06) 0.41 (0.08) 0.703 0.217 0.034*

MI task 0.18 (0.06) 0.33 (0.05)

passive task 0.22 (0.06) 0.39 (0.10)

P4-CP4

active task 0.76 (0.05) 0.71 (0.09) 0.016* 0.312 0.771

MI task 0.76 (0.04) 0.73 (0.10)

passive task 0.76 (0.05) 0.77 (0.05)

P4-FC3

active task 0.24 (0.04) 0.56 (0.03) 0.939 0.854 0.003*

MI task 0.24 (0.10) 0.57 (0.03)

passive task 0.25 (0.07) 0.56 (0.07)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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3.3.3. Small-world
All stroke survivors tend to have small-world properties (SW > 1). 

However, there were no significant differences between subacute and 
chronic subjects (Table 9).

4. Discussion

The purpose of this pilot study was to investigate brain 
connectivity and network properties in subacute and chronic 

TABLE 6 Significant connectivity in high beta band (20–30 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

C3-CP4

active task 0.19 (0.05) 0.43 (0.10) 0.888 0.523 0.043*

MI task 0.17 (0.02) 0.40 (0.09)

passive task 0.21 (0.07) 0.46 (0.10)

C3-P4

active task 0.18 (0.03) 0.46 (0.10) 0.887 0.356 0.003*

MI task 0.16 (0.01) 0.43 (0.003)

passive task 0.22 (0.09) 0.47 (0.06)

C4-CP3

active task 0.18 (0.05) 0.49 (0.10) 0.020* 0.688 0.090

MI task 0.17 (0.03) 0.39 (0.12)

passive task 0.20 (0.07) 0.41 (0.19)

C4-P3

active task 0.18 (0.03) 0.47 (0.06) <0.001* 0.766 0.060

MI task 0.18 (0.01) 0.39 (0.10)

passive task 0.24 (0.09) 0.38 (0.19)

F3-C3

active task 0.27 (0.14) 0.52 (0.05) 0.614 0.097 0.047*

MI task 0.21 (0.16) 0.50 (0.02)

passive task 0.28 (0.12) 0.53 (0.05)

F3-O1

active task 0.21 (0.10) 0.32 (0.13) 0.228 0.031* 0.377

MI task 0.20 (0.10) 0.32 (0.13)

passive task 0.17 (0.08) 0.25 (0.11)

FC3-CP4

active task 0.18 (0.05) 0.41 (0.10) 0.916 0.547 0.044*

MI task 0.17 (0.04) 0.42 (0.13)

passive task 0.21 (0.01) 0.44 (0.12)

FC4-CP3

active task 0.15 (0.01) 0.48 (0.10) 0.070 0.691 0.047*

MI task 0.16 (0.04) 0.40 (0.13)

passive task 0.18 (0.04) 0.43 (0.13)

O1-Fz

active task 0.25 (0.19) 0.46 (0.08) 0.043* 0.601 0.319

MI task 0.26 (0.19) 0.42 (0.06)

passive task 0.26 (0.15) 0.42 (0.08)

P3-FC4

active task 0.17 (0.001) 0.53 (0.07) 0.020* 0.862 0.011*

MI task 0.20 (0.07) 0.47 (0.08)

passive task 0.25 (0.07) 0.45 (0.12)

P3-Fz

active task 0.22 (0.05) 0.38 (0.07) 0.693 0.599 0.030*

MI task 0.20 (0.09) 0.33 (0.06)

passive task 0.19 (0.05) 0.32 (0.05)

P3-O1

active task 0.27 (0.13) 0.69 (0.16) 0.403 0.138 0.011*

MI task 0.33 (0.16) 0.63 (0.12)

passive task 0.25 (0.18) 0.60 (0.05)

P4-FC3

active task 0.19 (0.03) 0.49 (0.03) 0.028* 0.544 0.003*

MI task 0.15 (0.04) 0.52 (0.03)

passive task 0.21 (0.07) 0.50 (0.06)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.

https://doi.org/10.3389/fneur.2023.1143955
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lin et al. 10.3389/fneur.2023.1143955

Frontiers in Neurology 12 frontiersin.org

survivors during active, MI, and passive motor tasks. To find 
significant changes in coherences and brain network properties in 
three motor tasks, we  performed two-way repeated ANOVA 
(p < 0.05) between coherences and network properties of ROIs on 
the frequency band that have been proven to be associated with 
motor function. As a result, the main effects of task and group as 
well as interaction show significant differences in coherence, nodal 
CC and CPL in delta (1–4 Hz), low alpha (8–10 Hz), high alpha 
(10–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), and gamma 
(30–48 Hz) bands.

In this study, clinical outcome measures were not significantly 
different between subacute and chronic survivors in statistical 
analysis. However, the differences are clinically significant in FMA_
UE scores. Therefore, differences in FMA_UE scores for included 
patients should be limited to a certain range. Besides, the FMA_UL 
score was zero for three patients. It seems difficult for them to 
complete the active hand grip. In fact, the active task refers to the 
attempt to grasp the hand. In addition, there were ceiling and floor 
effects for FMA-UL when assessing upper limb motor impairment 

for stroke survivors. And they actually have slight hand mobility but 
not up to the FMA-UL standard. Hence, they were able to complete 
active tasks.

4.1. Functional connectivity between ROIs

Strens et  al. indicated that changes in coherence likely reflected 
changes in the degree of coupling between regions (21). In this study, 
we calculated the TRCoh between motor-related areas to reflect changes 
in ROIs coupling between subacute and chronic survivors during motor 
tasks. Table 2–7 shows functional connectivity in delta, low alpha, high 
alpha, low beta, high beta, and gamma bands. Our results showed that 
significant interactions were found on quite a few connections linked to 
frontal, parietal and occipital lobes in each frequency band, particularly 
in the delta band. This represented the higher-order motor cortex, like 
the frontoparietal network (FPN), which was affected by the different 
stages of stroke recovery and task type. As far as we know, FPN has been 
demonstrated to be involved in movement planning and execution, and 

TABLE 7 Significant connectivity in gamma band (30–48 Hz).

connection Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

F4-P3

active task 0.18 (0.03) 0.37 (0.11) 0.380 0.587 0.045*

MI task 0.20 (0.06) 0.36 (0.07)

passive task 0.19 (0.06) 0.33 (0.11)

Fz-CP4

active task 0.23 (0.09) 0.19 (0.05) 0.019* 0.310 0.108

MI task 0.23 (0.03) 0.14 (0.01)

passive task 0.14 (0.02) 0.17 (0.02)

O1-CP3

active task 0.18 (0.04) 0.16 (0.02) 0.003* 0.718 0.810

MI task 0.16 (0.02) 0.20 (0.06)

passive task 0.17 (0.02) 0.17 (0.04)

O1-FC3

active task 0.15 (0.04) 0.27 (0.09) 0.347 0.356 0.019*

MI task 0.15 (0.03) 0.30 (0.04)

passive task 0.14 (0.02) 0.23 (0.04)

O1-FC4

active task 0.16 (0.05) 0.35 (0.11) 0.336 0.430 0.035*

MI task 0.19 (0.04) 0.38 (0.10)

passive task 0.19 (0.11) 0.29 (0.11)

O2-FC3

active task 0.17 (0.04) 0.35 (0.13) 0.699 0.714 0.007*

MI task 0.15 (0.03) 0.34 (0.03)

passive task 0.16 (0.04) 0.30 (0.04)

P4-CP4

active task 0.81 (0.02) 0.65 (0.02) 0.046* 0.668 0.081

MI task 0.79 (0.04) 0.67 (0.04)

passive task 0.77 (0.04) 0.74 (0.08)

P4-FC3

active task 0.17 (0.04) 0.47 (0.13) 0.464 0.550 0.026*

MI task 0.18 (0.07) 0.42 (0.04)

passive task 0.18 (0.06) 0.39 (0.14)

P4-O2

active task 0.33 (0.05) 0.58 (0.18) 0.017* 0.762 0.183

MI task 0.32 (0.13) 0.59 (0.09)

passive task 0.38 (0.12) 0.43 (0.05)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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FIGURE 4

Nodal CC alterations in subacute and chronic stroke survivors.

TABLE 8 Characteristic path length (CPL) on each motor task.

Band Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

Delta (1-4 Hz)

active task 0.23 (0.01) 0.24 (0.02) 0.261 0.765 0.248

MI task 0.22 (0.02) 0.23 (0.02)

passive task 0.23 (0.01) 0.22 (0.01)

Low alpha (8–

10 Hz)

active task 0.21 (0.01) 0.21 (0.004) 0.877 0.416 0.845

MI task 0.21 (0.03) 0.21 (0.01)

passive task 0.21 (0.02) 0.20 (0.01)

High alpha (10–

13 Hz)

active task 0.18 (0.02) 0.20 (0.01) 0.944 0.173 0.225

MI task 0.18 (0.04) 0.20 (0.004)

passive task 0.18 (0.02) 0.20 (0.01)

Low beta (13–

20 Hz)

active task 0.14 (0.01) 0.18 (0.005) 0.167 0.807 0.044*

MI task 0.15 (0.02) 0.18 (0.01)

passive task 0.14 (0.02) 0.18 (0.02)

High beta (20–

30 Hz)

active task 0.14 (0.01) 0.18 (0.01) 0.714 0.306 0.009*

MI task 0.13 (0.01) 0.17 (0.01)

passive task 0.13 (0.02) 0.17 (0.01)

Gamma (30–48 Hz)

active task 0.15 (0.01) 0.16 (0.01) 0.682 0.092 0.006*

MI task 0.15 (0.01) 0.16 (0.002)

passive task 0.13 (0.01) 0.15 (0.01)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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to provide corrective movement plans according to actual requirement 
(32). Recently, delta coherence has been a growing concern, which plays 
an important role when large-scale, distant cortical networks coordinate 
their neural activity, especially in the context of modulating attention or 
motivation (33). One interpretation of the apparent delta-band 
interaction is that the large-scale coordination of FPN in modulating 
attention and motivation was influenced by task and stroke stage, and 
further study is needed to better understand post-stroke motor recovery.

We also observed that the coupling strength of PMC, M1, and 
S1 and several connections linked to frontal, parietal, and occipital 
lobes in subacute subjects were lower than in chronic subjects in 
low alpha, high alpha, low beta, and high beta bands. These results 
showed that the coupling strength in the above areas was stronger 
for chronic patients than for subacute patients in the alpha and 
beta bands. Alpha and beta oscillatory processes are widely 
investigated in post-stroke motor impairment. The former was 
thought to reflect alternating cortical states of excitation and 
inhibition, and the latter was closely related to motor processes 
(34, 35). However, why is the coupling strength stronger in 
chronic patients than in subacute patients? One possible 
interpretation is that multiple activation zones for motor 
functional networks compensate for chronic stroke participants. 
That is, more resources need to be mobilized to carry out the same 
tasks. Previous studies have also supported the deduction of this 
result. De Vico et  al. found that higher interhemispheric 
connectivity in the parieto-occipital region may result from 
greater attentional resource engagement for patients during motor 
imagery with affected hand (23). Strens et al. argued that increased 
task-related coupling between cortical areas may dynamically 
compensate for brain damage after stroke (21). It was also 

demonstrated that the mechanism of functional reorganization 
was different between subacute and chronic phases. Normally, the 
subacute phase is characterized by spontaneous neuroplastic 
changes, and the chronic phase is characterized by new patterns 
of neural activity established with spontaneous plasticity ended 
(34). Therefore, this possible mechanism might imply that 
compensatory strategies used in clinical practice are debatable.

In addition, significant task differences after Bonferroni 
correction were only shown in the low and high alpha bands. This 
finding showed that although several studies have demonstrated 
that active, MI, and passive tasks have similar cortical activations, 
the required cognitive load was not the same in different motor task 
(36, 37). Ogawa et al. have similar findings with higher directed 
functional connectivity from the contralateral dorsal PMC to M1 in 
ME than in MI (38). We demonstrated a higher coupling between 
ipsilesional M1 and S1 in active task than in MI task in low alpha 
band. And the coupling between ipsilesional DLPFC and 
contralesional S1 was higher in MI task than in passive task in high 
alpha band. It is likely that in the brain after stroke, higher cognitive 
demands in the active task were greater than in the MI task, and the 
MI task was greater than in the passive task.

4.2. Characteristics of a brain network

Our main network properties are the nodal CC, CPL, and SW. The 
nodal CC indicates how well a brain region is clustered with neighboring 
regions, and the higher value means the more important role in the local 
range. The higher CPL value represents the lower transfer efficiency of 
the entire network structure, and the small-world indicates how 

TABLE 9 Small-world (SW) on each motor task.

Band Task SG CG p-Value task×group p-Value task p-Value group

Mean (SD) Mean (SD)

Delta (1-4 Hz)

active task 2.42 (0.08) 2.43 (0.08) 0.914 0.448 0.475

MI task 2.39 (0.07) 2.44 (0.03)

passive task 2.37 (0.05) 2.41 (0.07)

Low alpha (8–

10 Hz)

active task 2.34 (0.06) 2.36 (0.03) 0.939 0.442 0.298

MI task 2.36 (0.05) 2.38 (0.03)

passive task 2.34 (0.06) 2.36 (0.05)

High alpha (10–

13 Hz)

active task 2.31 (0.13) 2.45 (0.03) 0.967 0.134 0.205

MI task 2.28 (0.13) 2.42 (0.02)

passive task 2.30 (0.12) 2.44 (0.01)

Low beta (13–

20 Hz)

active task 2.28 (0.12) 2.44 (0.12) 0.341 0.816 0.064

MI task 2.35 (0.17) 2.37 (0.17)

passive task 2.24 (0.14) 2.41 (0.14)

High beta (20–

30 Hz)

active task 2.35 (0.17) 2.40 (0,01) 0.518 0.377 0.244

MI task 2.27 (0.02) 2.44 (0.12)

passive task 2.35 (0.14) 2.50 (0.11)

Gamma (30–48 Hz)

active task 2.48 (0.12) 2.42 (0.05) 0.440 0.098 0.929

MI task 2.48 (0.11) 2.42 (0.04)

passive task 2.33 (0.11) 2.43 (0.08)

SG, subacute group; CG, chronic group; SD, standard deviation. *p < 0.05, ***p < 0.001.
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efficiently the brain network processes information (39). Normally, a 
healthy brain exhibited higher nodal CC and lower CPL, known as a 
small-world network model (22). After stroke, global functional 
integration was disrupted, information transmission efficiency 
decreased, and a shift to random networks was observed in rest-state 
brain networks (40, 41). In this study, nodal CC was found to increase 
in bilateral S1, ipsilesional occipital area, and contralesional DLPFC and 
parietal area for chronic subjects compared to subacute subjects in the 
alpha, beta, and gamma bands, as well as with CPL. These findings 
demonstrated that subacute patients were characterized by higher 
transfer efficiency of the entire brain network and weak local nodal 
effects. At the chronic stage, the transfer efficiency was weakened and 
the local nodal role was strengthened. The interpretation of these 
findings is that large-scale communication between regions was 
emphasized in the subacute stage with higher transfer efficiency, and in 
the chronic stage, spontaneous recovery gradually disappears with 
weakened large-scale brain communication and the emphasis on local 
nodal role. However, as we lack information on serial TRCoh values, 
we are unable to confirm this point with this study.

4.3. Limitations

Several limitations of this study should be noted. First, longitudinal 
changes in brain network connectivity and properties under task 
conditions from subacute to chronic were not identified due to cross-
sectional research design. Second, the sample size is relatively small and 
the clinical characteristics of stroke patients may have some impact on 
the outcome. A larger sample size, a similar degree of functional 
impairment, consistent hemispheric lesion, and more stringent lesion site 
restrictions should be  considered in our next study. Third, clinical 
outcome evaluations were not comprehensive, as the Action Research 
Arm Test (ARAT) and the National Institute of Health Stroke Scale 
(NIHSS) should be considered in our future study. Finally, the volume 
conduction problem of EEG makes it difficult to accurately localize the 
source activity. Therefore, combining MRI or fNIRS for source 
localization will be necessary in the future.

5. Conclusion

In conclusion, this study demonstrated the characteristics of brain 
coupling and network properties between subacute and chronic 
survivors after stroke. Subacute survivors were characterized by higher 
transfer efficiency of the entire brain network and weak local nodal 
effects. Transfer efficiency was reduced, the local nodal role was 
strengthened, and more neural resources needed to be mobilized to 
perform motor tasks for chronic survivors. Overall, these results may 
help to understand the remodeling pattern of the brain network for 
different post-stroke stages on task conditions and the mechanism of 
spontaneous recovery.
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